Main Criteria: Forward Education

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Northern Territory Curriculum, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 7, 8

Forward Education

Harnessing the Sun's Energy with Solar Panels

Nebraska Content Area Standards

Mathematics

Grade 7 - Adopted: 2022

CONTENT STANDARD		Grade 7 Standards
STRAND	7.N.	NUMBER: Students will solve problems and reason with number concepts using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	7.N.2.	Operations: Students will compute with rational numbers accurately.
STRAND	7.N.2.b.	Apply properties of operations (commutative, associative, distributive, identity, inverse, zero) as strategies for problem solving with rational numbers.

CONTENT STANDARD		Grade 7 Standards
STRAND	7.A.	ALGEBRA: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	7.A.1.	Algebraic Processes: Students will apply the operational properties when evaluating expressions, and solving equations and inequalities.

STRAND 7.A.1.a. Use factoring and properties of operations to create equivalent algebraic expressions (e.g., 2x + 6 = 2(x + 3)).

Nebraska Content Area Standards

Science

Grade 7 - Adopted: 2017

CONTENT STANDARD	NE.SC.7. 7.	Interdependent Relationships in Ecosystems
STRAND	SC.7.7.3	Gather, analyze, and communicate evidence of interdependent relationships in ecosystems.
INDICATOR	SC.7.7.3. D.	Apply scientific principles to design a method for monitoring and increasing positive human impact on the environment.
CONTENT STANDARD	NE.SC.7. 13.	Earth's Systems
STRAND	SC.7.13. 5.	Gather, analyze, and communicate evidence of the flow of energy and cycling of matter associated with Earth's materials and processes.
INDICATOR	SC.7.13. 5.B.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
INDICATOR	SC.7.13. 5.C.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

	Grade 8 - Adopted: 2017		
CONTENT ST ANDARD	NE.SC.8. 1.	Forces and Interactions	
STRAND	SC.8.1.1	Gather, analyze, and communicate evidence of forces and interactions.	
INDICATOR	SC.8.1.1. B.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	

Nebraska Content Area Standards

Technology Education

Grade 7 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST ANDARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS

STRAND

Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND

Write programs using visual (block-based) programming languages (scratch, code.org).

Nebraska Content Area Standards Technology Education Grade 8 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST AND ARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS

STRAND

Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
STRAND	Evaluate algorithms by their efficiency, correctness, and clarity.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence

STANDARD	
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND

Write programs using visual (block-based) programming languages (scratch, code.org).

Nevada Academic Content Standards

Mathematics

Grade 7 - Adopted: 2010

	NV.CC.M P.7.	Mathematical Practices
STRAND / INDICATOR	MP.7.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.7.2.	Reason abstractly and quantitatively.

STRAND / INDICATOR	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.7.4.	Model with mathematics.
STRAND / INDICATOR	MP.7.6.	Attend to precision.
STRAND / INDICATOR	MP.7.7.	Look for and make use of structure.

Nevada Academic Content Standards

Mathematics

Grade 8 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.8.	Mathematical Practices
STANDARD	P.o.	
STRAND / INDICATOR	MP.8.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.8.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.8.4.	Model with mathematics.
STRAND / INDICATOR	MP.8.6.	Attend to precision.
STRAND / INDICATOR	MP.8.7.	Look for and make use of structure.

Nevada Academic Content Standards

Science

Grade 7 - Adopted: 2014

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

GRADE LEVEL	MS-	Construct an argument supported by evidence for how increases in human population and per-capita consumption
EXPECTATION	ESS3-4.	of natural resources impact Earth's systems.

GRADE LEVELMS-Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the pastEXPECTATIONESS3-5.century.

CONTENT STANDARD	NV.MS- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas

INDICATOR /	RST.6-	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
GRADE LEVEL 8	8.9.	gained from reading a text on the same topic.
EXPECTATION		

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVELWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.EXPECTATION8.2(d)

CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Nevada Academic Content Standards

Science

Grade 8 - Adopted: 2014

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

GRADE LEVEL	MS-	Construct an argument supported by evidence for how increases in human population and per-capita consumption
EXPECTATION	ESS3-4.	of natural resources impact Earth's systems.

GRADE LEVELMS-Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the pastEXPECTATIONESS3-5.century.

CONTENT STANDARD	NV.MS- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas

INDICATOR /	RST.6-	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
GRADE LEVEL	8.9.	gained from reading a text on the same topic.
EXPECTATION		

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

CONTE STAND		NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAN	-		Text Types and Purposes
GRAD	ATOR / E LEVEL CTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVELWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.EXPECTATION8.2(d)

CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Nevada Academic Content Standards

Technology Education

Grade 7 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
GRADE LEVEL EXPECTATION	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL P6.1. Systematically test computational artifacts by considering all scenarios and using test cases.

EXPECTATION

CONTENT STANDARD

DN

NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

STRAND /		Practices
INDICATOR INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.C.1.	Break problems into component parts, identify key pieces, and use that information to problem solve.
		Nevada Academic Content Standards Technology Education Grade 8 - Adopted: 2019
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and

GRADE LEVELP1.3.Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL P4.3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

EXPECTATION	

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Testing and Refining Computational Artifacts

Systematically test computational artifacts by considering all scenarios and using test cases. GRADE LEVEL P6.1. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.C.1.	Break problems into component parts, identify key pieces, and use that information to problem solve.
		New Hampshire College and Career Ready Standards Mathematics Grade 7 - Adopted: 2010
STRAND / STANDARD	NH.CC.M P.7.	Mathematical Practices
STANDARD / GLE	MP.7.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.7.2.	Reason abstractly and quantitatively.

STANDARD / MP.7.3. Construct viable arguments and critique the reasoning of others. GLE

STANDARD / GLE	MP.7.4.	Model with mathematics.
STANDARD / GLE	MP.7.6.	Attend to precision.
STANDARD /	MP.7.7.	Look for and make use of structure.

GLE

STANDARD / MP.7.7. Look for and make use of structure.

New Hampshire College and Career Ready Standards

Mathematics

STRAND / STANDARD	NH.CC.M P.8.	Mathematical Practices
STANDARD / GLE	MP.8.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.8.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.8.4.	Model with mathematics.
STANDARD / GLE	MP.8.6.	Attend to precision.
STANDARD / GLE	MP.8.7.	Look for and make use of structure.

New Hampshire College and Career Ready Standards

Science

Grade 7 - Adopted: 2016

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

EXPECTATION MS-

MS- Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past ESS3-5. century.

STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
STANDARD / GLE	MS- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Hampshire College and Career Ready Standards

Science

Grade 8 - Adopted: 2016

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
ST ANDARD / GLE	MS- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Hampshire College and Career Ready Standards

Technology Education

Grade 7 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL	ICT.2.d.	Science

EXPECTATION

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects

Grade 7 - Adopted: 2018

STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Algorithms & Programming
GRADE LEVEL	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms.

EXPECTATION

New Hampshire College and Career Ready Standards

Technology Education

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL	ICT.3.c.	Problem solving

GRADE LEVEL ICT.3.c. Pro EXPECTATION

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

Grade 8 - Adopted: 2018

STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Algorithms & Programming
	0.15.40	

GRADE LEVEL 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. EXPECTATION

New Jersey Student Learning Standards Mathematics

Grade 7 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.

New Jersey Student Learning Standards

Mathematics

Grade 8 - Adopted: 2016

CONTENT AREA / ST ANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.

STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.

New Jersey Student Learning Standards

Science

Grade 7 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STATEMENT	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused climate change over the past century.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Jersey Student Learning Standards

Science Grade 8 - Adopted: 2020/Effective 2021

STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STATEMENT	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused climate change over the past century.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Jersey Student Learning Standards Technology Education

	5,	
Grade	7 - Adopted: 20	20

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE PROGRESS

Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

INDICATOR

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE	
PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
INDICATOR	
INDICATOR CONTENT AREA / ST ANDARD	Computer Science and Design Thinking Practices

CUMULATIVE PROGRESS INDICATOR $\label{eq:systematically test computational artifacts by considering all scenarios and using test cases.$

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Computing Systems
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential trade- offs.

CUMULATIVE	8.1.8.CS.	Justify design decisions and explain potential system trade-offs.
PROGRESS	3:	
INDICATOR		

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.

CUMULATIVE	8.1.8.DA.	Test, analyze, and refine computational models
PROGRESS	5:	
INDICATOR		

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.

 CUMULATIVE
 8.1.8.AP.
 Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.

 PROGRESS
 1:

 INDICATOR
 1:

CONTENT
AREA /
STANDARD8.1.Computer Science and Design Thinking - Computer ScienceST RANDAlgorithms & ProgrammingCONTENT
STATEMENTIndividuals design and test solutions to identify problems taking into consideration the diverse needs
of the users and the community.CUMULATIVE
PROGRESS
INDICATOR8.1.8.AP.Systematically test and refine programs using a range of test cases and users.

CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.

CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
AREA /	8.2.	Computer Science and Design Thinking – Design Thinking Nature of Technology
AREA / STANDARD	8.2.	
AREA / ST ANDARD ST RAND CONT ENT		Nature of Technology Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic
AREA / STANDARD STRAND CONTENT STATEMENT CUMULATIVE PROGRESS		Nature of Technology Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.
AREA / STANDARD STRAND CONTENT STATEMENT CUMULATIVE PROGRESS INDICATOR CUMULATIVE PROGRESS	8.2.8.NT.1 : 8.2.8.NT.	Nature of Technology Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world. Examine a malfunctioning tool, product, or system and propose solutions to the problem. Explain how a product designed for a specific demand was modified to meet a new demand and led to a new
AREA / STANDARD STRAND CONTENT STATEMENT CUMULATIVE PROGRESS INDICATOR CUMULATIVE PROGRESS INDICATOR CONTENT AREA /	8.2.8.NT.1 : 8.2.8.NT. 4:	Nature of Technology Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world. Examine a malfunctioning tool, product, or system and propose solutions to the problem. Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product.
AREA / STANDARD STRAND CONTENT STATEMENT CUMULATIVE PROGRESS INDICATOR CUMULATIVE PROGRESS INDICATOR CONTENT AREA / STANDARD	8.2.8.NT.1 : 8.2.8.NT. 4:	Nature of Technology Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world. Examine a malfunctioning tool, product, or system and propose solutions to the problem. Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product. Computer Science and Design Thinking – Design Thinking

New Jersey Student Learning Standards

Technology Education Grade 8 - Adopted: 2020

CONTENT	Computer Science and Design Thinking Practices
AREA / STANDARD	
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT	Computer Science and Decign Thinking Practices

STRAND 3 Recognizing and Defining Computational Problems CONTENT STATEMENT The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students: CUMULATIVE PROGRESS INDICATOR Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures. CUMULATIVE PROGRESS INDICATOR Evaluate whether it is appropriate and feasible to solve a problem computationally. CONTENT AREA / STANDARD Computer Science and Design Thinking Practices STRAND 4 Developing and Using Abstractions CUMULATIVE STATEMENT Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students: CUMULATIVE PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. PROGRESS INDICATOR CONTENT AREA / STANDARD Computer Science and Design Thinking Practices STRAND Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. PROGRESS INDICATOR	CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STATEMENT Idevelops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking if down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students: CUMULATIVE Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures. CUMULATIVE Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures. CUMULATIVE Evaluate whether it is appropriate and feasible to solve a problem computationally. PROGRESS NDICATOR CONTENT Computer Science and Design Thinking Practices STRAND 4 Developing and Using Abstractions CONTENT Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions engaging in this practice, students: CUMULATIVE Evaluate existing technological functionalities and incorporate them into new designs. PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.	STRAND	3 Recognizing and Defining Computational Problems
PROGRESS INDICATOR procedures. CUMULATIVE PROGRESS INDICATOR Evaluate whether it is appropriate and feasible to solve a problem computationally. CONTENT AREA / STANDARD Computer Science and Design Thinking Practices STRAND 4 Developing and Using Abstractions CONTENT STATEMENT Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students: CUMULATIVE PROGRESS INDICATOR Evaluate existing technological functionalities and incorporate them into new designs. CUMULATIVE PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. CUMULATIVE PROGRESS INDICATOR Computer Science and Design Thinking Practices		develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine
PROGRESS INDICATOR Computer Science and Design Thinking Practices CONTENT STANDARD Computer Science and Design Thinking Practices STRAND 4 Developing and Using Abstractions CONTENT STATEMENT Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students: CUMULATIVE PROGRESS INDICATOR Evaluate existing technological functionalities and incorporate them into new designs. CUMULATIVE PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. CONTENT AREA / STANDARD Computer Science and Design Thinking Practices	PROGRESS	
AREA / STANDARD 4 Developing and Using Abstractions STRAND 4 Developing and Using Abstractions CONTENT STATEMENT Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students: CUMULATIVE PROGRESS INDICATOR Evaluate existing technological functionalities and incorporate them into new designs. CUMULATIVE PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. CONTENT AREA / STANDARD Computer Science and Design Thinking Practices	PROGRESS	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students: CUMULATIVE PROGRESS INDICATOR Evaluate existing technological functionalities and incorporate them into new designs. CUMULATIVE PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. CONTENT AREA / STANDARD Computer Science and Design Thinking Practices	AREA /	Computer Science and Design Thinking Practices
ST AT EMENT examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students: CUMULATIVE Evaluate existing technological functionalities and incorporate them into new designs. PROGRESS INDICATOR CUMULATIVE Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. PROGRESS INDICATOR CONTENT Computer Science and Design Thinking Practices	STRAND	4 Developing and Using Abstractions
PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. PROGRESS INDICATOR Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. CONTENT AREA / STANDARD Computer Science and Design Thinking Practices		examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When
PROGRESS INDICATOR Computer Science and Design Thinking Practices CONTENT AREA / STANDARD Computer Science and Design Thinking Practices	PROGRESS	Evaluate existing technological functionalities and incorporate them into new designs.
AREA / STANDARD	PROGRESS	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
STRAND 5 Creating Computational Artifacts	AREA /	Computer Science and Design Thinking Practices
	STRAND	5 Creating Computational Artifacts

CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
AREA /	Computer Science and Design Thinking Practices
AREA /	Computer Science and Design Thinking Practices 6 Testing and Refining Computational Artifacts
STANDARD	

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Computing Systems
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential trade- offs.

CUMULATIVE	8.1.8.CS.	Justify design decisions and explain potential system trade-offs.
PROGRESS	3:	
INDICATOR		

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.
CUMULATIVE	8.1.8.DA.	Test, analyze, and refine computational models.

CUMULATIVE PROGRESS

INDICATOR

5:

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.

CUMULATIVE	8.1.8.AP.	Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.
PROGRESS	1:	
INDICATOR		

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.

CUMULATIVE8.1.8.AP.Systematically test and refine programs using a range of test cases and users.PROGRESS8:INDICATOR

CONTENT	8.2.	Computer Science and Design Thinking – Design Thinking
AREA / STANDARD	0.2.	Computer Science and Design Finnking – Design Finnking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE	8.2.8.ED.	Analyze how trade-offs can impact the design of a product.

INDICATOR	

PROGRESS

6:

CUMULATIVE8.2.8.ED.Design a product to address a real-world problem and document the iterative design process, including decisionsPROGRESS7:made as a result of specific constraints and trade-offs (e.g., annotated sketches).INDICATOR

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology

CONTENT STATEMENT		Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT.1 :	Examine a malfunctioning tool, product, or system and propose solutions to the problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT. 4:	Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ET W.3:	Analyze the design of a product that negatively impacts the environment or society and develop possible solutions to lessen its impact.
		New Mexico Content Standards Mathematics Grade 7 - Adopted: 2012
STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
		New Mexico Content Standards Mathematics Grade 8 - Adopted: 2012

BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.

New Mexico Content Standards

Science

Grade 7 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / CONTENT STANDARD	NM.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Human Impacts
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCEMS-Describe the advantages and disadvantages associated with technologies related to local industries and energySTANDARD /ESS3-3production.INDICATORNM.

STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	MS- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Mexico Content Standards

Science

Grade 8 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

ST RAND / CONT ENT ST AND ARD	NM.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Human Impacts
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3 NM.	Describe the advantages and disadvantages associated with technologies related to local industries and energy production.
STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	MS- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		New Mexico Content Standards Technology Education Grade 7 - Adopted: 2019
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms
INDICATOR	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards

BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / ST ANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
		New Mexico Content Standards Technology Education

Grade 8 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR	h	Algorithms

INDICATOR	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / ST AND ARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR		Program Development
INDICATOR	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / ST ANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E ST ANDARD / INDICAT OR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
		New York State Learning Standards and Core Curriculum Mathematics Grade 7 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices

CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.

New York State Learning Standards and Core Curriculum

Mathematics Grade 8 - Adopted: 2017/Updated 2019

ST RAND / DOMAIN / UNIFYING		Mathematical Practices
THEME		
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.

New York State Learning Standards and Core Curriculum

Science

		Grade 7 - Adopted: 2016
STRAND / DOMAIN / UNIFYING THEME	NY.MS.4.	Energy
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-PS3- 5.	Construct, use, and present an argument to support the claim that when work is done on or by a system, the energy of the system changes as energy is transferred to or from the system.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.13	Earth's Systems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geologic processes.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.14	Weather and Climate
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD /	MS-	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

 STANDARD /
 MS Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

 CONCEPTUAL
 ESS3-3.

 UNDERSTANDI

 NG

STANDARD /MS-Construct an argument supported by evidence for how increases in human population and per-capita consumption ofCONCEPTUALESS3-4.natural resources impact Earth's systems.UNDERSTANDING

STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD /	6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

CONCEPTUAL 8.RST.10. independently and proficiently. UNDERSTANDI NG

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

 EXPECTATION /
 6 Use precise language and domain-specific vocabulary to inform about or explain the topic.

 CONTENT
 8.WHST.2.

 SPECIFICATION
 d.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Use technology, including the Internet, to produce and publish writing and present the relationships between CONCEPTUAL 8.WHST.6 information and ideas clearly and efficiently.

New York State Learning Standards and Core Curriculum

Science

Grade 8 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.MS.4.	Energy
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

STANDARD / MS-PS3- Construct, use, and present an argument to support the claim that when work is done on or by a system, the energy of CONCEPTUAL the system changes as energy is transferred to or from the system. 5. UNDERSTANDI NG

NY.MS.13 Earth's Systems STRAND / DOMAIN / UNIFYING ТНЕМЕ CATEGORY / Students who demonstrate understanding can: **CLUSTER / KEY IDEA**

STANDARD / MS-Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and ESS3-1. CONCEPTUAL groundwater resources are the result of past and current geologic processes. UNDERSTANDI NG

STRAND / DOMAIN / UNIFYING THEME	NY.MS.14	Weather and Climate
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

UNDERSTANDI NG

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

STANDARD /	MS-	Construct an argument supported by evidence for how increases in human population and per-capita consumption of
CONCEPTUAL	ESS3-4.	natural resources impact Earth's systems.
UNDERSTANDI		
NG		

STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design	
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:	
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	
		Grade 8 - Adopted: 2011	
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects	
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details	
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.	
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects	
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure	
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	
---	----------------	---	

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD /	6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

CONCEPTUAL 8.RST.10. independently and proficiently. UNDERSTANDI NG

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

 EXPECTATION /
 6 Use precise language and domain-specific vocabulary to inform about or explain the topic.

 CONTENT
 8.WHST.2.

 SPECIFICATION
 d.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Use technology, including the Internet, to produce and publish writing and present the relationships between CONCEPTUAL 8.WHST.6 information and ideas clearly and efficiently.

New York State Learning Standards and Core Curriculum Technology Education

Grade 7 - Adopted: 1996			
ST RAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.	
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.	
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.	
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.	
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.	
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.	

New York State Learning Standards and Core Curriculum Technology Education Grade 8 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.
		North Carolina Standard Course of Study
		Mathematics Grade 7 - Adopted: 2017/IMPL 2018
CONTENT AREA / STRAND		Standards for Mathematical Practice

STRAND /

ESSENTIAL STANDARD MP.1.

Make sense of problems and persevere in solving them.

STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.6.	Attend to precision.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.

North Carolina Standard Course of Study Mathematics

Grade 8 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.6.	Attend to precision.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.

North Carolina Standard Course of Study

Science

STRAND / ESSENTIAL STANDARD		Energy: Conservation and Transfer
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	7.P.2.	Understand forms of energy, energy transfer and transformation and conservation in mechanical systems.
CLARIFYING OBJECTIVE	7.P.2.2.	Explain how energy can be transformed from one form to another (specifically potential energy and kinetic energy) using a model or diagram of a moving object (roller coaster, pendulum, or cars on ramps as examples).
CONTENT AREA / STRAND	NC.7.E.	Earth Science
STRAND / ESSENTIAL STANDARD		Earth Systems, Structures and Processes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	7.E.1.	Understand how the cycling of matter (water and gases) in and out of the atmosphere relates to Earth's atmosphere, weather and climate and the effects of the atmosphere on humans.
CLARIFYING OBJECTIVE	7.E.1.6.	Conclude that the good health of humans requires: monitoring the atmosphere, maintaining air quality and stewardship.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects

STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity

ESSENTIAL	6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band
STANDARD /	8.RST.10.	independently and proficiently.
CLARIFYING		
OBJECTIVE		

STANDARD / 8.WHST. experiments, or technical processes.	CONTENT AREA / STRAND	Writing Standards for Literacy in Science and Technical Subjects
STANDARD / 8.WHST. experiments, or technical processes.	ESSENTIAL	Text Types and Purposes
OBJECTIVE	STANDARD / CLARIFYING	 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

CLARIFYING 6- Use precise language and domain-specific vocabulary to inform about or explain the topic. OBJECTIVE 8.WHST.2. d.

CONTENT AREA / STRAND		Nriting Standards for Literacy in Science and Technical Subjects	
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing	
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.	
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.	

North Carolina Standard Course of Study

Science

Grade 8 - Adopted: 2010

CONTENT AREA / STRAND	Physical Science
STRAND / ESSENTIAL STANDARD	Energy: Conservation and Transfer

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	8.P.2.	Explain the environmental implications associated with the various methods of obtaining, managing, and using energy resources.
CLARIFYING OBJECTIVE	8.P.2.1.	Explain the environmental consequences of the various methods of obtaining, transforming and distributing energy.
CLARIFYING OBJECTIVE	8.P.2.2.	Explain the implications of the depletion of renewable and nonrenewable energy resources and the importance of conservation.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects

STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CLARIFYING OBJECTIVE	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

ESSENTIAL	6-	Use technology, including the Internet, to produce and publish writing and present the relationships between
STANDARD /	8.WHST.6	information and ideas clearly and efficiently.
CLARIFYING		
OBJECTIVE		

North Carolina Standard Course of Study

Technology Education

Grade 7 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRANI	þ	Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

OBJECTIVE

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 7 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR 68-AP-Implement flowcharts and/or pseudocode to address complex problems as algorithms.

01.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Modularity

INDICATOR	68-
	05.

8-AP- Organize problems and subproblems into parts.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Program Development

INDICATOR

68-AP-10.

Systematically test and refine programs using a range of test cases.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR

68-IC-05. Collaborate with many contributors to create a computational artifact.

North Carolina Standard Course of Study Technology Education

Grade 8 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

ESSENTIAL	ISTE-	Students select and use digital tools to plan and manage a design process that considers design constraints and
STANDARD /	S.4.b.	calculated risks.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 8 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR

68-AP-Implement flowcharts and/or pseudocode to address complex problems as algorithms.

01.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Modularity
INDICATOR	68-AP-	Organize problems and subproblems into parts.

Organize problen lems into pa pp

05.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Program Development

10.

68-AP- Systematically test and refine programs using a range of test cases.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR

68-IC-05. Collaborate with many contributors to create a computational artifact.

North Dakota Content Standards

Mathematics

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.6	Attend to precision.
BENCHMARK	MP.7	Look for and make use of structure.

North Dakota Content Standards

Mathematics

Grade 8 - Adopted: 2017

Standards for Mathematical Practice

BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.6	Attend to precision.
BENCHMARK	MP.7	Look for and make use of structure.
		North Delaste Oceanization for a family

North Dakota Content Standards

Science

Grade 7 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
GRADE LEVEL EXPECTATION	MS- ESS3-5.	Investigate factors that have caused changes in global temperatures over time.
CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology

GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

s	ci	е	n	С	е

Grade 8 -	Adopted: 2019
-----------	---------------

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
		Calance and Engineering Departies

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of

EXPECTATION

CONTENT

evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

STANDARD		
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
GRADE LEVEL EXPECTATION	MS- ESS3-5.	Investigate factors that have caused changes in global temperatures over time.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

possible solutions.

GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL	MS-ET1-	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such

EXPECTATION 4.

T1- Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

Technology Education

Grade 7 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECTATION	Creative and Innovative Processes and Products

INDICATOR 6- Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. 8.MTL.7.

Grade 7 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	7.PSA.1.	Modify and test an algorithm to solve a problem.

INDICATOR 7.PSA.2. Continued growth debugging a program that includes sequencing, loops, or conditionals.

North Dakota Content Standards Technology Education Grade 8 - Adopted: 2012

CONTENT STANDARD		Library and Technology
BENCHMARK		Media and Technology Literacy
GRADE LEVEL EXPECTATION		Creative and Innovative Processes and Products
INDICATOR	6-	Create unique products and processes by selecting digital resources, tools, and formats for a real-world task.

ICATOR (

6- Create unique products and processes by selecting digital resources, tools, and formats for a real-world task.8.MTL.7.

	 Grade 8 - Adopted: 2019
CONTENT ST ANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms
INDICATOR	Strategies for understanding and solving problems.

INDICATOR 8.PSA.1. Create and test an algorithm to solve a problem across disciplines.

.4.1.1.

8.PSA.2. Continued growth debugging a program that includes sequencing, loops, or conditionals.

Northern Territory Curriculum Mathematics

Grade 7 - Adopted: 2015

STRAND / DOMAIN	ACMNA.7.	Number and Algebra
OUTCOME / INDICATOR	ACMNA. 7.1.	Number and place value
INDICATOR	ACMNA. 7.1.3.	Apply the associative, commutative and distributive laws to aid mental and written computation (ACMNA151)

INDICATOR ACMNA.7 Understanding that arithmetic laws are powerful ways of describing and simplifying calculations .1.3.1.

STRAND / DOMAIN	ACMNA.7.	Number and Algebra
OUTCOME / INDICATOR	ACMNA. 7.4.	Patterns and algebra
INDICATOR	ACMNA. 7.4.1.	Introduce the concept of variables as a way of representing numbers using letters (ACMNA175)
INDICATOR	ACMNA.7	Understanding that arithmetic laws are powerful ways of describing and simplifying calculations and that using these

Northern Territory Curriculum Mathematics Grade 8 - Adopted: 2015

STRAND / DOMAIN	ACMNA.8.	Number and Algebra
OUTCOME / INDICATOR	ACMNA. 8.4.	Patterns and algebra
INDICATOR	ACMNA. 8.4.3.	Simplify algebraic expressions involving the four operations (ACMNA192)
		Inderstanding that the laws used with numbers can also be used with algebra

INDICATOR ACMNA. Understanding that the laws used with numbers can also be used with algebra 8.4.3.1.

laws leads to the generality of algebra

Northern Territory Curriculum

Science

Grade 7 - Adopted: 2016

STRAND / DOMAIN	ACSSU.7.	Science Understanding
OUTCOME / INDICATOR	ACSSU. 7.3.	Earth and space sciences
INDICATOR	ACSSU. 7.3.2.	Some of Earth's resources are renewable, including water that cycles through the environment, but others are non- renewable (ACSSU116)
INDICATOR	ACSSU.7 .3.2.1.	Considering what is meant by the term 'renewable' in relation to the Earth's resources
INDICATOR	ACSSU.7 .3.2.2.	Considering timescales for regeneration of resources

ACSSU.7 Comparing renewable and non-renewable energy sources, including how they are used in a range of situations .3.2.3.

STRAND / DOMAIN	ACSHE.7.	Science as a Human Endeavour
OUTCOME / INDICATOR	ACSHE. 7.2.	Use and influence of science
INDICATOR	ACSHE. 7.2.2.	People use science understanding and skills in their occupations and these have influenced the development of practices in areas of human activity (ACSHE121)

INDICATOR

ACSHE.7. Investigating everyday applications of physical separation techniques such as filtering, sorting waste materials, 2.2.1. reducing pollution, extracting products from plants, separating blood products and cleaning up oil spills

OUTCOME / INDICATOR ACSIS.7. Questioning and predicting	
INDICATOR ACSIS.7 Identify questions and problems that can be investigated scientifically and make predictions I .1.1. on scientific knowledge (ACSIS124)	ased

```
        INDICATOR
        ACSIS.7.
        Recognising that the solution of some questions and problems requires consideration of social, cultural, economic or

        1.1.2.
        moral aspects rather than or as well as scientific investigation
```

STRAND / DOMAIN	ACSIS.7.	Science Inquiry Skills
OUTCOME / INDICATOR	ACSIS.7. 2.	Planning and conducting
INDICATOR	ACSIS.7 .2.2.	Measure and control variables, select equipment appropriate to the task and collect data with accuracy (ACSIS126)

INDICATOR ACS 2.2.3.

ACSIS.7. Using specialised equipment to increase the accuracy of measurement within an investigation 223

STRAND / DOMAIN	ACSIS.7.	Science Inquiry Skills
OUTCOME / INDICATOR	ACSIS.7. 5.	Communicating
INDICATOR	ACSIS.7 .5.1.	Communicate ideas, findings and evidence based solutions to problems using scientific language, and representations, using digital technologies as appropriate (ACSIS133)

INDICATOR

ACSIS.7. Presenting the outcomes of research using effective forms of representation of data or ideas and scientific language 5.1.1. that is appropriate for the target audience

Northern Territory Curriculum

Science

Grade 8 - Adopted: 2016

STRAND / DOMAIN	ACSIS.8.	Science Inquiry Skills
OUTCOME / INDICATOR	ACSIS.8. 1.	Questioning and predicting
INDICATOR	ACSIS.8 .1.1.	Identify questions and problems that can be investigated scientifically and make predictions based on scientific knowledge (ACSIS139)

ACSIS.8. Recognising that the solution of some questions and problems requires consideration of social, cultural, economic or 1.1.2. moral aspects rather than or as well as scientific investigation

STRAND / DOMAIN	ACSIS.8.	Science Inquiry Skills
OUTCOME / INDICATOR	ACSIS.8. 2.	Planning and conducting
INDICATOR	ACSIS.8 .2.2.	Measure and control variables, select equipment appropriate to the task and collect data with accuracy (ACSIS141)

INDICATOR

5.1.2.

ACSIS.8. Using specialised equipment to increase the accuracy of measurement within an investigation 2.2.1.

STRAND / DOMAIN	ACSIS.8.	Science Inquiry Skills
OUTCOME / INDICATOR	ACSIS.8. 5.	Communicating
INDICATOR	ACSIS.8 .5.1.	Communicate ideas, findings and evidence based solutions to problems using scientific language, and representations, using digital technologies as appropriate (ACSIS148)
INDICATOR	ACSIS.8. 5.1.1.	Using digital technologies to construct a range of text types to present science ideas
INDICATOR	ACSIS.8.	Selecting and using appropriate language and representations to communicate science ideas within a specified text

type and for a specified audience

Northern Territory Curriculum

Technology Education

Grade 7 - Adopted: 2016 (ACARA)

STRAND / DOMAIN		Design and Technologies
OUTCOME / INDICATOR	ACTDEK .7-8.	Design and Technologies Knowledge and Understanding
INDICATOR	ACT DE K.7-8.2.	Analyse how motion, force and energy are used to manipulate and control electromechanical systems when designing simple, engineered solutions (ACTDEK031)
INDICATOR	ACTDEK. 7-8.2.1.	Investigating influences impacting on manufactured products and processes such as historical developments, society, new materials, control systems and biomimicry, for example the development of Velcro
INDICATOR	ACTDEK. 7-8.2.2.	Experimenting to select the most appropriate principles and systems on which to base design ideas, for example structural components to be tested for strength
INDICATOR	ACTDEK. 7-8.2.3.	Calculating an engineered system's outputs, for example speed, brightness of light, volume of sound
INDICATOR	ACTDEK. 7-8.2.4.	Producing prototypes and jigs to test functionality, including the use of rapid prototyping tools such as 3D printers
INDICATOR	ACTDEK. 7-8.2.5.	Using code to control systems, for example code to program a microcontroller or a simple, object-based coding application to program a system such as a remote-controlled car or simple robotic arm
INDICATOR	ACTDEK. 7-8.2.6.	Investigating components, tools and equipment, for example testing the durability of batteries, determining the effective range of wireless devices

STRAND / DOMAIN		Design and Technologies
OUTCOME / INDICATOR	ACT DEK .7-8.	Design and Technologies Knowledge and Understanding
INDICATOR	ACT DE K.7-8.3.	Analyse how food and fibre are produced when designing managed environments and how these can become more sustainable (ACTDEK032)

ACTDEK. Comparing land and water management methods in contemporary Australian food and fibre production with 7-8.3.1. traditional Aboriginal systems and countries of Asia, for example minimum-tillage cropping, water-efficient irrigation

STRAND / DOMAIN		Design and Technologies
OUTCOME / INDICATOR	ACTDEP .7-8.	Design and Technologies Processes and Production Skills
INDICATOR	ACT DE P.7-8.2.	Generate, develop, test and communicate design ideas, plans and processes for various audiences using appropriate technical terms and technologies including graphical representation techniques (ACT DEP036)
INDICATOR	ACTDEP. 7-8.2.1.	Using a variety of critical and creative thinking strategies such as brainstorming, sketching, 3-D modelling and experimenting to generate innovative design ideas
INDICATOR	ACTDEP. 7-8.2.2.	Considering which ideas to further explore and investigating the benefits and drawbacks of ideas, for example using digital polling to capture the views of different groups in the community
INDICATOR	ACTDEP. 7-8.2.3.	Identifying factors that may hinder or enhance project development, for example intercultural understanding
INDICATOR	ACTDEP. 7-8.2.4.	Developing models, prototypes or samples using a range of materials, tools and equipment to test the functionality of ideas
INDICATOR	ACTDEP. 7-8.2.5.	Producing annotated concept sketches and drawings, using: technical terms, scale, symbols, pictorial and aerial views to draw environments; production drawings, orthogonal drawings; patterns and templates to explain design ideas
INDICATOR	ACTDEP. 7-8.2.6.	Documenting and communicating the generation and development of design ideas for an intended audience, for example developing a digital portfolio with images and text which clearly communicates each step of a design process
STRAND / DOMAIN		Digital Technologies
OUTCOME / INDICATOR	ACT DIP. 7-8.	Digital Technologies Processes and Production Skills
INDICATOR	ACT DIP. 7-8.7.	Design algorithms represented diagrammatically and in English, and trace algorithms to predict output for a given input and to identify errors (ACTDIP029)
INDICATOR	ACTDIP.7 -8.7.2.	checking the accuracy of an algorithm before it is implemented, for example desk checking it with test data to see if the instructions produce the expected results
INDICATOR	ACTDIP.7 -8.7.4.	using structured English to express algorithmic instructions, for example using conventional statements such as 'while' and 'endwhile' in a 'while loop' when describing interactive instruction
STRAND / DOMAIN		Digital Technologies

OUTCOME / INDICATOR	ACTDIP. 7-8.	Digital Technologies Processes and Production Skills
INDICATOR	ACT DIP. 7-8.8.	Implement and modify programs with user interfaces involving branching, iteration and functions in a general-purpose programming language (ACTDIP030)
INDICATOR	ACTDIP.7 -8.8.1.	developing and modifying digital solutions by implementing instructions contained in algorithms through programs
		programming a robot to recognise particular objects and to treat them differently for example choose objects based

INDICATOR ACTDIP.7 programming a robot to recognise particular objects and to treat them differently, for example choose objects based -8.8.3. on colour

STRAND / DOMAIN		Digital Technologies
OUTCOME / INDICATOR	ACT DIP. 7-8.	Digital Technologies Processes and Production Skills
INDICATOR	ACT DIP. 7-8.9.	Evaluate how student solutions and existing information systems meet needs, are innovative, and take account of future risks and sustainability (ACTDIP031)
INDICATOR	ACTDIP.7 -8.9.1.	comparing student solutions with existing solutions that solve similar problems, for example identifying differences in the user interface of two adventure games and explaining how these differences affect the usability or appeal of the game
INDICATOR	ACTDIP.7 -8.9.2.	judging the quality of a student solution based on specific criteria such as meeting an economic need or contributing to social sustainability

Northern Territory Curriculum Technology Education

Grade 8 - Adopted: 2016 (ACARA)

STRAND / DOMAIN		Design and Technologies
OUTCOME / INDICATOR	ACTDEK .7-8.	Design and Technologies Knowledge and Understanding
INDICATOR	ACT DE K.7-8.2.	Analyse how motion, force and energy are used to manipulate and control electromechanical systems when designing simple, engineered solutions (ACTDEK031)
INDICATOR	ACTDEK. 7-8.2.1.	Investigating influences impacting on manufactured products and processes such as historical developments, society, new materials, control systems and biomimicry, for example the development of Velcro
INDICATOR	ACTDEK. 7-8.2.2.	Experimenting to select the most appropriate principles and systems on which to base design ideas, for example structural components to be tested for strength
INDICATOR	ACTDEK. 7-8.2.3.	Calculating an engineered system's outputs, for example speed, brightness of light, volume of sound
INDICATOR	ACTDEK. 7-8.2.4.	Producing prototypes and jigs to test functionality, including the use of rapid prototyping tools such as 3D printers
INDICATOR	ACTDEK. 7-8.2.5.	Using code to control systems, for example code to program a microcontroller or a simple, object-based coding application to program a system such as a remote-controlled car or simple robotic arm
INDICATOR	ACTDEK. 7-8.2.6.	Investigating components, tools and equipment, for example testing the durability of batteries, determining the effective range of wireless devices

STRAND / DOMAIN		Design and Technologies
OUTCOME / INDICATOR	ACTDEK .7-8.	Design and Technologies Knowledge and Understanding
INDICATOR	ACT DE K.7-8.3.	Analyse how food and fibre are produced when designing managed environments and how these can become more sustainable (ACTDEK032)

ACTDEK. Comparing land and water management methods in contemporary Australian food and fibre production with 7-8.3.1. traditional Aboriginal systems and countries of Asia, for example minimum-tillage cropping, water-efficient irrigation

STRAND / DOMAIN		Design and Technologies
OUTCOME / INDICATOR	ACTDEP .7-8.	Design and Technologies Processes and Production Skills
INDICATOR	ACT DE P.7-8.2.	Generate, develop, test and communicate design ideas, plans and processes for various audiences using appropriate technical terms and technologies including graphical representation techniques (ACT DEP036)
INDICATOR	ACTDEP. 7-8.2.1.	Using a variety of critical and creative thinking strategies such as brainstorming, sketching, 3-D modelling and experimenting to generate innovative design ideas
INDICATOR	ACTDEP. 7-8.2.2.	Considering which ideas to further explore and investigating the benefits and drawbacks of ideas, for example using digital polling to capture the views of different groups in the community
INDICATOR	ACTDEP. 7-8.2.3.	Identifying factors that may hinder or enhance project development, for example intercultural understanding
INDICATOR	ACTDEP. 7-8.2.4.	Developing models, prototypes or samples using a range of materials, tools and equipment to test the functionality of ideas
INDICATOR	ACTDEP. 7-8.2.5.	Producing annotated concept sketches and drawings, using: technical terms, scale, symbols, pictorial and aerial views to draw environments; production drawings, orthogonal drawings; patterns and templates to explain design ideas
INDICATOR	ACTDEP. 7-8.2.6.	Documenting and communicating the generation and development of design ideas for an intended audience, for example developing a digital portfolio with images and text which clearly communicates each step of a design process

STRAND / DOMAIN		Digital Technologies
OUTCOME / INDICATOR	ACT DIP. 7-8.	Digital Technologies Processes and Production Skills
INDICATOR	ACT DIP. 7-8.7.	Design algorithms represented diagrammatically and in English, and trace algorithms to predict output for a given input and to identify errors (ACTDIP029)
INDICATOR	ACTDIP.7 -8.7.2.	checking the accuracy of an algorithm before it is implemented, for example desk checking it with test data to see if the instructions produce the expected results
INDICATOR	ACTDIP.7 -8.7.4.	using structured English to express algorithmic instructions, for example using conventional statements such as 'while' and 'endwhile' in a 'while loop' when describing interactive instruction

STRAND / DOMAIN		Digital Technologies
--------------------	--	----------------------

OUTCOME / INDICATOR	ACT DIP. 7-8.	Digital Technologies Processes and Production Skills
INDICATOR	ACT DIP. 7-8.8.	Implement and modify programs with user interfaces involving branching, iteration and functions in a general-purpose programming language (ACTDIP030)
INDICATOR	ACTDIP.7 -8.8.1.	developing and modifying digital solutions by implementing instructions contained in algorithms through programs
INDICATOR	ACTDIP.7 -8.8.3.	programming a robot to recognise particular objects and to treat them differently, for example choose objects based on colour
STRAND / DOMAIN		Digital Technologies
OUTCOME / INDICATOR	ACTDIP. 7-8.	Digital Technologies Processes and Production Skills
INDICATOR	ACT DIP. 7-8.9.	Evaluate how student solutions and existing information systems meet needs, are innovative, and take account of future risks and sustainability (ACTDIP031)
INDICATOR	ACTDIP.7 -8.9.1.	comparing student solutions with existing solutions that solve similar problems, for example identifying differences in the user interface of two adventure games and explaining how these differences affect the usability or appeal of the game
INDICATOR	ACTDIP.7 -8.9.2.	judging the quality of a student solution based on specific criteria such as meeting an economic need or contributing to social sustainability
		Ohio Learning Standards Mathematics Grade 7 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD	он.мр.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.6.	Attend to precision.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.

Ohio Learning Standards Mathematics Grade 8 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD	OH.MP.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.6.	Attend to precision.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
		Ohio Learning Standards

Science

Grade 7 - Adopted: 2018

DOMAIN / ACADEMIC CONTENT STANDARD		PHYSICAL SCIENCE (PS)
STANDARD / BENCHMARK		Topic: Cycles of Mass and Energy - This topic focuses on the empirical evidence for the arrangements of atoms on the Periodic Table of Elements, conservation of mass and energy, transformation and transfer of energy.
BENCHMARK / GRADE LEVEL INDICATOR	7.PS.4:	Energy can be transferred through a variety of ways.
PROFICIENCY LEVEL		Mechanical energy can be transferred when objects push or pull on each other over a distance.
PROFICIENCY LEVEL		An electrical circuit transfers energy from a source to a device.

Ohio Learning Standards Technology Education Grade 7 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.

PROFICIENCY LEVEL	6- 8.ST.2.b.	Explain the positive and negative impact the use of technology can have on personal, professional and community relationships.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICAT OR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	6- 8.ST.3.d.	Describe the impact of an individual's wants, values and interests on the development of new technologies.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety, etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY LEVEL	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.

|--|

PROFICIENCY Collaborate to solve a problem as an interdisciplinary team modeling different roles and functions. 6-LEVEL 8.DT.3.a.

Grade 7 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
ST ANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY LEVEL

CS.T.7.a. Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best solution to solve the computing problem and communicate the solution to others.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY ATP.A.7.a Select and modify pseudocode for a multi-step process to solve a problem. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Variables and Data Representation

PROFICIENCY ATP.VDR Use test cases to trace variable values to determine the result. LEVEL .7.a.

DOMAIN / ACADEMIC CONTENT ST ANDARD	Computer Science, Grade 7
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCY ATP.CS.7 Use and apply decisions and loops in a program to solve a problem. .a.

LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.7Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
ST ANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Representation & Reasoning

PROFICIENCY AI.RR.7.a. Compare several algorithms that could be used to solve a specific type of reasoning problem. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions

PROFICIENCY AI.NI.7.a. Curate a dataset to train a language-processing algorithm to create a program that incorporates voice commands. LEVEL

Ohio Learning Standards

Technology Education

Grade 8 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	6- 8.ST.2.b.	Explain the positive and negative impact the use of technology can have on personal, professional and community relationships.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology

STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	6- 8.ST.3.d.	Describe the impact of an individual's wants, values and interests on the development of new technologies.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety, etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY LEVEL	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.

PROFICIENCY6-Collaborate to solve a problem as an interdisciplinary team modeling different roles and functions.LEVEL8.DT.3.a.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.8.a.	Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best solution to solve the computing problem and communicate the solution to others.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Algorithms
PROFICIENCY LEVEL	ATP.A.8. a.	Create multiple pseudocode to solve a multi-step process and justify the most efficient solution.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .8.a.	Analyze test cases and determine the range of valid solutions.
DOMAIN / ACADEMIC CONTENT		Computer Science, Grade 8

ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCYATP.CS.8Use and apply decisions and loops in a program to solve a problem.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING

GRADE LEVEL INDICATOR		Modularit	у	
--------------------------	--	-----------	---	--

PROFICIENCY ATP.M.8. Decompose problems and subproblems into parts to facilitate the design, implementation and review of complex LEVEL a. programs.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.8Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Representation & Reasoning

PROFICIENCY AI.RR.8.a. Model the process of solving a graph-search problem using breadth-first search to draw a search tree. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
ST ANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Natural Interactions
PROFICIENCY LEVEL	AI.NI.8.a.	Create a program, individually and collaboratively, that implements a language processing algorithm to create a functional chatbot.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Societal Impacts

PROFICIENCY AI.SI.8.b. Identify bias potential in the design of artificial intelligence systems and describe how to utilize inclusive AI design to prevent algorithmic bias.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
ST ANDARD / BENCHMARK	IMPACTS OF COMPUTING
BENCHMARK / GRADE LEVEL INDICATOR	Culture

PROFICIENCY IC.Cu.8.d. Explain how computing impacts innovation in other fields. LEVEL

Oklahoma Academic Standards Mathematics

Grade 7 - Adopted: 2022

CONTENT STANDARD / COURSE		Mathematical Actions and Processes
STRAND / STANDARD		Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD		Develop Strategies for Problem Solving
STRAND / STANDARD		Develop Mathematical Reasoning
STRAND / STANDARD		Develop a Productive Mathematical Disposition
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD		Develop the Ability to Communicate Mathematically
CONTENT STANDARD / COURSE	7	Seventh Grade (7)
STRAND / STANDARD	7.A.	Algebraic Reasoning & Algebra (A)

 OBJECTIVE
 7.A.4.
 Use order of operations and properties of operations to generate and evaluate equivalent numerical and algebraic expressions.

SKILL / CONCEPT 7.A.4.1. Use properties of operations (associative, commutative, and distributive) to generate equivalent numerical and algebraic expressions containing rational numbers, grouping symbols and whole number exponents.

Oklahoma Academic Standards Mathematics Grade 8 - Adopted: 2022

CONTENT ST ANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD	Develop the Ability to Communicate Mathematically

CONTENT STANDARD / COURSE	A1.	Algebra 1 (A1)
STRAND / STANDARD	A1.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	A1.A.3.	Create and evaluate equivalent algebraic expressions and equations using algebraic properties.
SKILL / CONCEPT	A1.A.3.2.	Simplify polynomial expressions by adding, subtracting, or multiplying.

CONTENT STANDARD / COURSE	A2.	Algebra 2 (A2)
STRAND / STANDARD	A2.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	A2.A.2.	Generate and evaluate equivalent algebraic expressions and equations using various strategies.
SKILL / CONCEPT	A2.A.2.2.	Add, subtract, multiply, divide, and simplify polynomial expressions.

Oklahoma Academic Standards

Science

Grade 7 - Adopted: 2020

CONTENT STANDARD / COURSE	Oklahoma Academic Standards for Science
STRAND / STANDARD	Earth and Human Activity (ESS3)

OBJECTIVE	7.ESS3.1	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
OBJECTIVE	7.ESS3.3	Apply scientific principles to design a method for monitoring and minimizing human impact on the environment.
OBJECTIVE	7.ESS3.4	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
OBJECTIVE	7.ESS3.5	Obtain, evaluate, and communicate evidence of the factors that have caused changes in global temperatures over the past century.

Oklahoma Academic Standards Technology Education

Grade 7 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

 SKILL /
 Identify patterns and extract common features from specific examples to create generalizations. Students will

 CONCEPT
 manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

 SKILL /
 Understand the contexts in which people operate and consider the needs of different users during the design

 CONCEPT
 process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

SKILL / CONCEPT Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.CS.	Computing Systems (CS)
SKILL / CONCEPT	7.CS.T.	Troubleshooting (T)

SKILL

7.CS.T.01 Identify and resolve complex software and hardware problems with computing devices and their components . utilizing strategies such as developing and analyzing flow diagrams.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.A.	Algorithms (A)

SKILL

7.AP.A.01 Select and modify an existing algorithm in natural language or pseudocode to solve complex problems.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.PD.	Program Development (PD)
SKILL	7.AP.PD. 01.	Seek and incorporate feedback from team members and users to refine a solution to a problem.
SKILL	7.AP.PD. 04.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

Grade 7 - Adopted: 2019

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards

Technology Education Grade 8 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions
	Identify notherne and autropt common factures from an effe avamples to avante concretion for the starts will

SKILL / CONCEPT Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Developing a Productive Computing Environment
SKILL / CONCEPT		Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Recognizing and Defining Computational Problems
SKILL / CONCEPT		Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.CS.	Computing Systems (CS)
SKILL / CONCEPT	8.CS.T.	Troubleshooting (T)
SKILL	8.CS.T.01	Systematically identify, resolve, and document complex software and hardware problems with computing devices and their components.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND /	8	Eighth Grade (8)

STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.A.	Algorithms (A)

SKILL

1.

8.AP.A.0 Design algorithms in natural language, flow and control diagrams, comments within code, and/or pseudocode to solve complex problems.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.PD.	Program Development (PD)

SKILL8.AP.PD.Seek and incorporate feedback from team members and users to refine a solution to a problem that meets the
01.01.needs of different users.

SKILL

8.AP.PD. Model effective communication between participants and demonstrate successful collaboration when developing04. computational artifacts.

8.IC.CU.0 Explore careers related to the field of computer science, and explain how computing impacts innovation in various

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	8.IC.CU.	Culture (CU)

SKILL

career fields.

1.

		Grade 8 - Adopted: 2019
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oregon Academic Content Standards

Mathematics

Grade 7 - Adopted: 2021

STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	6	Attend to precision.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.

ST ANDARD / CONTENT AREA		Grade 7 Standards
CONTENT STANDARD / PROFICIENCY	7.AEE.	Algebraic Reasoning: Expressions and Equations (7.AEE)
BENCHMARK / STRAND	7.AEE.A.	Use properties of operations to generate equivalent expressions.
EXPECTATION / BENCHMARK	7.AEE.A.1	Identify and write equivalent expressions with rational numbers by applying associative, commutative, and distributive properties.

Oregon Academic Content Standards

Mathematics

Grade 8 - Adopted: 2021

ST ANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.

CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	6	Attend to precision.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.
		Oregon Academic Content Standards
		Science Grade 7 - Adopted: 2022
ST ANDARD / CONTENT AREA	OR.MS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
STANDARD /	MS- ESS3-1.	Students who demonstrate understanding can: Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
ST ANDARD / PROFICIENCY BENCHMARK /		Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and
ST ANDARD / PROFICIENCY BENCHMARK / STRAND ST ANDARD / CONTENT	ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
ST ANDARD / PROFICIENCY BENCHMARK / STRAND ST ANDARD / CONT ENT AREA CONT ENT ST ANDARD /	ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
ST ANDARD / PROFICIENCY BENCHMARK / STRAND ST ANDARD / CONT ENT AREA CONT ENT ST ANDARD / PROFICIENCY BENCHMARK /	ESS3-1. OR.MS- ET S1. MS-	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. Engineering Design Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

ST ANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details

ETS1-4. that an optimal design can be achieved.

BENCHMARK / MS-

STRAND

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such

BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
ST ANDARD / CONT ENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
ST ANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects

BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Oregon Academic Content Standards

Science

Grade 8 - Adopted: 2022

		Graue U - Audplieu. 2022
STANDARD / CONTENT AREA	OR.MS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STANDARD / CONTENT AREA	OR.MS- PS4.	Waves and their Applications in Technologies for Information Transfer
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
ST ANDARD / CONTENT AREA	OR.MS- ET S1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

BENCHMARK /	WHST.6-	Use technology, including the Internet, to produce and publish writing and present the relationships between
STRAND	8.6.	information and ideas clearly and efficiently.