Main Criteria: Forward Education

Secondary Criteria: Idaho Content Standards, Illinois Learning Standards, Indiana Academic Standards, Iowa Student Standards, Kansas Academic Standards, Kentucky Academic Standards, Louisiana Academic Standards, Maine Learning Results, Maryland College and Career-Ready Standards, Massachusetts Curriculum Frameworks, Michigan Academic Standards, Minnesota Academic Standards, Mississippi College & Career Readiness Standards, Missouri Learning Standards, Montana Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 7, 8

Forward Education

Harnessing the Sun's Energy with Solar Panels

Idaho Content Standards

Mathematics

ST ANDARD / COURSE		Seventh Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.6.	Attend to precision.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.7.	Look for and make use of structure.
		Idaho Content Standards Mathematics Grade 8 - Adopted: 2022
ST ANDARD / COURSE		Eighth Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.

CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.6.	Attend to precision.
Content Knowledge And Skills / Goal	MP.7.	Look for and make use of structure.

Idaho Content Standards Science

ST ANDARD / COURSE	MS-PS.	Physical Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS-PS- 4.	Waves
GLE / BIG IDEA	MS-PS- 4.3.	Present qualitative scientific and technical information to support the claim that digitized signals (0s and 1s) can be used to encode and transmit information.
STANDARD / COURSE	MS-ESS.	Earth and Space Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS- ESS-3.	Earth and Human Activity
GLE / BIG IDEA	MS-ESS- 3.1.	Construct a scientific explanation based on evidence for how Earth's mineral, energy, and groundwater resources are unevenly distributed as a result of past and current geologic processes.
GLE / BIG IDEA	MS-ESS- 3.3.	Apply scientific practices to design a method for monitoring human activity and increasing beneficial human influences on the environment.
GLE / BIG IDEA	MS-ESS- 3.4.	Construct an argument based on evidence for how changes in human population and per-capita consumption of natural resources positively and negatively affect Earth's systems.
GLE / BIG IDEA	MS-ESS-	Ask questions to interpret evidence of the factors that cause climate variability throughout Earth's history.

Idaho Content Standards Science

Grade 8 - Adopted: 2022

STANDARD / COURSE	MS-PS.	Physical Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS-PS- 4.	Waves

4.3.

GLE / BIG IDEA MS-PS- Present qualitative scientific and technical information to support the claim that digitized signals (0s and 1s) can be used to encode and transmit information.

STANDARD / COURSE	MS-ESS.	Earth and Space Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS- ESS-3.	Earth and Human Activity
GLE / BIG IDEA	MS-ESS- 3.1.	Construct a scientific explanation based on evidence for how Earth's mineral, energy, and groundwater resources are unevenly distributed as a result of past and current geologic processes.
GLE / BIG IDEA	MS-ESS- 3.3.	Apply scientific practices to design a method for monitoring human activity and increasing beneficial human influences on the environment.
gle / Big idea	MS-ESS- 3.4.	Construct an argument based on evidence for how changes in human population and per-capita consumption of natural resources positively and negatively affect Earth's systems.
GLE / BIG IDEA	MS-ESS- 3.5.	Ask questions to interpret evidence of the factors that cause climate variability throughout Earth's history.

Idaho Content Standards Technology Education

		Grade 7 - Adopted: 2017
STANDARD / COURSE	ID.ICT.6- 8.3.	STANDARD 3: KNOWLEDGE CONSTRUCTOR
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GLE / BIG IDEA	ICT.6- 8.3.d.	Students explore real-world issues and problems and actively pursue an understanding of them and solutions for them.
ST ANDARD / COURSE	ID.ICT.6- 8.4.	STANDARD 4: INNOVATIVE DESIGNER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GLE / BIG IDEA	ICT.6- 8.4.b.	Students select and use digital tools to support a design process and expand their understanding to identify constraints and trade-offs and to weigh risks.
ST ANDARD / COURSE	ID.ICT.6- 8.5.	STANDARD 5: COMPUTATIONAL THINKER

CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GLE / BIG IDEA	ICT.6- 8.5.a.	Students practice defining problems to solve by computing for data analysis, modeling or algorithmic thinking.
GLE / BIG IDEA	ICT.6- 8.5.b.	Students find or organize data and use technology to analyze and represent it to solve problems and make decisions and trade-offs and to weigh risks.
GLE / BIG IDEA	ICT.6- 8.5.c.	Students break problems into component parts, identify key pieces and use that information to problem solve.
GLE / BIG IDEA	ICT.6- 8.5.d.	Students demonstrate an understanding of how automation works and use algorithmic thinking to design and automate solutions.

ST ANDARD / COURSE	ID.CS.6-8.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	6-8.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Communicating About Computing
OBJECTIVE	6-	Compare different algorithms that may be used to solve the same problem by time and space efficiency. (Grades 6-

```
OBJECTIVE
```

8.AP.02. 8)

Idaho Content Standards Technology Education

STANDARD / COURSE	ID.ICT.6- 8.3.	STANDARD 3: KNOWLEDGE CONSTRUCTOR
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GLE / BIG IDEA	ICT.6- 8.3.d.	Students explore real-world issues and problems and actively pursue an understanding of them and solutions for them.
STANDARD / COURSE	ID.ICT.6- 8.4.	STANDARD 4: INNOVATIVE DESIGNER

CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GLE / BIG IDEA	ICT.6- 8.4.b.	Students select and use digital tools to support a design process and expand their understanding to identify constraints and trade-offs and to weigh risks.

STANDARD / COURSE	ID.ICT.6- 8.5.	STANDARD 5: COMPUTATIONAL THINKER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

GLE / BIG IDEA	ICT.6- 8.5.a.	Students practice defining problems to solve by computing for data analysis, modeling or algorithmic thinking.
GLE / BIG IDEA	ICT.6- 8.5.b.	Students find or organize data and use technology to analyze and represent it to solve problems and make decisions and trade-offs and to weigh risks.
GLE / BIG IDEA	ICT.6- 8.5.c.	Students break problems into component parts, identify key pieces and use that information to problem solve.
GLE / BIG IDEA	ICT.6- 8.5.d.	Students demonstrate an understanding of how automation works and use algorithmic thinking to design and automate solutions.
ST ANDARD / COURSE	ID.CS.6-8	.COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	6-8.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Communicating About Computing
OBJECTIVE	6- 8.AP.02.	Compare different algorithms that may be used to solve the same problem by time and space efficiency. (Grades 6- 8)
		Illinois Learning Standards Mathematics Grade 7 - Adopted: 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.6.	Attend to precision.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.7.	Look for and make use of structure.

Illinois Learning Standards Mathematics

Grade 8 - Adopted: 2010

STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.6.	Attend to precision.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.7.	Look for and make use of structure.

Illinois Learning Standards

Science

		Grade 7 - Adopted: 2014
STATE GOAL / DISCIPLINARY CONCEPT	IL.MS- ESS.	EARTH AND SPACE SCIENCE
LEARNING STANDARD / DISCIPLINE	MS- ESS3.	Earth and Human Activity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
STANDARD	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STANDARD	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

STATE GOAL / DISCIPLINARY CONCEPT	IL.MS- ETS.	
LEARNING ST ANDARD / DISCIPLINE	MS- ETS1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Key Ideas and Details
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Craft and Structure
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Integration of Knowledge and Ideas

DESCRIPTOR /CC.6-Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with thatCONTENT8.RST.9.gained from reading a text on the same topic.DISCIPLINE

STATE GOAL / I DISCIPLINARY 8 CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Range of Reading and Level of Text Complexity

 DESCRIPTOR /
 CC.6 By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

 CONTENT
 8.RST.10.
 independently and proficiently.

DISCIPLINE

STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Text Types and Purposes
	00.0	Write informative/explanatory texts, including the narration of historical events, scientific procedures/
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.WHST. 2.	experiments, or technical processes.

	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Production and Distribution of Writing
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
DESCRIPTOR /	CC.6-	Use technology, including the Internet, to produce and publish writing and present the relationships between

DESCRIPTOR /	CC.0-	Use technology, including the internet, to produce and publish whiling and present the relationships between
CONTENT	8.WHST.6	information and ideas clearly and efficiently.
DISCIPLINE		

Illinois Learning Standards

Science

	IL.MS- ESS.	EARTH AND SPACE SCIENCE
LEARNING STANDARD / DISCIPLINE	MS- ESS3.	Earth and Human Activity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:

STANDARD	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
STANDARD	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STANDARD	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STATE GOAL / DISCIPLINARY CONCEPT	IL.MS- ETS.	ENGINEERING DESIGN
LEARNING ST ANDARD / DISCIPLINE	MS- ET S1.	Engineering Design
DESCRIPT OR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Key Ideas and Details
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Craft and Structure

DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Integration of Knowledge and Ideas
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Range of Reading and Level of Text Complexity
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
DISCIPLINARY		Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes
LEARNING ST AND ARD /	8.WHST.	
LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT	8.WHST. CC.6- 8.WHST.	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.
DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINE	8.WHST. CC.6- 8.WHST. 2. CC.6- 8.WHST.2.	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.
DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINE STANDARD	8.WHST. CC.6- 8.WHST. 2. CC.6- 8.WHST.2. d. IL.6-	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.
DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINE STANDARD STANDARD LEARNING STANDARD /	8.WHST. CC.6- 8.WHST. 2. CC.6- 8.WHST.2. d. IL.6-	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects Production and Distribution of Writing Produce clear and coherent writing in which the development, organization, and style are appropriate to task,

Illinois Learning Standards Technology Education

		Grade 7 - Adopted: 2022
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
DESCRIPTOR / CONTENT DISCIPLINE	6	Testing and refining computational artifacts.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.CS.	Computing Systems
STANDARD		Troubleshooting
EXPECTATION	6- 8.CS.03.	Systematically identify and fix problems with computing devices and their components.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Algorithms
EXPECTATION	6- 8.AP.11.	Use flowcharts or pseudocode to address complex problems as algorithms.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD /		Computer Science Standards

DISCIPLINE

DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Modularity

EXPECTATION 6-

6- Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. 8.AP.14.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.IC.	Impacts of Computing
STANDARD		Social Interactions

EXPECTATION 6-8.IC.23. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.ET.	Emerging and Future Technologies

STANDARD 6-8.ET.E. Create new or original work by applying emerging technologies.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

DESCRIPTOR /	ISTE-	Select and use digital tools to plan and manage a design process that considers design constraints and calculated
CONTENT	S.4.b.	risks.
DISCIPLINE		

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.IST E- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Illinois Learning Standards Technology Education Grade 8 - Adopted: 2022

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
DESCRIPTOR / CONTENT DISCIPLINE	6	Testing and refining computational artifacts.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.CS.	Computing Systems
STANDARD		Troubleshooting

EXPECTATION 6-

8.CS.03.

Systematically identify and fix problems with computing devices and their components.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Algorithms

EXPECTATION 6-

8.AP.11.

Use flowcharts or pseudocode to address complex problems as algorithms.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Modularity

EXPECTATION 6- Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. 8.AP.14.

LEARNING STANDARD / DISCIPLINE Computer Science Standards DESCRIPTOR / CONTENT DISCIPLINE 6-8.IC. Impacts of Computing STANDARD Sciel Interscience	STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
CONTENT DISCIPLINE	STANDARD /		Computer Science Standards
	CONTENT	6-8.IC.	Impacts of Computing
STANDARD Social Interactions	STANDARD		Social Interactions

EXPECTATION 6-8.IC.23. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.ET.	Emerging and Future Technologies

STANDARD 6-8.ET.E. Create new or original work by applying emerging technologies.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

DESCRIPTOR /ISTE-Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuingCONTENTS.3.d.answers and solutions.DISCIPLINE

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

DESCRIPTOR /	ISTE-	Select and use digital tools to plan and manage a design process that considers design constraints and calculated
CONTENT	S.4.b.	risks.
DISCIPLINE		

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Indiana Academic Standards

Mathematics

Grade 7 - Adopted: 2023			
ST ANDARD / ST RAND		Mathematics Process Standards	
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.	

PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.6:	Attend to precision.
PROFICIENCY STATEMENT / SUBSTRAND	PS.7:	Look for and make use of structure.

STANDARD / STRAND		Grade 7 Mathematics
PROFICIENCY STATEMENT / SUBSTRAND		Algebra and Functions – Learning Outcome: Students use two variable equations, as well as graphs and tables, to model real-world proportional relationships and connect the constant of proportionality to the idea of slope.
INDICATOR / STANDARD	7.AF.1.	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions, including situations that involve factoring out a common number (e.g., given 2x - 10, create an equivalent expression 2(x - 5)). Justify each step in the process. (E)

Indiana Academic Standards

Mathematics

STANDARD / STRAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.6:	Attend to precision.

Indiana Academic Standards

Science

Grade 7 - Adopted: 2023

STANDARD / STRAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)
PROFICIENCY	SEP.8.	Obtaining, evaluating, and communicating information

PROFICIENCY	SEP.8.	Obtaining, evaluating, and communicating inform
STATEMENT /		
SUBSTRAND		

possible solutions.

STANDARD / STRAND		Grade 7
PROFICIENCY STATEMENT / SUBSTRAND	MS- ESS3-1.	Earth and Human Activity
INDICATOR / STANDARD	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

STANDARD / STRAND		Grade 7
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-1.	Engineering Design
INDICATOR / STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

STANDARD / STRAND		Grade 7
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-2.	Engineering Design
INDICATOR / STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

STANDARD / STRAND		Grade 7
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-4.	Engineering Design

INDICATOR /	MS-
STANDARD	ETS1

MS- Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such ETS1-4. that an optimal design can be achieved.

Indiana Academic Standards Science

Grade 8 - Adopted: 2023

ST ANDARD / ST RAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)
PROFICIENCY	SEP.8.	Obtaining, evaluating, and communicating information

STATEMENT / SUBSTRAND

ST ANDARD / ST RAND		Grade 8
PROFICIENCY STATEMENT / SUBSTRAND	MS- ESS3-3.	Earth and Human Activity
	MC	

INDICATOR /MS-Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.STANDARDESS3-3.

STANDARD / STRAND		Grade 8
PROFICIENCY STATEMENT / SUBSTRAND	MS- ESS3-4.	Earth and Human Activity
INDICATOR / STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

ST ANDARD / ST RAND		Grade 8
PROFICIENCY STATEMENT / SUBSTRAND	MS- ESS3-5.	Earth and Human Activity
INDICATOR / STANDARD	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over time.

STANDARD / STRAND		Grade 8
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-1.	Engineering Design

INDICATOR /MS-Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, takingSTANDARDETS1-1.into account relevant scientific principles and potential impacts on people and the natural environment that may limit
possible solutions.

STANDARD / STRAND		Grade 8
PROFICIENCY STATEMENT / SUBSTRAND	MS- ETS1-2.	Engineering Design

INDICATOR /MS-Evaluate competing design solutions using a systematic process to determine how well they meet the criteria andSTANDARDETS1-2.constraints of the problem.

ST ANDARD / ST RAND		Grade 8
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-4.	Engineering Design
INDICATOR /	MS-	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such

Indiana Academic Standards Technology Education

that an optimal design can be achieved.

STANDARD

ETS1-4.

Grade 7 - Adopted: 2023

STANDARD / STRAND		Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Data & Information
INDICATOR / STANDARD		Learning Outcome: Students identify and implement multiple means of representing complex algorithms to communicate how applications store data as a representation understandable by people.
EXPECTATION / INDICATOR	6-8.DI.1.	Decompose (i.e., break down) problems into smaller, more manageable subsets by applying the algorithmic problem solving steps to make the possible solutions easier to follow, test, and debug. (E)

EXPECTATION / 6-8.DI.4. Create visuals such as flowcharts, diagrams, and pseudocode to represent complex problems as algorithms. (E) INDICATOR

STANDARD / STRAND		Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Computing Devices & Systems
INDICATOR / STANDARD		Learning Outcome: Students explain trade-offs, functionality, and accessibility of computer systems to improve the human-computer interaction.
EXPECTATION /	6-8 CD 1	Design projects that combine hardware and software components to collect and exchange data (E)

EXPECTATION / 6-8.CD.1. Design projects that combine hardware and software components to collect and exchange data. (E) INDICATOR

EXPECTATION /6-8.CD.2.Systematically identify and fix problems (i.e., troubleshoot) with computing devices and their components (e.g.,INDICATORchecklist, decision tree, flowchart).

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Impact & Culture
INDICATOR / STANDARD	Learning Outcome: Students explain that society is faced with trade-offs due to the increasing globalization and automation that computing brings, as well as describe these trade-offs using multiple viewpoints from a diverse audience.

EXPECTATION /6-8.IC.3.Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a
computational artifact.

Indiana Academic Standards Technology Education Grade 8 - Adopted: 2023

STANDARD / STRAND		Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Data & Information
INDICATOR / STANDARD		Learning Outcome: Students identify and implement multiple means of representing complex algorithms to communicate how applications store data as a representation understandable by people.
EXPECTATION / INDICATOR	6-8.DI.1.	Decompose (i.e., break down) problems into smaller, more manageable subsets by applying the algorithmic problem solving steps to make the possible solutions easier to follow, test, and debug. (E)

EXPECTATION / 6-8.DI.4. Create visuals such as flowcharts, diagrams, and pseudocode to represent complex problems as algorithms. (E) INDICATOR

STANDARD / STRAND		Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Computing Devices & Systems
INDICATOR / STANDARD		Learning Outcome: Students explain trade-offs, functionality, and accessibility of computer systems to improve the human-computer interaction.
EXPECTATION / INDICATOR	6-8.CD.1.	Design projects that combine hardware and software components to collect and exchange data. (E)

EXPECTATION /6-8.CD.2.Systematically identify and fix problems (i.e., troubleshoot) with computing devices and their components (e.g.,INDICATORchecklist, decision tree, flowchart).

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Impact & Culture
INDICATOR / STANDARD	Learning Outcome: Students explain that society is faced with trade-offs due to the increasing globalization and automation that computing brings, as well as describe these trade-offs using multiple viewpoints from a diverse audience.

EXPECTATION / 6-8.IC.3. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact.

Iowa Student Standards

Mathematics

Grade 7 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	6	Attend to precision.
ESSENTIAL CONCEPT AND/OR SKILL	7	Look for and make use of structure.

Iowa Student Standards Mathematics Grade 8 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	6	Attend to precision.

lowa Student Standards

Science

STRAND / COURSE	IA.MS- ETS1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
DETAILED DESCRIPTOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2016
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Key Ideas and Details
DETAILED DESCRIPTOR	RST.6- 8.2.	Determine the central ideas or conclusions of a distinct from prior knowledge or opinions. (RST.6-8.2.)
DETAILED DESCRIPTOR	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (RST.6-8.3.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Craft and Structure
DETAILED DESCRIPTOR	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. (RST.6-8.4.)
DETAILED DESCRIPTOR	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic. (RST.6-8.5.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Integration of Knowledge and Ideas

DETAILED DESCRIPTOR	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (RST.6-8.9.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Range of Reading and Level of Text Complexity
DETAILED DESCRIPTOR	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently. (RST.6-8.10.)
STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Text Types and Purposes
DET AILED DESCRIPT OR	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.6- 8.2.d.	Use precise language and domain-specific vocabulary to inform about or explain the topic. (WHST.6-8.2.)
STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Production and Distribution of Writing
DETAILED DESCRIPTOR	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (WHST.6-8.4.)
DETAILED DESCRIPTOR	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently. (WHST.6-8.6.)
		Iowa Student Standards Science
		Grade 8 - Adopted: 2015
STRAND / COURSE	IA.MS- PS4.	Waves and Their Applications in Technologies for Information Transfer
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
STRAND / COURSE	IA.MS- ESS3.	Earth and Human Activity
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

DETAILED DESCRIPTOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
DETAILED DESCRIPTOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / COURSE	IA.MS- ETS1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
DETAILED DESCRIPTOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2016
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Key Ideas and Details
DETAILED DESCRIPTOR	RST.6- 8.2.	Determine the central ideas or conclusions of a distinct from prior knowledge or opinions. (RST.6-8.2.)
DETAILED DESCRIPTOR	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (RST.6-8.3.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Craft and Structure
DETAILED DESCRIPTOR	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. (RST.6-8.4.)
DETAILED DESCRIPTOR	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic. (RST.6-8.5.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Integration of Knowledge and Ideas
DETAILED DESCRIPTOR	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (RST.6-8.9.)

	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Range of Reading and Level of Text Complexity

DETAILEDRST.6-By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity bandDESCRIPTOR8.10.independently and proficiently. (RST.6-8.10.)

STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Text Types and Purposes
DET AILED DESCRIPT OR	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
	MUCTO	

GRADE LEVELWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic. (WHST.6-8.2.)EXPECTATION8.2.d.

STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Production and Distribution of Writing
DETAILED DESCRIPTOR	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (WHST.6-8.4.)
DETAILED DESCRIPTOR	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently. (WHST.6-8.6.)

lowa Student Standards Technology Education Grade 7 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPTOR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Algorithms

EXAMPLE

2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming

GRADE LEVEL EXPECTATION		Modularity
EXAMPLE	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPTOR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Program Development

EXAMPLE

2-AP-15. Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPTOR	2-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Social Interactions
EXAMPLE	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

Iowa Student Standards Technology Education Grade 8 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Algorithms

EXAMPLE

2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming

GRADE LEVEL EXPECTATION		Modularity
EXAMPLE	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Program Development

EXAMPLE

2-AP-15. Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPTOR	2-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Social Interactions
EXAMPLE	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

Kansas Academic Standards

Mathematics

Grade 7 - Adopted: 2017

STANDARD	MP.	Standards for Mathematical Practice
BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.6.	Attend to precision.
BENCHMARK	MP.7.	Look for and make use of structure.

Kansas Academic Standards

Mathematics

Grade 8 - Adopted: 2017

MP.

BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.6.	Attend to precision.
BENCHMARK	MP.7.	Look for and make use of structure.
BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.

Kansas Academic Standards

Science

STANDARD	KS.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
INDICATOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

STANDARD	KS.MS- ETS.	ENGINEERING DESIGN
BENCHMARK	MS- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

INDICATORMS-Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process suchETS1-4.that an optimal design can be achieved.

		Grade 7 - Adopted: 2010
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Key Ideas and Details
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Craft and Structure
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Range of Reading and Level of Text Complexity
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Text Types and Purposes
INDICATOR / PROFICIENCY LEVEL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

INDICATOR

8.2(d)

 ${\sf WHST.6-} \quad {\sf Use \ precise \ language \ and \ domain-specific \ vocabulary \ to \ inform \ about \ or \ explain \ the \ topic.}$

STANDARD	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Production and Distribution of Writing
INDICATOR / PROFICIENCY LEVEL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / PROFICIENCY LEVEL	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Kansas Academic Standards

Science Grade 8 - Adopted: 2013

STANDARD	KS.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
INDICATOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STANDARD	KS.MS- ETS.	
BENCHMARK	MS- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Key Ideas and Details
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Craft and Structure
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Range of Reading and Level of Text Complexity
INDICATOR /	RST.6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

PROFICIENCY 8.10. independently and proficiently.

STANDARD	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Text Types and Purposes
INDICATOR / PROFICIENCY LEVEL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Production and Distribution of Writing

INDICATOR /	WHST.6-	Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
PROFICIENCY	8.4.	purpose, and audience.
LEVEL		

INDICATOR /WHST.6-Use technology, including the Internet, to produce and publish writing and present the relationships betweenPROFICIENCY8.6.information and ideas clearly and efficiently.LEVEL

Kansas Academic Standards Technology Education

Grade 7 - Adopted: 2019

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL	Program Development

INDICATOR

MG.AP.P Seek and incorporate feedback from team members and users to refine a solution to a problem that meets the D.01. needs of diverse users.

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Impacts of Computing
INDICATOR / PROFICIENCY LEVEL	Community Partnerships

INDICATOR MG.IC.C Formulate a computer-science based solution for a problem or issue by gathering input from local / regional industry P.01. members.

Kansas Academic Standards Technology Education Grade 8 - Adopted: 2019

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL	Program Development

 INDICATOR
 MG.AP.P
 Seek and incorporate feedback from team members and users to refine a solution to a problem that meets the D.01.

 needs of diverse users.
 needs of diverse users.

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Impacts of Computing
INDICATOR / PROFICIENCY LEVEL	Community Partnerships

INDICATOR MG.IC.C Formulate a computer-science based solution for a problem or issue by gathering input from local / regional industry P.01. members.

Kentucky Academic Standards Mathematics Grade 7 - Adopted: 2019

STRAND		Standards for Mathematical Practices	
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.	
CATEGORY / GOAL	MP.2.	eason abstractly and quantitatively.	
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.	
CATEGORY / GOAL	MP.4.	Model with mathematics.	
CATEGORY / GOAL	MP.6.	Attend to precision.	
CATEGORY / GOAL	MP.7.	Look for and make use of structure.	

Kentucky Academic Standards

Mathematics

Grade 8 - Adopted: 2019				
STRAND	Standards for Mathematical Practices			
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.		
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.		
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.		
CATEGORY / GOAL	MP.4.	Model with mathematics.		
CATEGORY / GOAL	MP.6.	Attend to precision.		
CATEGORY / GOAL	MP.7.	Look for and make use of structure.		
CATEGORY / GOAL	MP.8.	Look for and express regularity in repeated reasoning.		

Kentucky Academic Standards

Science

CATEGORY / GOAL	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may lime possible solutions.	
CATEGORY / GOAL	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
CATEGORY / GOAL	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	

Kentucky Academic Standards

Science

Grade 8 - Adopted: 2022

STRAND		Eighth Grade	
CATEGORY / GOAL	8-ESS3- 1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy groundwater resources are the result of past and current geoscience processes.	
CATEGORY / GOAL	8-ESS3- 3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.	
CATEGORY / GOAL	8-ESS3- 4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	
CATEGORY / GOAL	8-ESS3- 5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.	
STRAND		6-8 Engineering Design	

CATEGORY / GOAL	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taki into account relevant scientific principles and potential impacts on people and the natural environment that may lim possible solutions.	
CATEGORY / GOAL	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
CATEGORY / GOAL	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	

Kentucky Academic Standards Technology Education

Grade 7 - Adopted: 2015

STRAND	Technology – Middle	
CATEGORY / GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.	
ST ANDARD / ORGANIZER	Academic Expectations	

EXPECTATION

M.BI1.AE. Students connect knowledge and experiences from different subject areas.

STRAND		echnology – Middle	
CATEGORY/ GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.	
ST ANDARD / ORGANIZER		Academic Expectations	
EXPECTATION	M.BI3.AE. 5.5.	Students use problem-solving processes to develop solutions to relatively complex problems.	

M.BI3.AE. Students connect knowledge and experiences from different subject areas.

EXPECTATION

6.1.

STRAND Technology – Middle Big Idea: Research, Inquiry/Problem-Solving and Innovation - Students understand the role of CATEGORY/ technology in research and experimentation. Students engage technology in developing solutions for GOAL solving problems in the real world. Students will use technology for original creation and innovation. STANDARD / Middle Enduring Knowledge – Understandings ORGANIZER **EXPECTATION** M.BI3.EK. Technology supports critical thinking skills used in inquiry/problem solving to make informed decisions. 2. M.BI3.EK. Technology is used to analyze real world data through inquiry/problem solving in order to produce results. **EXPECTATION** 4. M.BI3.EK. Technology problem solving strategies is applied to innovative design for authentic, creative and real-world EXPECTATION 5. applications. STRAND Technology – Middle CATEGORY / Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of GOAL technology in research and experimentat

GUAL	solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER	Middle Skills and Concepts – Inquiry/Problem-solving

EXPECTATION M.BI3.SC Use appropriate technology and strategies to solve content-specific problems in the real-world. 2.1.

Kentucky Academic Standards

Technology Education

Grade 8 - Adopted: 2015

STRAND	Fechnology – Middle	
CATEGORY / GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.	
ST ANDARD / ORGANIZER	Academic Expectations	

EXPECTATION

6.1.

M.BI1.AE. Students connect knowledge and experiences from different subject areas.

STRAND		Fechnology – Middle	
CATEGORY/ GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.	
ST ANDARD / ORGANIZER		Academic Expectations	
EXPECTATION	M.BI3.AE. 5.5.	Students use problem-solving processes to develop solutions to relatively complex problems.	

EXPECTATION	M.BI3.AE.	Students connect knowledge and experiences from different subject areas.
	6.1.	

2.1.

STRAND		Technology – Middle
CATEGORY / GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		Middle Enduring Knowledge – Understandings
EXPECTATION	M.BI3.EK. 2.	Technology supports critical thinking skills used in inquiry/problem solving to make informed decisions.
EXPECTATION	M.BI3.EK. 4.	Technology is used to analyze real world data through inquiry/problem solving in order to produce results.
	2. M.BI3.EK.	

```
EXPECTATION M.BI3.EK. Technology problem solving strategies is applied to innovative design for authentic, creative and real-world 5. applications.
```

STRAND		Technology – Middle
CATEGORY <i>I</i> GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER		Middle Skills and Concepts – Inquiry/Problem-solving
EXPECTATION	M.BI3.SC	Use appropriate technology and strategies to solve content-specific problems in the real-world.

Louisiana Academic Standards

Mathematics

Grade 7 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.

TITLE	MP.6.	Attend to precision.
TITLE	MP.7.	Look for and make use of structure.
		Louisiana Academic Standards Mathematics Grade 8 - Adopted: 2016/Updated 2017
STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.6.	Attend to precision.
TITLE	MP.7.	Look for and make use of structure.

Louisiana Academic Standards

Science

Grade 7 - Adopted: 2017

STRAND	LA.SC.7.	Science – Grade 7
TITLE	7-MS- ESS3.	EARTH AND HUMAN ACTIVITY
PERFORMANC E EXPECTATION	7-MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Louisiana Academic Standards

Science

Grade 8 - Adopted: 2017

STRAND	LA.SC.8.	Science – Grade 8
TITLE	8-MS- ESS3.	EARTH AND HUMAN ACTIVITY
PERFORMANC E EXPECTATION	8-MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
PERFORMANC E	8-MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing human impact on the environment.

EXPECTATION

Louisiana Academic Standards

Technology Education

TITLE		PreK-12 Educational Technology Content Standards
PERFORMANC E EXPECTATION	ET.4.	Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.

Louisiana Academic Standards Technology Education

 Grade 8 - Adopted: 2008

 STRAND
 LA.ET.
 Educational Technology

 TITLE
 PreK-12 Educational Technology Content Standards

 PERFORMANC
 ET.4.
 Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.

Maine Learning Results Mathematics

Grade 7 - Adopted: 2020/Implemented 2020

STRAND / DOMAIN		Standards for Mathematical Practice
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical relationships as they solve problems.
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.
CATEGORY / PERFORMANC E INDICATOR	MP6.	Attend to precision: Students will use precise mathematical language and check their work for accuracy.
CATEGORY / PERFORMANC E INDICATOR	MP7.	Look for and make use of structure: Students will use their current mathematical understandings to identify patterns and structure to make sense of new learning.
STRAND / DOMAIN		Algebraic Reasoning – Expressions and Equations
CATEGORY / PERFORMANC E INDICATOR	AR.EA.4	Use properties of operations to generate equivalent expressions.
STANDARD	7.EE.A.1:	Apply properties of operations to add, subtract, factor, and expand linear expressions with rational coefficients. For

example, 4x + 2 = 2(2x+1) and -3(x-5/3) = -3x + 5

Mathematics

Grade 8 - Adopted: 2020/Implemented 2020

STRAND /		Standards for Mathematical Practice
DOMAIN		
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical relationships as they solve problems.
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.
CATEGORY / PERFORMANC E INDICATOR	MP6.	Attend to precision: Students will use precise mathematical language and check their work for accuracy.
CATEGORY / PERFORMANC E INDICATOR	MP7.	Look for and make use of structure: Students will use their current mathematical understandings to identify patterns and structure to make sense of new learning.

Maine Learning Results Science Grade 7 - Adopted: 2019

STRAND / DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
CATEGORY / PERFORMANC E INDICATOR	MS- ESS3.	Earth and Human Activity
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / DOMAIN	NGSS.MS -ETS.	

CATEGORY / PERFORMANC E INDICATOR	MS- ET S1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Maine Learning Reculte

Maine Learning Results Science

STRAND / DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
CATEGORY / PERFORMANC E INDICATOR	MS- ESS3.	Earth and Human Activity
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / DOMAIN	NGSS.MS -ETS.	ENGINEERING DESIGN
CATEGORY / PERFORMANC E INDICATOR	MS- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Maryland College and Career-Ready Standards

Science

Grade 7 - Adopted: 2013

STRAND / TOPIC / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
OBJECTIVE	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
OBJECTIVE	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
OBJECTIVE	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

STRAND / TOPIC / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	MS- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
OBJECTIVE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
OBJECTIVE	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Maryland College and Career-Ready Standards

Science

STRAND / TOPIC / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
OBJECTIVE	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
OBJECTIVE	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
OBJECTIVE	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / TOPIC / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	MS- ET S1.	Engineering Design
		Engineering Design Students who demonstrate understanding can:
INDICATOR INDICATOR / PROFICIENCY		
INDICATOR INDICATOR / PROFICIENCY LEVEL	ET S1.	Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

Maryland College and Career-Ready Standards

Technology Education

Grade 7	- Adopted: 2016	

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE	Explain how the design process is an iterative, systematic approach to problem solving that includes collaboratively:
EXPECTATION	Defining a problem – students will be able to employ technical reading and writing skills to develop concise problem statement.
EXPECTATION	Selecting an Approach – students will be able to employ a decision matrix to select the best approach to solve the problem.
EXPECTATION	Testing and Evaluating Design Using Specifications – students will be able to use establish specifications to assess their design product.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.

OBJECTIVE

Discriminate between ethical and unethical engineering practices.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Agricultural Technologies
EXPECTATION	Design, develop, use, manage, maintain, and assess a closed system that supports living organisms (e.g. terrarium, hydroponics station).

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Biotechnology

EXPECTATION

Explore applications of biotechnology.

STRAND / TOPIC / STANDARD		Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR		Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL		Analyze the function of select core technologies in the designed world.
OBJECTIVE	4	Energy and Power Technologies

EXPECTATION	Analyze how power systems are used to drive and provide propulsion to other technological products and systems (STL, 16H).
EXPECTATION	Design, construct, and test a device that either minimizes or maximizes energy transfer (MS-PS3-3).
EXPECTATION	Explore ways to conserve energy.
EXPECTATION	Assess advantages and disadvantages of different forms of renewable and nonrenewable energy.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Five: Computational Thinking and Computer Science Applications – Students will be able to apply computational thinking skills and computer science applications as tools to develop solutions to engineering problems.
INDICATOR / PROFICIENCY LEVEL	Select and use appropriate tools and technology resources to accomplish a variety of tasks and solve problems.
INDICATOR / PROFICIENCY LEVEL	Use the basic steps in algorithmic problem solving to design solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Implement problem solutions using a programming language.
INDICATOR / PROFICIENCY LEVEL	Analyze how computational thinking and computer programing can be used as tools for problem solving.

$Maryland\ {\bf College}\ and\ {\bf Career-Ready}\ {\bf Standards}$

Technology Education Grade 8 - Adopted: 2016

STRAND / TOPIC / STANDARD		Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR		Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL		Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE		Explain how the design process is an iterative, systematic approach to problem solving that includes collaboratively:
EXPECTATION		Defining a problem – students will be able to employ technical reading and writing skills to develop concise problem statement.
EXPECTATION		Selecting an Approach – students will be able to employ a decision matrix to select the best approach to solve the problem.
EXPECTATION		Testing and Evaluating Design Using Specifications – students will be able to use establish specifications to assess their design product.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.

OBJECTIVE

Discriminate between ethical and unethical engineering practices.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Agricultural Technologies
EXPECTATION	Design, develop, use, manage, maintain, and assess a closed system that supports living organisms (e.g. terrarium,

hydroponics station).

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Biotechnology

EXPECTATION

Explore applications of biotechnology.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Energy and Power Technologies

EXPECTATION	Analyze how power systems are used to drive and provide propulsion to other technological products and systems (STL, 16H).
EXPECTATION	Design, construct, and test a device that either minimizes or maximizes energy transfer (MS-PS3-3).
EXPECTATION	Explore ways to conserve energy.
EXPECTATION	Assess advantages and disadvantages of different forms of renewable and nonrenewable energy.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Five: Computational Thinking and Computer Science Applications – Students will be able to apply computational thinking skills and computer science applications as tools to develop solutions to engineering problems.
INDICATOR / PROFICIENCY LEVEL	Select and use appropriate tools and technology resources to accomplish a variety of tasks and solve problems.
INDICATOR / PROFICIENCY LEVEL	Use the basic steps in algorithmic problem solving to design solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Implement problem solutions using a programming language.
INDICATOR / PROFICIENCY LEVEL	Analyze how computational thinking and computer programing can be used as tools for problem solving.

Massachusetts Curriculum Frameworks Mathematics

Grade 7 - Adopted: 2017

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.

Massachusetts Curriculum Frameworks Mathematics Grade 8 - Adopted: 2017

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.

Massachusetts Curriculum Frameworks

Science

FOCUS / COURSE	MA.7- ESS.	Grade 7: Earth and Space Sciences
STRAND	ESS3.	Earth and Human Activity
STANDARD / CONCEPT / SKILL	7.MS- ESS3-4.	Construct an argument supported by evidence that human activities and technologies can mitigate the impact of increases in human population and per capita consumption of natural resources on the environment.

FOCUS / COURSE	MA.7-PS.	Grade 7: Physical Science
STRAND	PS3.	Energy
STANDARD / CONCEPT / SKILL	7.MS- PS3- 7(MA).	Use informational text to describe the relationship between kinetic and potential energy and illustrate conversions from one form to another.

FOCUS / COURSE	MA.7- ETS.	Grade 7: Technology/Engineering
STRAND	ETS1.	Engineering Design
STANDARD / CONCEPT / SKILL	7.MS- ETS1-2.	Evaluate competing solutions to a given design problem using a decision matrix to determine how well each meets the criteria and constraints of the problem. Use a model of each solution to evaluate how variations in one or more design features, including size, shape, weight, or cost, may affect the function or effectiveness of the solution.
STANDARD / CONCEPT / SKILL	7.MS- ETS1-4.	Generate and analyze data from iterative testing and modification of a proposed object, tool, or process to optimize the object, tool, or process for its intended purpose.
STANDARD / CONCEPT / SKILL	7.MS- ETS1- 7(MA).	Construct a prototype of a solution to a given design problem.

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Key Ideas and Details
STANDARD / CONCEPT / SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPT /	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

SKILL

CONCEPT /

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Craft and Structure
STANDARD / CONCEPT / SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPT / SKILL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Integration of Knowledge and Ideas
STANDARD / CONCEPT / SKILL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Range of Reading and Level of Text Complexity
STANDARD / CONCEPT /	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

SKILL

1.0-	by the end of grade 6, read and complement science/technical texts in the grades 6-6 text complexity band
Э.	independently and proficiently.

FOCUS / COURSE	MA.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND		Text Types and Purposes
ST ANDARD / CONCEPT / SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
FOCUS / COURSE	MA.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND		Production and Distribution of Writing

STANDARD /	WHST.6-	Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
CONCEPT /	8.4.	purpose, and audience.
SKILL		

STANDARD /WHST.6-Use technology, including the Internet, to produce and publish writing and present the relationships betweenCONCEPT /8.6.information and ideas clearly and efficiently.SKILL

Massachusetts Curriculum Frameworks

Science

FOCUS / COURSE	MA.8- ESS.	Grade 8: Earth and Space Sciences			
STRAND	ESS3.	Earth and Human Activity			
STANDARD / CONCEPT / SKILL	8.MS- ESS3-1.	Analyze and interpret data to explain that the Earth's mineral and fossil fuel resources are unevenly distributed as a result of geologic processes.			
STANDARD / CONCEPT / SKILL	8.MS- ESS3-5.	Examine and interpret data to describe the role that human activities have played in causing the rise in global temperatures over the past century.			
		Grade 8 - Adopted: 2010			
FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects			
STRAND		Key Ideas and Details			
STANDARD / CONCEPT / SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.			
STANDARD / CONCEPT / SKILL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.			
FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects			
STRAND		Craft and Structure			
STANDARD / CONCEPT / SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.			
STANDARD / CONCEPT / SKILL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.			
FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects			
STRAND		Integration of Knowledge and Ideas			

STANDARD /	RST.6-	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
CONCEPT /	8.9.	gained from reading a text on the same topic.
SKILL		

FOCUS / COURSE	MA.RST. 6-8.	ading Standards for Literacy in Science and Technical Subjects			
STRAND		Range of Reading and Level of Text Complexity			
STANDARD / CONCEPT /	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.			

SKILL

SKILL

FOCUS / COURSE	MA.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects				
STRAND		Text Types and Purposes				
ST ANDARD / CONCEPT / SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures experiments, or technical processes.				
INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.				
FOCUS / COURSE	MA.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects				
STRAND		Production and Distribution of Writing				
STANDARD / CONCEPT / SKILL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.				
STANDARD / CONCEPT / SKILL	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.				

Massachusetts Curriculum Frameworks Technology Education

FOCUS / COURSE	MA.6- 8.CAS.	Grades 6 – 8: Computing and Society (CAS)
STRAND	6- 8.CAS.c.	Interpersonal and Societal Impact
STANDARD / CONCEPT / SKILL	6- 8.CAS.c.2	Identify and discuss the technology proficiencies needed in the classroom and the workplace, and how to meet the needs.
FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)

FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.b.	Algorithms
STANDARD / CONCEPT /	6- 8.CT.b.3.	Individually and collaboratively decompose a problem and create a sub-solution for each of its parts (e.g., video game, robot obstacle course, making dinner).

FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.d.	Programming and Development
STANDARD / CONCEPT / SKILL	6- 8.CT.d.2.	Use functions to hide the detail in a program.
STANDARD / CONCEPT / SKILL	6- 8.CT.d.3.	Create a program, individually and collaboratively, that implements an algorithm to achieve a given goal.
STANDARD / CONCEPT / SKILL	6- 8.CT.d.5.	Trace programs step-by-step in order to predict their behavior.
		Massachusetts Curriculum Frameworks

Massachusetts Curriculum Frameworks

Technology Education Grade 8 - Adopted: 2016

FOCUS / COURSE	MA.6- 8.CAS.	Grades 6 – 8: Computing and Society (CAS)
STRAND	6- 8.CAS.c.	Interpersonal and Societal Impact
STANDARD / CONCEPT / SKILL	6- 8.CAS.c.2	Identify and discuss the technology proficiencies needed in the classroom and the workplace, and how to meet the needs.

FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.b.	Algorithms
STANDARD /	6-	Individually and collaboratively decompose a problem and create a sub-solution for each of its parts (e.g., video

CONCEPT /	8.CT.b.3.	game, robot obstacle course, making dinner).	
SKILL			

FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.d.	Programming and Development
STANDARD / CONCEPT / SKILL	6- 8.CT.d.2.	Use functions to hide the detail in a program.
STANDARD / CONCEPT / SKILL	6- 8.CT.d.3.	Create a program, individually and collaboratively, that implements an algorithm to achieve a given goal.
STANDARD / CONCEPT / SKILL	6- 8.CT.d.5.	Trace programs step-by-step in order to predict their behavior.

Mathematics

Grade 7 - Adopted: 2010

STRAND / STANDARD CATEGORY	MI.CC.MP .7.	Mathematical Practices
STANDARD	MP.7.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.7.2.	Reason abstractly and quantitatively.
STANDARD	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.7.4.	Model with mathematics.
STANDARD	MP.7.6.	Attend to precision.
STANDARD	MP.7.7.	Look for and make use of structure.

Michigan Academic Standards

Mathematics

Grade 8 - Adopted: 2010

STRAND / STANDARD CATEGORY	MI.CC.MP .8.	Mathematical Practices
STANDARD	MP.8.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.8.2.	Reason abstractly and quantitatively.
STANDARD	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.8.4.	Model with mathematics.
STANDARD	MP.8.6.	Attend to precision.
STANDARD	MP.8.7.	Look for and make use of structure.

Michigan Academic Standards

Science

STRAND / STANDARD CATEGORY	MI.SC.5.	Waves and Electromagnetic Radiation
STANDARD	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
STRAND / STANDARD CATEGORY	MI.SC.15.	Earth's Systems

STANDARD	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
STRAND / STANDARD CATEGORY	MI.SC.16.	Weather and Climate
STANDARD	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / STANDARD CATEGORY	MI.SC.17.	Human Impacts
STANDARD	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / STANDARD CATEGORY	MI.SC.18.	Engineering Design
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD	1	Text Types and Purposes
GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		Michigan Academic Standards Science Grade 8 - Adopted: 2015
STRAND / STANDARD CATEGORY	MI.SC.5.	Waves and Electromagnetic Radiation
STANDARD	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
STRAND / STANDARD CATEGORY	MI.SC.15.	Earth's Systems

STANDARD	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
STRAND / STANDARD CATEGORY	MI.SC.16.	Weather and Climate
STANDARD	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / STANDARD CATEGORY	MI.SC.17.	Human Impacts
STANDARD	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / STANDARD CATEGORY	MI.SC.18.	Engineering Design
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		Michigan Academic Standards Technology Education Grade 7 - Adopted: 2017
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students

STANDARD MITECS .3. MITECS and constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

GRADE LEVELMITECS.Build knowledge by actively exploring realworld issues and problems, developing ideas and theories, and pursuingEXPECTATION3.d.answers and solutions.

ST AND ARDMIT ECS. 4.Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.GRADE LEVEL EXPECTATIONMITECS. 4.b.Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.GRADE LEVEL EXPECTATIONMITECS. 4.c.Develop, test, and refine prototypes as part of a cyclical design process. 4.c.GRADE LEVEL EXPECTATIONMITECS. 4.d.Develop, test, and refine prototypes as part of a cyclical design process. 4.d.ST ANDARD ST ANDARDMI.MITECS S.Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems. S.ST ANDARD ST ANDARDMITECS S.Computational Thinker - Students develop and employ strategies for understanding and solving	STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
EXPECTATION 4.b. risks. GRADE LEVEL EXPECTATION MITECS. Develop, test, and refine prototypes as part of a cyclical design process. GRADE LEVEL EXPECTATION MITECS. Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems. ST RAND / ST ANDARD CATEGORY MI.MITEC Michigan Integrated Technology Competencies for Students	STANDARD		
EXPECTATION 4.c. GRADE LEVEL MITECS. EXPECTATION 4.d. STRAND / STANDARD CATEGORY MI.MITEC Michigan Integrated Technology Competencies for Students			
EXPECTATION 4.d. STRAND / STANDARD CATEGORY MI.MITEC Michigan Integrated Technology Competencies for Students			Develop, test, and refine prototypes as part of a cyclical design process.
STANDARD S. CATEGORY			Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
STANDARD MITECS Computational Thinker - Students develop and employ strategies for understanding and solving	STANDARD		Michigan Integrated Technology Competencies for Students
.5. problems in ways that leverage the power of technological methods to develop and test solutions.	STANDARD		
GRADE LEVELMITECS.Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and EXPECTATION5.a.algorithmic thinking in exploring and finding solutions.			
GRADE LEVELMITECS.Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and testEXPECTATION5.d.automated solutions.			
Grade 7 - Adopted: 2019			Grade 7 - Adopted: 2019
STRAND / Michigan Computer Science Standards STANDARD CATEGORY	STANDARD		Michigan Computer Science Standards
STANDARD LEVEL 2: MIDDLE SCHOOL (GRADES 6-8)	STANDARD		LEVEL 2: MIDDLE SCHOOL (GRADES 6-8)

EXPECTATION

GRADE LEVEL

EXPECTATION

4.4, 4.1

ALGORITHMS AND PROGRAMMING

2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. Subconcept: Algorithms; Practice

Michigan Academic Standards

Technology Education

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	MITECS. 3.d.	Build knowledge by actively exploring realworld issues and problems, developing ideas and theories, and pursuing answers and solutions.
STRAND / STANDARD	MI.MITEC S.	Michigan Integrated Technology Competencies for Students

CATEGORY	.	
STANDARD	MITECS .4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

GRADE LEVEL EXPECTATION	MITECS. 4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GRADE LEVEL EXPECTATION	MITECS. 4.c.	Develop, test, and refine prototypes as part of a cyclical design process.
GRADE LEVEL EXPECTATION	MITECS. 4.d.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 8 - Adopted: 2019
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 2: MIDDLE SCHOOL (GRADES 6-8)
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING

EXPECTATION 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. Subconcept: Algorithms; Practice 4.4, 4.1

Minnesota Academic Standards Mathematics

Grade 7 - Adopted: 2008

CONTENT STANDARD / DOMAIN	MN.7.2.	Algebra
PERFORMANC E INDICATOR / DOMAIN COMPONENT	7.2.3.	Apply understanding of order of operations and algebraic properties to generate equivalent numerical and algebraic expressions containing positive and negative rational numbers and grouping symbols; evaluate such expressions.
INDICATORS OF PROGRESS / STRAND	7.2.3.1.	Use properties of algebra to generate equivalent numerical and algebraic expressions containing rational numbers, grouping symbols and whole number exponents. Properties of algebra include associative, commutative and distributive laws.

Minnesota Academic Standards

Science

PERFORMANC E INDICATOR / DOMAIN COMPONENT		Key Ideas and Details
INDICATORS OF PROGRESS / STRAND	6.13.2.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATORS OF PROGRESS / STRAND	6.13.3.3.	Follow precisely a multistep procedure when carrying out experiments, designing solutions, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Craft and Structure
INDICATORS OF PROGRESS / STRAND	6.13.4.4.	Determine the meaning of symbols, equations, graphical representations, tabular representations, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATORS OF PROGRESS / STRAND	6.13.5.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
INDICATORS OF PROGRESS / STRAND	6.13.6.6.	Analyze the author's purpose in describing phenomena, providing an explanation, describing a procedure, or discussing/reporting an experiment in a text.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Integration of Knowledge and Ideas
INDICATORS OF PROGRESS / STRAND	6.13.9.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Range of Reading and Level of Text Complexity
INDICATORS OF PROGRESS / STRAND		By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12

PERFORMANC E INDICATOR / DOMAIN COMPONENT	Text Types and Purposes		
	INDICATORS OF PROGRESS / STRAND	Write informative/explanatory texts, as they apply to each discipline and reporting format, including the narration of historical events, of scientific procedures/ experiments, or description of technical processes.	

INDICATORS6.14.2.2.dUse precise language and domain-specific vocabulary to inform about or explain the topic.OF PROGRESS.

CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICAT OR / DOMAIN COMPONENT		Production and Distribution of Writing

 INDICATORS
 6.14.4.4.
 Produce clear and coherent writing in which the development, organization, and style are appropriate to task,

 OF PROGRESS
 purpose, and audience.

 / STRAND
 STRAND

Minnesota Academic Standards

Science

|--|

CONTENT STANDARD / DOMAIN	MN.8.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	8.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	8.1.3.3.	The student will understand that science and engineering operate in the context of society and both influence and are influenced by this context.
INDICATORS OF PROGRESS	8.1.3.3.2.	Understand that scientific knowledge is always changing as new technologies and information enhance observations and analysis of data.

INDICATORS 8.1.3.3.3. Provide examples of how advances in technology have impacted the ways in which people live, work and interact. OF PROGRESS

CONTENT STANDARD / DOMAIN	MN.8.3.	Earth and Space Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	8.3.4.	Human Interactions with Earth Systems
INDICATORS OF PROGRESS / STRAND	8.3.4.1.	The student will understand that in order to maintain and improve their existence, humans interact with and influence Earth systems.

INDICATORS8.3.4.1.1.Describe how mineral and fossil fuel resources have formed over millions of years, and explain why theseOF PROGRESSresources are finite and non-renewable over human time frames.

CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Key Ideas and Details
INDICATORS OF PROGRESS / STRAND	6.13.2.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATORS OF PROGRESS / STRAND	6.13.3.3.	Follow precisely a multistep procedure when carrying out experiments, designing solutions, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Craft and Structure
INDICATORS OF PROGRESS / STRAND	6.13.4.4.	Determine the meaning of symbols, equations, graphical representations, tabular representations, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATORS OF PROGRESS / STRAND	6.13.5.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
INDICATORS OF PROGRESS / STRAND	6.13.6.6.	Analyze the author's purpose in describing phenomena, providing an explanation, describing a procedure, or discussing/reporting an experiment in a text.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICAT OR / DOMAIN COMPONENT		Integration of Knowledge and Ideas
INDICATORS OF PROGRESS / STRAND	6.13.9.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Range of Reading and Level of Text Complexity
INDICATORS OF PROGRESS / STRAND	6.13.10.1 0.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Text Types and Purposes
INDICATORS OF PROGRESS / STRAND	6.14.2.2	Write informative/explanatory texts, as they apply to each discipline and reporting format, including the narration of historical events, of scientific procedures/ experiments, or description of technical processes.

INDICATORS6.14.2.2.dUse precise language and domain-specific vocabulary to inform about or explain the topic.OF PROGRESS.

CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Production and Distribution of Writing

INDICATORS6.14.4.4.Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
purpose, and audience./ STRAND5.14.4.4.5.14.4.4.

Minnesota Academic Standards

Technology Education

Grade 7 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.IT L.6- 8.	Information and Technology Literacy Standards (Refresh 2009)
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6-8.3.	Technology Use and Concepts: Students will explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.
INDICATORS OF PROGRESS / STRAND	6-8.3.I.	Use of Technology
INDICATORS OF PROGRESS	6- 8.3.I.D.	Strategically solve information and technology issues.
INDICATOR	6- 8.3.I.D.1.	Independently troubleshoot technology issues, following organizational policies.
INDICATOR	6- 8.3.I.D.2.	Locate assistance independently or through the help of others as needed.

Minnesota Academic Standards Technology Education

S		MN.IT L.6- 8.	Information and Technology Literacy Standards (Refresh 2009)
E	PERFORMANC E INDICATOR / DOMAIN COMPONENT	6-8.3.	Technology Use and Concepts: Students will explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.

INDICATORS OF PROGRESS / STRAND	6-8.3.I.	Use of Technology
INDICATORS OF PROGRESS	6- 8.3.I.D.	Strategically solve information and technology issues.
INDICATOR	6- 8.3.I.D.1.	Independently troubleshoot technology issues, following organizational policies.
INDICATOR	6- 8.3.I.D.2.	Locate assistance independently or through the help of others as needed.

Mississippi College & Career Readiness Standards

Mathematics

Grade 7 - Adopted: 2016

ТНЕМЕ	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.6.	Attend to precision.
SUBJECT	MP.7.	Look for and make use of structure.

Mississippi College & Career Readiness Standards

Mathematics

Grade 8 - Adopted: 2016

ТНЕМЕ	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.6.	Attend to precision.
SUBJECT	MP.7.	Look for and make use of structure.

Mississippi College & Career Readiness Standards

Science

SUBJECT		Ecology and Interdependence
STANDARD	L.7.3.	Students will demonstrate an understanding of the importance that matter cycles between living and nonliving parts of the ecosystem to sustain life on Earth.
OBJECTIVE	L.7.3.4.	Explain how disruptions in cycles (e.g., water, oxygen, carbon, and nitrogen) affect biodiversity and ecosystem services (e.g., water, food, and medications) which are needed to sustain human life on Earth.
OBJECTIVE	L.7.3.5.	Design solutions for sustaining the health of ecosystems to maintain biodiversity and the resources needed by humans for survival (e.g., water purification, nutrient recycling, prevention of soil erosion, and prevention or management of invasive species).
тнеме	MS.E.7.	GRADE SEVEN: Earth and Space Science
SUBJECT		Earth's Systems and Cycles
SUBJECT ST AND ARD	E.7.9B.	Earth's Systems and Cycles Students will demonstrate an understanding of the relationship between natural phenomena, human activity, and global climate change.
	E.7.9B.1.	Students will demonstrate an understanding of the relationship between natural phenomena, human
STANDARD		Students will demonstrate an understanding of the relationship between natural phenomena, human activity, and global climate change. Read and evaluate scientific or technical information assessing the evidence and bias of each source to explain the

Mississippi College & Career Readiness Standards

Science Grade 8 - Adopted: 2018

ТНЕМЕ	MS.E.8.	GRADE EIGHT: Earth and Space Science
SUBJECT		Earth's Resources
STANDARD	E.8.10.	Students will demonstrate an understanding that a decrease in natural resources is directly related to the increase in human population on Earth and must be conserved.
OBJECTIVE	E.8.10.1.	Read and evaluate scientific information about advancements in renewable and nonrenewable resources. Propose and defend ways to decrease national and global dependency on nonrenewable resources.
OBJECTIVE	E.8.10.2.	Create and defend a proposal for reducing the environmental effects humans have on Earth (e.g., population increases, consumer demands, chemical pollution, deforestation, and change in average annual temperature).
OBJECTIVE	E.8.10.3.	Using scientific data, debate the societal advantages and disadvantages of technological advancements in renewable energy sources.
OBJECTIVE	E.8.10.4.	Using an engineering design process, develop a system to capture and distribute thermal energy that makes renewable energy more readily available and reduces human impact on the environment (e.g., building solar water heaters, conserving home energy).

Mississippi College & Career Readiness Standards

Technology Education

ТНЕМЕ	Mississippi College- and Career-Readiness Standards for Computer Science
SUBJECT	Level 2: GRADES 6-8 - Algorithms and Programming

STANDARD	AP.2.	Algorithms and Programming (AP.2)
OBJECTIVE	AP.2.1.	Use flowcharts and/or pseudocode to address complex problems as algorithms. [ALGORITHMS] (P4.4, P4.1)
OBJECTIVE	AP.2.1a.	Students will use pseudocode and/or flowcharts to organize and sequence an algorithm that addresses a complex problem, even though they may not actually program the solutions.

Mississippi College & Career Readiness Standards

Technology Education

Grade 8 - Adopted: 2018

тнеме		Mississippi College- and Career-Readiness Standards for Computer Science
SUBJECT		Level 2: GRADES 6-8 - Algorithms and Programming
STANDARD	AP.2.	Algorithms and Programming (AP.2)
OBJECTIVE	AP.2.1.	Use flowcharts and/or pseudocode to address complex problems as algorithms. [ALGORITHMS] (P4.4, P4.1)
OBJECTIVE	AP.2.1a.	Students will use pseudocode and/or flowcharts to organize and sequence an algorithm that addresses a complex

Missouri Learning Standards

problem, even though they may not actually program the solutions.

Science

Grade 7 - Adopted: 2016

STRAND: BIG IDEA / STANDARD	MO.6- 8.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	6- 8.ESS3.	Earth and Human Activity
GLE / COMPONENT	6- 8.ESS3.A	Natural Resources

INDICATOR / 6-PROFICIENCY

1.

Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and 8.ESS3.A. groundwater resources are the result of past and current geoscience processes and human activity. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]

STRAND: BIG IDEA / STANDARD	MO.6- 8.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	6- 8.ESS3.	Earth and Human Activity
GLE / COMPONENT	6- 8.ESS3. C.	Human Impacts on Earth's Systems

INDICATOR / PROFICIENCY

1.

6-

Analyze data to define the relationship for how increases in human population and per-capita consumption of natural 8.ESS3.C. resources impact Earth's systems. [Clarification Statement: Examples of data include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change.]

INDICATOR / PROFICIENCY

6-2.

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. 8.ESS3.C. [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]

STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	6- 8.ETS1.	Engineering Design
GLE / COMPONENT	6- 8.ETS1. A.	Defining and Delimiting Engineering Problems
INDICATOR / PROFICIENCY	6- 8.ETS1.A. 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	6- 8.ET S1.	Engineering Design
GLE / COMPONENT	6- 8.ET S1. B.	Developing Possible Solutions
INDICATOR / PROFICIENCY	6- 8.ETS1.B. 1.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
INDICATOR / PROFICIENCY	6- 8.ETS1.B. 3.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Key Ideas and Details
GLE / COMPONENT	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GLE / COMPONENT	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Craft and Structure

GLE / COMPONENT	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GLE / COMPONENT	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Integration of Knowledge and Ideas
GLE / COMPONENT	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Range of Reading and Level of Text Complexity
GLE / COMPONENT	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND: BIG IDEA / STANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Text Types and Purposes
GLE / COMPONENT	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR / PROFICIENCY	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STRAND: BIG IDEA / STANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Production and Distribution of Writing
GLE / COMPONENT	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GLE / COMPONENT	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		Missouri Learning Standards

Science

Grade 8 - Adopted: 2016

MO.6- Earth and Space Sciences 8.ESS.

CONCEPT: GLE / BENCHMARK	6- 8.ESS3.	Earth and Human Activity
GLE / COMPONENT	6- 8.ESS3.A	Natural Resources
INDICATOR / PROFICIENCY	6- 8.ESS3.A. 1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes and human activity. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments

subduction zones), and soil (locations of active weathering and/or deposition of rock).]

and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with

STRAND: BIG MO.6-Earth and Space Sciences IDEA / 8.ESS. STANDARD CONCEPT: 6-Earth and Human Activity 8.ESS3. GLE / BENCHMARK 6. Human Impacts on Earth's Systems GLE/ COMPONENT 8.ESS3. C. INDICATOR / 6-Analyze data to define the relationship for how increases in human population and per-capita consumption of natural PROFICIENCY 8.ESS3.C. resources impact Earth's systems. [Clarification Statement: Examples of data include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and 1. energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change.] INDICATOR / Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. 6-PROFICIENCY 8.ESS3.C. [Clarification Statement: Examples of the design process include examining human environmental impacts, 2. assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the

STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	6- 8.ET S1.	Engineering Design
GLE / COMPONENT	6- 8.ET S1. A.	Defining and Delimiting Engineering Problems
INDICATOR /	6-	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking

removal of wetlands), and pollution (such as of the air, water, or land).]

 INDICATOR /
 6 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking

 PROFICIENCY
 8.ETS1.A.
 into account relevant scientific principles and potential impacts on people and the natural environment that may limit

 1.
 possible solutions.

STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	6- 8.ET S1.	Engineering Design
GLE / COMPONENT	6- 8.ET S1. B.	Developing Possible Solutions

INDICATOR / PROFICIENCY	6- 8.ETS1.B. 1.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
INDICATOR / PROFICIENCY	6- 8.ETS1.B. 3.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Grade 8 - Adopted: 2010		
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Key Ideas and Details
GLE / COMPONENT	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GLE / COMPONENT	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Craft and Structure
GLE / COMPONENT	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

GLE /	RST.6-	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and
COMPONENT	8.5.	to an understanding of the topic.

STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Integration of Knowledge and Ideas
GLE / COMPONENT	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Range of Reading and Level of Text Complexity
GLE / COMPONENT	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND: BIG IDEA / STANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects

CONCEPT: GLE / BENCHMARK		Text Types and Purposes
GLE / COMPONENT	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR / PROFICIENCY	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STRAND: BIG IDEA / STANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Production and Distribution of Writing
GLE / COMPONENT	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GLE / COMPONENT	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		Missouri Learning Standards
		Technology Education Grade 7 - Adopted: 2019
STRAND: BIG IDEA / STANDARD		Computer Science Performance Standards

Missouri Learning Standards
Technology Education
Grade 8 - Adopted: 2019

Design algorithms with flow charts and/or pseudocode to show solutions to complex problems.

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Algorithms

INDICATOR /6-Design algorithms with flow charts and/or pseudocode to show solutions to complex problems.PROFICIENCY8.AP.A.01.

Algorithms & Programming

Algorithms

CONCEPT:

COMPONENT

INDICATOR /

PROFICIENCY

6-

8.AP.A.01.

GLE / BENCHMARK

GLE /

Montana Content Standards Mathematics Grade 7 - Adopted: 2011

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.

Montana Content Standards Mathematics

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
		Montana Content Standards
		Science

Grade 7 - Adopted: 2016

EARTH AND SPACE SCIENCE content standards for sixth through eighth grades are that students will:

BENCHMARK / STANDARD	6- 8.ESS.9.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes
BENCHMARK / STANDARD	6- 8.ESS.12.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century
BENCHMARK / STANDARD	6- 8.ESS.14.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment
BENCHMARK / STANDARD	6- 8.ESS.15.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems including indigenous populations
		Grade 7 - Adopted: 2011
CONTENT ST ANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / ST ANDARD		Range of Reading Level of Text Complexity

GRADE LEVELRST.6-By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity bandEXPECTATION /8.10.independently and proficiently.BENCHMARK

CONTENT STANDARD / DOMAIN	MT.WHST .6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2.d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD / DOMAIN	MT.WHS T.6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / ST ANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

GRADE LEVEL	WHST.6-	Use technology, including the Internet, to produce and publish writing and present the relationships between
EXPECTATION /	8.6.	information and ideas clearly and efficiently.
BENCHMARK		

Montana Content Standards

Science

CONTENT STANDARD / DOMAIN	MT.6- 8.ESS.	EARTH AND SPACE SCIENCE content standards for sixth through eighth grades are that students will:
BENCHMARK / STANDARD	6- 8.ESS.9.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes
BENCHMARK / STANDARD	6- 8.ESS.12.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century
BENCHMARK / STANDARD	6- 8.ESS.14.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment
BENCHMARK / STANDARD	6- 8.ESS.15.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems including indigenous populations
		Grade 8 - Adopted: 2011
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Key Ideas and Details

GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Range of Reading Level of Text Complexity
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MT.WHST .6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2.d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD / DOMAIN	MT.WHS T.6-8.	Writing Standards for Literacy in Science, and Technical Subjects

BENCHMARK / ST AND ARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Montana Content Standards Technology Education

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	select and use digital tools to support design processes, identify constraints and trade-offs and weigh risks;
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(b)	engage in design process to develop, test and revise prototypes or create innovative products; and
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(5)	The computational thinker content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	investigate and practice solving problems by using data analysis, modeling or algorithmic thinking;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(b)	organize data and use technology to display, analyze, solve problems and make decisions;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(c)	break down problems into component parts, identify key pieces and use that information to problem solve; and

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(a)	select appropriate platforms and tools to create, share, and communicate work;

GRADE LEVEL	(6)(b)	create original works or responsibly remix and repurpose other digital resources into new creative works; and
EXPECTATION /		
BENCHMARK		

CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(a)	use algorithms to address complex problems;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	develop programs that combine control structures, including nested loops and compound conditionals;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(d)	decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(f)	seek and incorporate feedback from team members and users to refine a solution that meets user needs;
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(c)	collaborate with other contributors when creating a computational artifact; and
		Montana Content Standards Technology Education Grade 8 - Adopted: 2020/Effective 2021
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	select and use digital tools to support design processes, identify constraints and trade-offs and weigh risks;
GRADE LEVEL EXPECTATION /	(4)(b)	engage in design process to develop, test and revise prototypes or create innovative products; and

BENCHMARK

CONTENT STANDARD / DOMAIN

BENCHMARK / STANDARD	(5)	The computational thinker content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	investigate and practice solving problems by using data analysis, modeling or algorithmic thinking;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(b)	organize data and use technology to display, analyze, solve problems and make decisions;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(c)	break down problems into component parts, identify key pieces and use that information to problem solve; and
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(a)	select appropriate platforms and tools to create, share, and communicate work;
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(b)	create original works or responsibly remix and repurpose other digital resources into new creative works; and
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(a)	use algorithms to address complex problems;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	develop programs that combine control structures, including nested loops and compound conditionals;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(d)	decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(f)	seek and incorporate feedback from team members and users to refine a solution that meets user needs;
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for sixth through eighth grades are that each student will:

GRADE LEVEL (4)(c) EXPECTATION / BENCHMARK collaborate with other contributors when creating a computational artifact; and