Main Criteria: Forward Education

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 3, 4, Key Stage 1, Key Stage 2

Forward Education

Powering the Future with Wind Energy

Nebraska Content Area Standards Mathematics

Grade 3 - Adopted: 2022

CONTENT STANDARD		Grade 3 Standards
STRAND	3.A.	ALGEBRA: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	3.A.1.	Operations and Algebraic Thinking: Students will extend understanding of multiplication and apply operational properties to solve problems.

STRAND 3.A.1.a. Add and subtract up to four-digit whole numbers with or without regrouping using strategies based on place value and algorithms.

CONTENT STANDARD		Grade 3 Standards
STRAND	3.D.	DAT A: Students will solve problems and reason with data/probability using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	3.D.2.	Analyze Data and Interpret Results: Students will analyze the data and interpret the results.

STRAND 3.D.2.a. Analyze data and make simple statements using information represented in picture graphs, line plots, and bar graphs.

Nebraska Content Area Standards Mathematics

Grade 4 - Adopted: 2022

CONTENT STANDARD		Grade 4 Standards
STRAND	4.A.	ALGEBRA: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	4.A.1.	Operations and Algebraic Thinking: Students will extend understanding of multiplication and division and apply operational properties to solve problems involving variables.

STRAND 4.A.1.a. Add and subtract multi-digit numbers using an algorithm.

CONTENT STANDARD		Grade 4 Standards
STRAND	4.D.	DAT A: Students will solve problems and reason with data/probability using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	4.D.2.	Analyze Data and Interpret Results: Students will analyze the data and interpret the results.

STRAND 4.D.2.a. Solve authentic problems and analyze data involving addition or subtraction of fractions presented in line plots.

CONTENT STANDARD	NE.SC.3. 1.	Forces and Interactions: Motion and Stability
STRAND	SC.3.1.1	Gather, analyze, and communicate evidence of forces and their interactions.
INDICATOR	SC.3.1.1. B.	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.

Nebraska Content Area Standards Science

Grade 4 - Adopted: 2017

CONTENT STANDARD	NE.SC.4. 4.	Energy: Conservation and Transfer
STRAND	SC.4.4. 2.	Gather, analyze and communicate evidence of energy conservation and transfer.
INDICATOR	SC.4.4.2. D.	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
INDICATOR	SC.4.4.2. E.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
INDICATOR	SC.4.4.2. F.	Obtain and combine information to describe that energy and fuels are derived from natural resources and that their uses affect the environment.

Nebraska Content Area Standards Technology Education Grade 3 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFTWARE STANDARDS

STRAND Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS

STRAND Create algorithms, or series of ordered steps, to solve problems.

STRAND Decompose a problem into smaller more manageable parts.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND Write progra

Write programs using visual (block-based) programming languages (scratch, code.org).

Nebraska Content Area Standards Technology Education

Grade 4 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFTWARE STANDARDS
STRAND	Apply strategies for identifying and solving routine problems that occur during everyday computer use.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).

Nevada Academic Content Standards Mathematics

CONTENT STANDARD	NV.CC.M P.3.	Mathematical Practices
STRAND / INDICATOR	MP.3.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.3.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.3.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.3.4.	Model with mathematics.
STRAND / INDICATOR	MP.3.5.	Use appropriate tools strategically.
CONTENT STANDARD	NV.CC.N BT.3.	Number and Operations in Base Ten

STRAND / INDICATOR		Use place value understanding and properties of operations to perform multi-digit arithmetic.
INDICATOR / GRADE LEVEL EXPECTATION	NBT.3.2.	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Nevada Academic Content Standards Mathematics

		Grade 4 - Adopted: 2010
CONTENT STANDARD	NV.CC.M P.4.	Mathematical Practices
STRAND / INDICATOR	MP.4.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.4.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.4.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.4.4.	Model with mathematics.
STRAND / INDICATOR	MP.4.5.	Use appropriate tools strategically.
CONTENT STANDARD	NV.CC.N BT.4.	Number and Operations in Base Ten
STRAND / INDICATOR		Use place value understanding and properties of operations to perform multi-digit arithmetic.
INDICATOR / GRADE LEVEL EXPECTATION	NBT.4.4.	Fluently add and subtract multi-digit whole numbers using the standard algorithm.
CONTENT STANDARD	NV.CC.M D.4.	Measurement and Data
STRAND / INDICATOR		Represent and interpret data.
INDICATOR / GRADE LEVEL EXPECTATION	MD.4.4.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

Nevada Academic Content Standards Science

CONTENT STANDARD	NV.3-PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	3-PS2.	Motion and Stability: Forces and Interactions

INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-PS2-2.	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.
CONTENT STANDARD	NV.3-5- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	3-5- ETS1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Nevada Academic Content Standards Science

Grade 4 - Adopted: 2014

CONTENT STANDARD	NV.4-PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	4-PS3.	Energy
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	4-PS3-4.	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
CONTENT STANDARD	NV.4- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	4-ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	4-ESS3- 1.	Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.
CONTENT STANDARD	NV.3-5- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	3-5- ETS1.	Engineering Design

Students who demonstrate understanding can:

INDICATOR / GRADE LEVEL EXPECTATION

GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

		Nevada Academic Content Standards Technology Education Grade 3 - Adopted: 2019
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
GRADE LEVEL	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

EXPECTATION

Create modules and develop points of interaction that can apply to multiple situal expectation.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts
GRADE LEVEL EXPECTATION	P6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
		NEWARA ACADEMIC CONTENT OF ANDARDO for COMPUTER COURSE
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
		Practices

Nevada Academic Content Standards Technology Education Grade 4 - Adopted: 2019

Select, organize, and interpret large data sets from multiple sources to support a claim.

GRADE LEVEL P7.1.

EXPECTATION

CONTENT

STANDARD

CONTENT NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE STANDARD STRAND / **Practices INDICATOR** INDICATOR / P1. Fostering an Inclusive Computing Culture **GRADE LEVEL EXPECT ATION GRADE LEVEL** Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and **EXPECTATION** usability. **GRADE LEVEL** P1.3. Employ self- and peer-advocacy to address bias in interactions, product design, and development methods. **EXPECTATION**

NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
GRADE LEVEL EXPECTATION	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts
GRADE LEVEL EXPECTATION	P6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices

INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.
CONTENT ST ANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	4.ID.D.1.	Demonstrate perseverance when working with open-ended problems.

New Hampshire College and Career Ready Standards Mathematics

Grade 3 - Adopted: 2010

STRAND /		Mathematical Practices
STANDARD	P.3.	
STANDARD / GLE	MP.3.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.3.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.3.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.3.4.	Model with mathematics.
STANDARD / GLE	MP.3.5.	Use appropriate tools strategically.
STRAND / STANDARD	NH.CC.N BT.3.	Number and Operations in Base Ten
STANDARD / GLE		Use place value understanding and properties of operations to perform multi-digit arithmetic.
GRADE LEVEL EXPECTATION	NBT.3.2.	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

New Hampshire College and Career Ready Standards Mathematics

	NH.CC.M P.4.	Mathematical Practices
STANDARD / GLE	MP.4.1.	Make sense of problems and persevere in solving them.

STANDARD / GLE	MP.4.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.4.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.4.4.	Model with mathematics.
STANDARD / GLE	MP.4.5.	Use appropriate tools strategically.
STRAND / STANDARD	NH.CC.N BT.4.	Number and Operations in Base Ten
STANDARD / GLE		Use place value understanding and properties of operations to perform multi-digit arithmetic.
GRADE LEVEL EXPECTATION	NBT.4.4.	Fluently add and subtract multi-digit whole numbers using the standard algorithm.
CT DANID /		Management and Base

	NH.CC.M D.4.	Measurement and Data
STANDARD / GLE		Represent and interpret data.

GRADE LEVEL MD EXPECTATION

MD.4.4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

New Hampshire College and Career Ready Standards Science

	Science Grade 3 - Adopted: 2016		
STRAND / STANDARD	NGSS.3- PS.	PHYSICAL SCIENCE	
STANDARD / GLE	3-PS2.	Motion and Stability: Forces and Interactions	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	
EXPECTATION	3-PS2-2.	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.	
STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN	
STANDARD / GLE	3-5- ETS1.	Engineering Design	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	

EXPECTATION 3-5- Define a simple design problem reflecting a need or a want that includes specified criteria for success and ETS1-1. constraints on materials, time, or cost.

EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Hampshire College and Career Ready Standards Science Grade 4 - Adopted: 2016		
STRAND / STANDARD	NGSS.4- PS.	PHYSICAL SCIENCE
STANDARD / GLE	4-PS3.	Energy
GRADE LEVEL EXPECT ATION		Students who demonstrate understanding can:
EXPECTATION	4-PS3-4.	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
STRAND / STANDARD	NGSS.4- ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	4-ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	4-ESS3- 1.	Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.
STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
STANDARD / GLE	3-5- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Hampshire College and Career Ready Standards Technology Education

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE		USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:

GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects
		Grade 3 - Adopted: 2018
STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences.
GRADE LEVEL EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations.
		New Hampshire College and Career Ready Standards Technology Education Grade 4 - Adopted: 2005
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving

Information and Communication Technologies Program

DIGITAL PORTFOLIOS: Create digital portfolios which:

STRAND / STANDARD

STANDARD / GLE NH.ICT.

ICT.5.

GRADE LEVEL
EXPECTATION

ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects

Grade 4 - Adopted: 2018

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences.
GRADE LEVEL EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations.

New Jersey Student Learning Standards Mathematics

Grade 3 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
CONTENT AREA / STANDARD	NJ.3.NBT	Number and Operations in Base Ten
STRAND	3.NBT.A	Use place value understanding and properties of operations to perform multi-digit arithmetic.
CONTENT STATEMENT	3.NBT.A. 2.	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

New Jersey Student Learning Standards Mathematics

CONTENT AREA <i>I</i> STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.

STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
CONTENT AREA / STANDARD	NJ.4.NBT	Number and Operations in Base Ten
STRAND	4.NBT. B.	Use place value understanding and properties of operations to perform multi-digit arithmetic.
CONTENT STATEMENT	4.NBT.B. 4.	Fluently add and subtract multi-digit whole numbers using the standard algorithm.
CONTENT AREA / STANDARD	NJ.4.MD.	Measurement and Data
STRAND	4.MD.B.	Represent and interpret data.
CONTENT STATEMENT	4.MD.B.4	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

New Jersey Student Learning Standards Science

Grade 3 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	3-5-ETS.	Engineering Design
STRAND	3-5- ETS1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STATEMENT	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
CONTENT AREA / STANDARD	3-PS.	Physical Science
STRAND	3-PS2:	Motion and Stability: Forces and Interactions
CONTENT STATEMENT	3-PS2-2.	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.

New Jersey Student Learning Standards Science

Grade 4 - Adopted: 2020/Effective 2021

STRAND	3-5- ETS1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STATEMENT	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
CONTENT AREA / STANDARD	4-PS.	Physical Science
STRAND	4-PS3:	Energy
CONTENT STATEMENT	4-PS3-4.	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
CONTENT AREA / ST ANDARD	4-ESS.	Earth and Space Science
STRAND	4-ESS3:	Earth and Human Activity
CONTENT STATEMENT	4-ESS3- 1.	Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

New Jersey Student Learning Standards Technology Education Grade 3 - Adopted: 2020

	•
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT AREA / ST ANDARD	Computer Science and Design Thinking Practices	
STRAND	3 Recognizing and Defining Computational Problems	
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:	

CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts
CONTENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 2:	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements include desired features and limitations that need to be considered.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 4:	Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desired features, constraints).
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 5:	Describe how specifications and limitations impact the engineering design process.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 6:	Evaluate and test alternative solutions to a problem using the constraints and tradeoffs identified in the design process.
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology innovation and improvement may be influenced by a variety of factors. Engineers create and modify technologies to meet people's needs and wants; scientists ask questions about the natural world.
CUMULATIVE PROGRESS INDICATOR	8.2.5.NT.1 :	Troubleshoot a product that has stopped working and brainstorm ideas to correct the problem.

New Jersey Student Learning Standards Technology Education

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT AREA <i>I</i> STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA <i>I</i> STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
OLINALII ATIV (T	

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CUMULATIVE PROGRESS INDICATOR

CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		6 Testing and Refining Computational Artifacts
CONTENT STATEMENT		Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 2:	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT		Engineering design requirements include desired features and limitations that need to be considered.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 4:	Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desired features, constraints).
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 5:	Describe how specifications and limitations impact the engineering design process.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 6:	Evaluate and test alternative solutions to a problem using the constraints and tradeoffs identified in the design process.
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology innovation and improvement may be influenced by a variety of factors. Engineers create and modify technologies to meet people's needs and wants; scientists ask questions about the natural world.
CUMULATIVE PROGRESS	8.2.5.NT.1 :	Troubleshoot a product that has stopped working and brainstorm ideas to correct the problem.

PROGRESS : INDICATOR

New Mexico Content Standards

Mathematics

Grade 3 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / CONTENT STANDARD	NM.3.NB T.	Number and Operations in Base Ten
BENCHMARK / STANDARD		Use place value understanding and properties of operations to perform multi-digit arithmetic.
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	3.NBT.2.	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

New Mexico Content Standards Mathematics

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.

STRAND / CONTENT STANDARD	NM.4.NB T.	Number and Operations in Base Ten
BENCHMARK / STANDARD		Use place value understanding and properties of operations to perform multi-digit arithmetic.
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	4.NBT.4.	Fluently add and subtract multi-digit whole numbers using the standard algorithm.
STRAND / CONTENT STANDARD	NM.4.MD.	Measurement and Data
CONTENT	NM.4.MD.	Measurement and Data Represent and interpret data.

New Mexico Content Standards Science

STRAND / CONTENT STANDARD	NGSS.3- PS.	PHYSICAL SCIENCE
BENCHMARK / STANDARD	3-PS2.	Motion and Stability: Forces and Interactions
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-PS2-2.	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.
STRAND / CONTENT STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	3-5- ETS1.	Engineering Design
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

PERFORMANCE 3-5-STANDARD / ETS1-3. INDICATOR

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Mexico Content Standards Science

Grade 4 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.4- PS.	PHYSICAL SCIENCE
BENCHMARK / STANDARD	4-PS3.	Energy
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE 4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

STANDARD / **INDICATOR**

STRAND / CONTENT STANDARD	NGSS.4- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	4-ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

STANDARD / 1.

PERFORMANCE 4-ESS3- Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

INDICATOR	<u>.</u>	
STRAND / CONTENT STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	3-5- ETS1.	Engineering Design
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Technology Education

Grade 3 - Adopted: 2019

Grade 3 - Adopted. 2019		
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
INDICATOR	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
INDICATOR	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions

INDICATOR 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

New Mexico Content Standards Technology Education

STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)

INDICATOR	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
INDICATOR	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions

INDICATOR 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

New York State Learning Standards and Core Curriculum Mathematics

		Grade 3 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
STRAND / DOMAIN / UNIFYING THEME		Grade 3
CATEGORY / CLUSTER / KEY IDEA	NY- 3.NBT.	Number and Operations in Base Ten

STANDARD / CONCEPTUAL UNDERSTAND ING		Use place value understanding and properties of operations to perform multi-digit arithmetic.
EXPECTATION / CONTENT SPECIFICATION	NY- 3.NBT.2.	Fluently add and subtract within 1,000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

New York State Learning Standards and Core Curriculum Mathematics

		Grade 4 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
STRAND / DOMAIN / UNIFYING THEME		Grade 4
CATEGORY / CLUSTER / KEY IDEA	NY- 4.NBT.	Number and Operations in Base Ten
STANDARD / CONCEPTUAL UNDERSTAND ING		Use place value understanding and properties of operations to perform multi-digit arithmetic.
EXPECTATION / CONTENT SPECIFICATION	NY- 4.NBT.4.	Fluently add and subtract multi-digit whole numbers using a standard algorithm.
STRAND / DOMAIN / UNIFYING THEME		Grade 4

CATEGORY / CLUSTER / KEY IDEA

NY-4.MD.

Measurement and Data

ST ANDARD / CONCEPTUAL UNDERST AND ING		Represent and interpret data.
EXPECTATION / CONTENT SPECIFICATION	NY- 4.MD.4.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots.

New York State Learning Standards and Core Curriculum Science

Grade 3 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.3.1.	Forces and Interactions
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-PS2-2.	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.
STRAND / DOMAIN / UNIFYING THEME	NY.3- 5.ED.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum Science

STRAND /	NY.4.1.	Energy
DOMAIN / UNIFYING THEME		
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

STANDARD / CONCEPTUAL UNDERSTANDI NG	4-PS3-4.	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
STANDARD / CONCEPTUAL UNDERSTANDI NG	4-ESS3- 1.	Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.
STRAND / DOMAIN / UNIFYING THEME	NY.3- 5.ED.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum Technology Education Grade 3 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.2.	Students investigate prior solutions and ideas from books, magazines, family, friends, neighbors, and community members.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.3.	Computer Technology: Computers, as tools for design, modeling, information processing, communication, and system control, have greatly increased human productivity and knowledge.

STANDARD / CONCEPTUAL UNDERSTANDI NG	5.3.2.	Students use the computer as a tool for generating and drawing ideas.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.7.	Management of Technology: Project management is essential to ensuring that technological endeavors are profitable and that products and systems are of high quality and built safely, on schedule, and within budget.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.7.2.	Students speculate on and model possible technological solutions that can improve the safety and quality of the school or community environment.

New York State Learning Standards and Core Curriculum Technology Education

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.2.	Students investigate prior solutions and ideas from books, magazines, family, friends, neighbors, and community members.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.3.	Computer Technology: Computers, as tools for design, modeling, information processing, communication, and system control, have greatly increased human productivity and knowledge.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.3.2.	Students use the computer as a tool for generating and drawing ideas.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.7.	Management of Technology: Project management is essential to ensuring that technological endeavors are profitable and that products and systems are of high quality and built safely, on schedule, and within budget.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.7.2.	Students speculate on and model possible technological solutions that can improve the safety and quality of the school or community environment.

North Carolina Standard Course of Study

Mathematics

Grade 3 - Adopted: 2017/IMPL 2018

CONTENT		Standards for Mathematical Practice
AREA / STRAND		
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.

North Carolina Standard Course of Study Mathematics

Grade 4 - Adopted: 2017/IMPL 2018

CONTENT		Standards for Mathematical Practice
AREA / STRAND		
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
CONTENT AREA / STRAND		Number and Operations in Base Ten

STRAND / ESSENTIAL STANDARD		Use place value understanding and properties of operations to perform multi-digit arithmetic.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.4.NB T.4.	Add and subtract multi-digit whole numbers up to and including 100,000 using the standard algorithm with place value understanding.

CONTENT AREA / STRAND		Measurement and Data
STRAND / ESSENTIAL STANDARD		Represent and interpret data.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.4.M D.4.	Represent and interpret data using whole numbers.

CLARIFYING OBJECTIVE

STANDARD

NC.4.MD. Make a representation of data and interpret data in a frequency table, scaled bar graph, and/or line plot.

CTIVE 4.b.

North Carolina Standard Course of Study Technology Education

Grade 3 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

		Grade 3 - Adopted: 2020
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD I CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	35-AP- 01.	Create multiple algorithms for the same task to determine which is the most accurate and efficient.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	35-AP-	Describe choices made during program development using code comments, presentations, and demonstrations.

12.

North Carolina Standard Course of Study Technology Education

Grade 4 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 4 - Adopted: 2020
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND /		Grades 3-5 (Ages 8-11)

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	35-AP-	Create multiple algorithms for the same task to determine which is the most accurate and efficient.

01.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	35-AP- 12.	Describe choices made during program development using code comments, presentations, and demonstrations.

North Dakota Content Standards Mathematics

Grade 3 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.
CONTENT STANDARD		Number and Operations in Base Ten
BENCHMARK		Use place value understanding and properties of operations to perform multi-digit arithmetic.
GRADE LEVEL EXPECTATION	3.NBT.2	Using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction, fluently add and subtract within 1000.

North Dakota Content Standards Mathematics

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.

BENCHMARK	MP.5	Use appropriate tools strategically.
CONTENT STANDARD		Number and Operations in Base Ten
BENCHMARK		Use place value understanding and properties of operations to perform multi-digit arithmetic.
GRADE LEVEL EXPECTATION	4.NBT.4	Fluently add and subtract multi-digit whole numbers to the one millions place using strategies flexibly, including the standard algorithm.
CONTENT STANDARD		Measurement and Data
BENCHMARK		Represent and interpret data.
GRADE LEVEL EXPECTATION	4.MD.4	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots.

North Dakota Content Standards

Science

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Physical Science (PS)
BENCHMARK	3-PS2.	Motion & Stability: Forces & Interactions
GRADE LEVEL EXPECTATION	3-PS2-2.	Make observations and metric measurements of an object's motion to prove that a pattern can be used to predict future motion.
CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	3-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	3-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

GRADE LEVEL EXPECTATION

3-ET1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

North Dakota Content Standards

Science

Grade 4 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Physical Science (PS)
BENCHMARK	4-PS3.	Energy
GRADE LEVEL EXPECTATION	4-PS3-4.	Using the engineering design process build a device that converts energy from one form to another.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	4-ESS3.	Earth & Human Activity
GRADE LEVEL EXPECTATION	4-ESS3- 1.	Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.
CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	4-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	4-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	4-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	4-ET1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

North Dakota Content Standards
Technology Education
Grade 3 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECT ATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	3.PSA.1.	Solve a task by breaking it into smaller pieces.
CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Development & Design
INDICATOR		Design processes to create new, useful, and imaginative solutions to problems.
INDICATOR	3.DD.2.	Convert an algorithm into code.

North Dakota Content Standards Technology Education

Grade **4** - Adopted: **2019**

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	4.PSA.1.	Decompose (break down) a large task into smaller, manageable subtasks.

Ohio Learning Standards Mathematics

DOMAIN / ACADEMIC CONTENT STANDARD	он.мр.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.

STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.3.NB T.	NUMBER AND OPERATIONS IN BASE TEN
STANDARD / BENCHMARK		Use place value understanding and properties of operations to perform multi-digit arithmetic. A range of strategies and algorithms may be used.
BENCHMARK / GRADE LEVEL INDICATOR	3.NBT.2.	Fluently add and subtract within 1,000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Ohio Learning Standards Mathematics

Grade 4 - Adopted: 2017

DOMAIN /	OH.MP.	Standards for Mathematical Practice
ACADEMIC CONTENT STANDARD		
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.4.NB T.	NUMBER AND OPERATIONS IN BASE TEN
STANDARD / BENCHMARK		Use place value understanding and properties of operations to perform multi-digit arithmetic with whole numbers less than or equal to 1,000,000.
BENCHMARK / GRADE LEVEL INDICATOR	4.NBT.4.	Fluently add and subtract multi-digit whole numbers using a standard algorithm.

Ohio Learning Standards Science

DOMAIN /	EARTH AND SPACE SCIENCE (ESS)
ACADEMIC	
CONTENT	
STANDARD	

STANDARD / BENCHMARK		Topic: Earth's Resources - This topic focuses on Earth's resources. While resources can be living and nonliving, within this strand, the emphasis is on Earth's nonliving resources, such as water, air, rock, soil and the energy resources they represent.
BENCHMARK / GRADE LEVEL INDICATOR	3.ESS.2:	Earth's resources can be used for energy.
PROFICIENCY LEVEL		Renewable energy resources, such as wind, water or solar energy, can be replenished within a short amount of time by natural processes.

DOMAIN / ACADEMIC CONTENT STANDARD		PHYSICAL SCIENCE (PS)
STANDARD / BENCHMARK		Topic: Matter and Forms of Energy - This topic focuses on the relationship between matter and energy. Matter has specific properties and is found in all substances on Earth. Heat is a familiar form of energy that can change the states of matter.
BENCHMARK / GRADE LEVEL INDICATOR	3.PS.3:	Heat, electrical energy, light, sound and magnetic energy are forms of energy.

PROFICIENCY LEVEL There are many different forms of energy. Energy is the ability to cause motion or create change. The different forms of energy that are outlined at this grade level should be limited to familiar forms that a student is able to observe.

Ohio Learning Standards Science

Grade 4 - Adopted: 2018

DOMAIN / ACADEMIC CONTENT STANDARD		PHYSICAL SCIENCE (PS)
STANDARD / BENCHMARK		Topic: Electricity, Heat and Matter This topic focuses on the conservation of matter and the processes of energy transfer and transformation, especially as they apply to heat and electrical energy.
BENCHMARK / GRADE LEVEL INDICATOR	4.PS.2:	Energy can be transferred from one location to another or can be transformed from one form to another.

PROFICIENCY LEVEL Electrical energy in circuits can be transformed to other forms of energy, including light, heat, sound and motion. Electricity and magnetism are closely related.

Ohio Learning Standards Technology Education Grade 3 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.

PROFICIENCY 3- Identify positive and negative impacts your use of personal technology and technology systems (e.g., agriculture, transportation, energy generation, water treatment) can have on your community.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.

PROFICIENCY 3- Identify the positive and negative impact the use of technology can have on relationships, communities and self. LEVEL 5.ST.2.c.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.

PROFICIENCY 3- Identify and discuss how the use of technology affects self and others in various ways. LEVEL 5.ST.3.c.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.

PROFICIENCY 3- Give examples of how requirements for a product can limit the design possibilities for that product. LEVEL 5.DT.1.b.

DOMAIN I ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.

PROFICIENCY 3- Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible LEVEL 5.DT.2.b. solutions, test and evaluate solution(s), present a possible solution, and redesign to improve the solution.

DOMAIN / ACADEMIC CONTENT STANDARD	Ohio Learning Standards in Technology
STANDARD / BENCHMARK	Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.

BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.
PROFICIENCY LEVEL	3- 5.DT.3.b.	Explore and document connections between technology and other fields of study.
		Grade 3 - Adopted: 2022
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 3
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.3.a.	Apply troubleshooting strategies given problems and solutions to resolve hardware and software problems.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 3
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Algorithms
PROFICIENCY LEVEL	ATP.A.3.a	Construct and reflect on errors in an algorithm to accomplish a given task.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 3
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .3.a.	Define and identify a variable, a placeholder for storing a value, to understand how it is used in a multi-step process (i.e., algorithm).
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 3
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Control Structures
PROFICIENCY	ATP.CS.3	Create a program using sequences, events, loops and conditionals to solve a problem.

LEVEL

.a.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 3
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Modularity
PROFICIENCY LEVEL	ATP.M.3.	Decompose (i.e., break down) the steps needed or not needed (i.e., abstraction) into precise sequences of instructions to design an algorithm.
		Ohio Learning Standards Technology Education Grade 4 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.
PROFICIENCY LEVEL	3- 5.ST.1.b.	Identify positive and negative impacts your use of personal technology and technology systems (e.g., agriculture, transportation, energy generation, water treatment) can have on your community.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	3- 5.ST.2.c.	Identify the positive and negative impact the use of technology can have on relationships, communities and self.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	3- 5.ST.3.c.	Identify and discuss how the use of technology affects self and others in various ways.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology

STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.

PROFICIENCY 3- Give examples of how requirements for a product can limit the design possibilities for that product.

LEVEL 5.DT.1.b.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.

PROFICIENCY 3- Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible LEVEL 5.DT.2.b. solutions, test and evaluate solution(s), present a possible solution, and redesign to improve the solution.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.

PROFICIENCY 3- Explore and document connections between technology and other fields of study. LEVEL 5.DT.3.b.

Grade 4 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 4
STANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY CS.T.4.a. Diagnose problems and select an appropriate solution from a list of problems and solutions to resolve hardware LEVEL and software issues.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 4
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY LEVEL	ATP.A.4. a.	Construct and refine an algorithm to accomplish a given task.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 4
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .4.a.	Identify and use a variable, a placeholder for storing a value, to understand how it works in a multi-step process (i.e., algorithm).
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 4
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Control Structures
PROFICIENCY LEVEL	ATP.CS.4 .a.	Create a program using sequences, events, loops and conditionals to solve a problem.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 4
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Modularity
PROFICIENCY LEVEL	ATP.M.4. a.	Decompose (i.e., break down) the steps needed or not needed (i.e., abstraction) into precise sequences of instructions to design an algorithm.

Oklahoma Academic Standards Mathematics

CONTENT STANDARD / COURSE	Mathematical Actions and Processes	
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency	
STRAND / STANDARD	Develop Strategies for Problem Solving	
STRAND / STANDARD	Develop Mathematical Reasoning	

STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD		Develop the Ability to Communicate Mathematically
CONTENT STANDARD / COURSE	3	Third Grade (3)
STRAND / STANDARD	3.N.	Numbers & Operations (N)
OBJECTIVE	3.N.1.	Compare and represent whole numbers up to 100,000 with an emphasis on place value and equality.
SKILL / CONCEPT	3.N.1.3.	Applying knowledge of place values, use mental strategies (no written computations) to find 100 more or 100 less than a given number, 1,000 more or 1,000 less than a given number, and 10,000 more or 10,000 less than a given number, up to a five-digit number.
CONTENT STANDARD / COURSE	3	Third Grade (3)
STRAND / STANDARD	3.N.	Numbers & Operations (N)
OBJECTIVE	3.N.2.	Solve real-world and mathematical problems using addition, subtraction, multiplication, and division.
SKILL / CONCEPT	3.N.2.3.	Use strategies and algorithms based on knowledge of place value and equality to fluently add and subtract up to five-digit numbers (answer not to exceed 100,000).

Oklahoma Academic Standards Mathematics Grade 4 - Adopted: 2022

CONTENT STANDARD / COURSE		Mathematical Actions and Processes
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD		Develop Strategies for Problem Solving
STRAND / STANDARD		Develop Mathematical Reasoning
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD		Develop the Ability to Communicate Mathematically
CONTENT STANDARD / COURSE	4	Fourth Grade (4)

STRAND / STANDARD 4.N.

Numbers & Operations (N)

OBJECTIVE	4.N.2.	Solve real-world and mathematical problems using multiplication and division.
SKILL / CONCEPT	4.N.2.4.	Apply and analyze models to solve multi-step problems requiring the use of addition, subtraction, and multiplication of multi- digit whole numbers. Use various strategies, including the relationship between operations, the use of appropriate technology, and the context of the problem to assess the reasonableness of results.
CONTENT STANDARD / COURSE	4	Fourth Grade (4)
STRAND / STANDARD	4.N.	Numbers & Operations (N)
OBJECTIVE	4.N.3.	Represent and compare fractions and decimals in real-world and mathematical situations; use place value to understand decimal quantities.
SKILL / CONCEPT	4.N.3.6.	Represent tenths and hundredths with concrete and pictorial models, making connections between fractions and decimals.
CONTENT STANDARD / COURSE	4	Fourth Grade (4)
STRAND / STANDARD	4.D.	Data & Probability (D)
OBJECTIVE	4.D.1.	Summarize, construct, and analyze data.
SKILL / CONCEPT	4.D.1.3.	Solve one- and two-step problems by analyzing data in whole number, decimal, or fraction form in a frequency table and line plot.

Oklaho ma Academic Standards

Science

Grade 3 - Adopted: 2020

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Motion and Stability: Forces and Interactions (PS2)
OBJECTIVE	3.PS2.2	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.

Oklahoma Academic Standards

Science

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Energy (PS3)
OBJECTIVE	4.PS3.4	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Earth and Human Activity (ESS3)

OBJECTIVE

4.ESS3.1 Obtain and combine information to describe that energy and fuels are derived from renewable and non-renewable resources and how their uses affect the environment.

Oklahoma Academic Standards Technology Education

Technology Education Grade 3 - Adopted: 2023		
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD	Computer Science Practices	
OBJECTIVE	Creating Computational Artifacts	
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.	
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD	Computer Science Practices	
OBJECTIVE	Developing and Using Abstractions	
SKILL / CONCEPT	Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.	
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD	Computer Science Practices	
OBJECTIVE	Developing a Productive Computing Environment	
SKILL / CONCEPT	Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).	
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD	Computer Science Practices	
OBJECTIVE	Recognizing and Defining Computational Problems	
SKILL / CONCEPT	Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.	
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science	

STRAND / STANDARD	3	Third Grade (3)
OBJECTIVE	3.CS.	Computing Systems (CS)
SKILL / CONCEPT	3.CS.T.	Troubleshooting (T)
SKILL	3.CS.T.01	Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use, discuss problems with peers and adults, and apply strategies for solving these problems (e.g., refresh screen, closing/reopening an application or file).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	3	Third Grade (3)
OBJECTIVE	3.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	3.AP.A.	Algorithms (A)

SKILL $3.\mbox{AP.A.01}\,$ Model and compare multiple algorithms for the same task.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD	3	Third Grade (3)	
OBJECTIVE	3.AP.	gorithms & Programming (AP)	
SKILL / CONCEPT	3.AP.PD.	Program Development (PD)	
SKILL	3.AP.PD. 01.	Use an iterative process to plan the development of a program while solving simple problems.	
SKILL	3.AP.PD.	Communicate and explain program development choices using comments, presentations, and demonstrations.	

04.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT ST ANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards Technology Education

Grade 4 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT

Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

SKILL / CONCEPT

Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

SKILL	/
CONC	FPT

Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

SKILL / CONCEPT

Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.CS.	Computing Systems (CS)
SKILL / CONCEPT	4.CS.T.	Troubleshooting (T)

SKILL

4.CS.T.01 Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use, discuss problems with peers and adults, and apply strategies for solving these problems (e.g., rebooting the device, force shut down).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	4.AP.A.	Algorithms (A)

SKILL

4.AP.A.0 Model, compare, and refine multiple algorithms for the same task.

1.

04.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	4.AP.PD.	Program Development (PD)
SKILL	4.AP.PD. 01.	Use an iterative process to plan the development of a program that includes user preferences while solving simple problems.
SKILL	4.AP.PD.	Communicate and explain program development choices using comments, presentations, and demonstrations.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	4.IC.CU.	Culture (CU)
SKILL	4.IC.CU.0	Consider a variety of users' backgrounds and needs to brainstorm ways to improve computing devices to increase

KILL 4.IC.CU.0 Consider a variety of users' backgrounds and needs to brainstorm ways to improve computing devices to increase
 accessibility.

Grade 4 - Adopted: 2019

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oregon Academic Content Standards Mathematics

ST ANDARD /	Mathematical Practice Standards
CONTENT	
AREA	

CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
STANDARD / CONTENT AREA		Grade 3 Standards
CONTENT	3.NBT.	Grade 3 Standards Numeric Reasoning: Base Ten Arithmetic (3.NBT)
CONTENT AREA CONTENT STANDARD /	3.NBT.A	Numeric Reasoning: Base Ten Arithmetic (3.NBT)
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK /	3.NBT.A	Numeric Reasoning: Base Ten Arithmetic (3.NBT)
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND	3.NBT.A	Numeric Reasoning: Base Ten Arithmetic (3.NBT) Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract within 1000 using accurate, efficient, and flexible strategies and algorithms based on place
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND EXPECTATION / BENCHMARK STANDARD / CONTENT	3.NBT.A	Numeric Reasoning: Base Ten Arithmetic (3.NBT) Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract within 1000 using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations.
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND EXPECTATION / BENCHMARK STANDARD / CONTENT AREA CONTENT STANDARD /	3.NBT.A.2 3.NBT.A.2	Numeric Reasoning: Base Ten Arithmetic (3.NBT) Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract within 1000 using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations. Grade 3 Standards

Oregon Academic Content Standards Mathematics

measurement data that can naturally answer questions by using information presented in a scaled picture and/or bar

BENCHMARK

graph.

STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.

CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
STANDARD / CONTENT AREA		Grade 4 Standards
CONTENT STANDARD / PROFICIENCY	4.NBT.	Numeric Reasoning: Base Ten Arithmetic (4.NBT)
BENCHMARK / STRAND	4.NBT. B.	Use place value understanding and properties of operations to perform multi-digit arithmetic.
EXPECTATION / BENCHMARK	4.NBT.B. 4.	Fluently add and subtract multi-digit whole numbers using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations.
STANDARD / CONTENT AREA		Grade 4 Standards
CONTENT STANDARD / PROFICIENCY	4.NF.	Numeric Reasoning: Fractions (4.NF)
BENCHMARK / STRAND	4.NF.C.	Understand decimal notation for fractions, and compare decimal fractions.
EXPECTATION / BENCHMARK	4.NF.C.6.	Use and interpret decimal notation for fractions with denominators 10 or 100.
EXPECTATION / BENCHMARK	4.NF.C.7.	Use decimal notation for fractions with denominators 10 or 100. Compare two decimals to hundredths place by reasoning about their size, and record the comparison using the symbols >, =, or <.
STANDARD / CONTENT AREA		Grade 4 Standards
CONTENT STANDARD / PROFICIENCY	4.DR.	Data Reasoning (4.DR)
BENCHMARK / STRAND	4.DR.A.	Pose investigative questions and collect/consider data.

BENCHMARK

EXPECTATION / 4.DR.A.1. Generate questions to investigate situations within the classroom, school or community. Determine strategies for collecting or considering data involving addition and subtraction of fractions that can naturally answer questions by using information presented in line plots.

STANDARD / CONTENT AREA		Grade 4 Standards
CONTENT STANDARD / PROFICIENCY	4.DR.	Data Reasoning (4.DR)
BENCHMARK / STRAND	4.DR.B.	Analyze, represent, and interpret data.

BENCHMARK

EXPECTATION / 4.DR.B.2. Analyze line plots to display a distribution of numerical measurement data, which include displays of data sets of fractional measurements with the same denominator. Interpret information presented to answer investigative questions.

Oregon Academic Content Standards

Science

Grade 3 - Adopted: 2022

STANDARD / CONTENT AREA	OR.3- PS2.	Motion and Stability: forces and Interactions
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-PS2-2.	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.
STANDARD / CONTENT AREA	OR.3-5- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Oregon Academic Content Standards

Science

STANDARD / CONTENT AREA	OR.4- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	4-ESS3- 1.	Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

STANDARD / CONTENT AREA	OR.4- PS3.	Energy
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:

STRAND

BENCHMARK / 4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

STANDARD / CONTENT AREA	OR.3-5- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.