Main Criteria: Forward Education

Secondary Criteria: Idaho Content Standards, Illinois Learning Standards, Indiana Academic Standards, Iowa Student Standards, Kansas Academic Standards, Kentucky Academic Standards, Louisiana Academic Standards, Maine Learning Results, Maryland College and Career-Ready Standards, Massachusetts Curriculum Frameworks, Michigan Academic Standards, Minnesota Academic Standards, Mississippi College & Career Readiness Standards, Missouri Learning Standards

Subjects: Mathematics, Science, Technology Education

Grades: 3, 4, Key Stage 1, Key Stage 2

Forward Education

Protecting Pollinators with a Bee Counter

Idaho Content Standards Mathematics

Grade 3 - Adopted: 2022

STANDARD / COURSE		Third Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.5.	Use appropriate tools strategically.

Idaho Content Standards Mathematics

STANDARD / COURSE		Fourth Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.

CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.5.	Use appropriate tools strategically.

Idaho Content Standards Science

Grade 4 - Adopted: 2022

		and the second s
STANDARD / COURSE	4-LS.	Life Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	4-LS-1.	From Molecules to Organisms: Structures and Processes
GLE / BIG IDEA	1-I S-1 1	Construct an argument that plants and animals have internal and external structures that function to support survival

GLE / BIG IDEA 4-LS-1.1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Idaho Content Standards Technology Education Grade 3 - Adopted: 2017

STANDARD / COURSE	ID.ICT.3- 5.3.	STANDARD 3: KNOWLEDGE CONSTRUCTOR
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GLE / BIG IDEA	ICT.3- 5.3.d.	Students explore real-world problems and issues and collaborate with others to find answers or solutions.
	ID.ICT.3- 5.4.	ST ANDARD 4: INNOVATIVE DESIGNER
CONTENT KNOWLEDGE AND SKILLS / GOAL		STANDARD 4: INNOVATIVE DESIGNER Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

	ID.ICT.3- 5.5.	STANDARD 5: COMPUTATIONAL THINKER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

GLE / BIG IDEA	ICT.3- 5.5.a.	Students explore or solve problems by selecting technology for data analysis, modeling and algorithmic thinking, with guidance from an educator.
GLE / BIG IDEA	ICT.3- 5.5.c.	Students break down problems into smaller parts, identify key information, and propose solutions.
GLE / BIG IDEA	ICT.3- 5.5.d.	Students understand and explore basic concepts related to automation, patterns and algorithmic thinking.
STANDARD / COURSE	ID.CS.3-5	.COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.IC.	Impacts of Computing (IC)
GLE / BIG IDEA		Fostering an Inclusive Computing Culture
OBJECTIVE	3-5.IC.02.	Explore the connections between computer science and other fields. (Grades 3-5)
ST ANDARD / COURSE	ID.CS.3-5	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts
OBJECTIVE	3- 5.AP.02.	Construct and test problem solutions using a block-based visual programming language, both independently and collaboratively (e.g. pair programming). (Grades K-5)
ST ANDARD / COURSE	ID.CS.3-5	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Testing and Refining Computational Artifacts
OBJECTIVE	3- 5.AP.05.	Understand, explain and debug the sequencing in an algorithm. (Grades 3-5)
STANDARD / COURSE	ID.CS.3-5	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts
OBJECTIVE	3- 5.AP.06.	Construct and test problem solutions using a block-based visual programming language, both independently and collaboratively (e.g. pair programming), (Grades K-5)

5.AP.06. collaboratively (e.g. pair programming). (Grades K-5)

STANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Developing and Using Abstractions
OBJECTIVE	3- 5.AP.07.	Construct an algorithm to accomplish a task, both independently and collaboratively. (Grades K-5)

Idaho Content Standards Technology Education

Technology Education Grade 4 - Adopted: 2017		
STANDARD / COURSE	ID.ICT.3- 5.3.	STANDARD 3: KNOWLEDGE CONSTRUCTOR
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GLE / BIG IDEA	ICT.3- 5.3.d.	Students explore real-world problems and issues and collaborate with others to find answers or solutions.
STANDARD / COURSE	ID.ICT.3- 5.5.	STANDARD 5: COMPUTATIONAL THINKER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GLE / BIG IDEA	ICT.3- 5.5.a.	Students explore or solve problems by selecting technology for data analysis, modeling and algorithmic thinking, with guidance from an educator.
GLE / BIG IDEA	ICT.3- 5.5.c.	Students break down problems into smaller parts, identify key information, and propose solutions.
GLE / BIG IDEA	ICT.3- 5.5.d.	Students understand and explore basic concepts related to automation, patterns and algorithmic thinking.
STANDARD / COURSE	ID.CS.3-5	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.IC.	Impacts of Computing (IC)
GLE / BIG IDEA		Fostering an Inclusive Computing Culture
OBJECTIVE	3-5.IC.02.	Explore the connections between computer science and other fields. (Grades 3-5)
STANDARD / COURSE	ID.CS.3-5	COMPUTER SCIENCE

CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts
OD JECTIVE	2	

OBJECTIVE 3- Construct and test problem solutions using a block-based visual programming language, both independently and 5.AP.02. collaboratively (e.g. pair programming). (Grades K-5)

STANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Testing and Refining Computational Artifacts

OBJECTIVE 3- Understand, explain and debug the sequencing in an algorithm. (Grades 3-5) 5.AP.05.

STANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts

OBJECTIVE 3- Construct and test problem solutions using a block-based visual programming language, both independently and 5.AP.06. collaboratively (e.g. pair programming). (Grades K-5)

STANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Developing and Using Abstractions

OBJECTIVE 3- Construct an algorithm to accomplish a task, both independently and collaboratively. (Grades K-5) 5.AP.07.

Illinois Learning Standards Mathematics

Grade 3 - Adopted: 2010

STANDARD /
DISCIPLINE

LEARNING

12.MP.1.

Make sense of problems and persevere in solving them.

LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.5.	Use appropriate tools strategically.

Illinois Learning Standards Mathematics

Grade 4 - Adopted: 2010

STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.5.	Use appropriate tools strategically.

Illinois Learning Standards Science

STATE GOAL / DISCIPLINARY CONCEPT	IL.3-LS.	LIFE SCIENCE
LEARNING STANDARD / DISCIPLINE	3-LS4.	Biological Evolution: Unity and Diversity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:

STANDARD	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of
		plants and animals that live there may change.

STATE GOAL / DISCIPLINARY CONCEPT	IL.3-5- ETS.	ENGINEERING DESIGN
LEARNING STANDARD / DISCIPLINE	3-5- ETS1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Illinois Learning Standards Science

Grade 4 - Adopted: 2014

STATE GOAL / DISCIPLINARY CONCEPT

IL.4-LS.

LIFE SCIENCE

LEARNING STANDARD / DISCIPLINE	4-LS1.	From Molecules to Organisms: Structures and Processes
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
STATE GOAL / DISCIPLINARY CONCEPT	IL.3-5- ETS.	ENGINEERING DESIGN
LEARNING STANDARD / DISCIPLINE	3-5- ETS1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Illinois Learning Standards Technology Education

STATE GOAL I DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
DESCRIPTOR / CONTENT DISCIPLINE	6	Testing and refining computational artifacts.
STATE GOAL I DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPT OR I CONTENT DISCIPLINE	3-5.CS.	Computing Systems
STANDARD		Troubleshooting
EXPECTATION	3- 5.CS.03.	Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPT OR / CONTENT DISCIPLINE	3-5.DA.	Data and Analysis
STANDARD		Interference and Models
EXPECTATION	3- 5.DA.07.	Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea.
STATE GOAL I DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards

DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Algorithms
EXPECTATION	3- 5.AP.08.	Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD I DISCIPLINE		Computer Science Standards
DESCRIPT OR I CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Modularity
EXPECTATION	3- 5.AP.11.	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPT OR I CONTENT DISCIPLINE	3-5.ET.	Emerging and Future Technologies
STANDARD	3-5.ET.E.	Create new or original work by applying emerging technologies.
		Grade 3 - Adopted: 2016
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
STATE GOAL / DISCIPLINARY		ISTE Standards for Students

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR /	ISTE-	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or

DISCIPLINE

CONTENT S.4.a. Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Illinois Learning Standards Technology Education Grade 4 - Adopted: 2022

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD I DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
DESCRIPTOR / CONTENT DISCIPLINE	6	Testing and refining computational artifacts.

STATE GOAL I DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPT OR / CONTENT DISCIPLINE	3-5.CS.	Computing Systems
STANDARD		Troubleshooting

EXPECTATION	3- 5.CS.03.	Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.DA.	Data and Analysis
STANDARD		Interference and Models
EXPECTATION	3- 5.DA.07.	Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Algorithms
EXPECTATION	3- 5.AP.08.	Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Modularity
EXPECTATION	3- 5.AP.11.	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST AND ARD I DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.ET.	Emerging and Future Technologies
STANDARD	3-5.ET.E.	Create new or original work by applying emerging technologies.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Indiana Academic Standards Mathematics

STANDARD / STRAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.

PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.5:	Use appropriate tools strategically.

Indiana Academic Standards Mathematics

Grade 4 - Adopted: 2023

STANDARD / STRAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.5:	Use appropriate tools strategically.

Indiana Academic Standards Science

STANDARD / STRAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)

PROFICIENCY STATEMENT / SUBSTRAND	SEP.8.	Obtaining, evaluating, and communicating information
STANDARD / STRAND		Grade 3
PROFICIENCY STATEMENT / SUBSTRAND	3-LS4- 4.	Biological Evolution: Unity and Diversity
INDICATOR / STANDARD	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.
STANDARD / STRAND		Grade 3
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ETS1-1.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / STRAND		Grade 3
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ETS1-2.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / STRAND		Grade 3
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ETS1-3.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
		Indiana Academic Standards

Indiana Academic Standards Science

STANDARD / STRAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)

PROFICIENCY STATEMENT / SUBSTRAND	SEP.8.	Obtaining, evaluating, and communicating information
STANDARD / STRAND		Grade 4
PROFICIENCY STATEMENT / SUBSTRAND	4-LS1-1.	From Molecules to Organisms: Structures and Processes
INDICATOR / STANDARD	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
STANDARD / STRAND		Grade 4
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ETS1-1.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / STRAND		Grade 4
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ETS1-2.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / STRAND		Grade 4
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ETS1-3.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
		Indiana Academic Standards Technology Education Grade 3 - Adopted: 2023
STANDARD /		Computer Science

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Data & Information
INDICATOR / STANDARD	Learning Outcome: Students select aspects and portions of data to be transformed, clustered, and categorized to provide views and insights about the data.

INDICATOR

EXPECTATION / 3-5.DI.1. Decompose problems and subproblems into parts as a means to solving complex problems. (E)

STANDARD /	Computer Science
STRAND	

PROFICIENCY STATEMENT / SUBSTRAND	Computing Devices & Systems
INDICATOR / STANDARD	Learning Outcome: Students identify similarities between computing systems to troubleshoot common problems and choose appropriate combinations of hardware and software to accomplish desired tasks.

INDICATOR

EXPECTATION / 3-5.CD.2. Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies. (E)

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Programs & Algorithms
INDICATOR / STANDARD	Learning Outcome: Students collaboratively engage in computer program development with consideration of documenting design choices and giving appropriate attributions.

INDICATOR

EXPECTATION / 3-5.PA.1. Collaborate with peers to implement problem-solving steps to create a variety of programming solutions. (E)

Indiana Academic Standards Technology Education Grade 4 - Adopted: 2023

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Data & Information
INDICATOR / STANDARD	Learning Outcome: Students select aspects and portions of data to be transformed, clustered, and categorized to provide views and insights about the data.

INDICATOR

EXPECTATION / 3-5.Dl.1. Decompose problems and subproblems into parts as a means to solving complex problems. (E)

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Computing Devices & Systems
INDICATOR / STANDARD	Learning Outcome: Students identify similarities between computing systems to troubleshoot common problems and choose appropriate combinations of hardware and software to accomplish desired tasks.

INDICATOR

EXPECTATION / 3-5.CD.2. Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies. (E)

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Programs & Algorithms
INDICATOR / STANDARD	Learning Outcome: Students collaboratively engage in computer program development with consideration of documenting design choices and giving appropriate attributions.

Iowa Student Standards Mathematics

Grade 3 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	5	Use appropriate tools strategically.

Iowa Student Standards Mathematics

Grade 4 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	5	Use appropriate tools strategically.

lowa Student Standards
Science
Grade 3 - Adopted: 2015

STRAND / COURSE	IA.3-LS4.	Biological Evolution: Unity and Diversity
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.
STRAND / COURSE	IA.3-5- ETS1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
DETAILED DESCRIPTOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Iowa Student Standards Science

Grade 4 - Adopted: 2015

STRAND / COURSE	IA.4-LS1.	From Molecules to Organisms: Structures and Processes
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
STRAND / COURSE	IA.3-5- ETS1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
DETAILED DESCRIPTOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

lowa Student Standards
Technology Education
Grade 3 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DETAILED DESCRIPTOR	1B-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Program Development
EXAMPLE	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
EXAMPLE	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
EXAMPLE	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / COURSE		CST A K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DETAILED DESCRIPTOR	1B-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Social Interactions

lowa Student Standards Technology Education Grade 4 - Adopted: 2018

1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

EXAMPLE

A CONTRACT OF A		
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DETAILED DESCRIPTOR	1B-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Program Development
EXAMPLE	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
EXAMPLE	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
EXAMPLE	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)

STRAND / COURSE		CST A K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPT OR	1B-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Social Interactions

EXAMPLE 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

Kansas Academic Standards Mathematics

Grade 3 - Adopted: 2017

STANDARD	MP.	Standards for Mathematical Practice
BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.5.	Use appropriate tools strategically.
BENCHMARK	MP.7.	Look for and make use of structure.

Kansas Academic Standards Mathematics

Grade 4 - Adopted: 2017

STANDARD	MP.	Standards for Mathematical Practice
BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.5.	Use appropriate tools strategically.
BENCHMARK	MP.7.	Look for and make use of structure.

Kansas Academic Standards
Science
Grade 3 - Adopted: 2013

STANDARD	KS.3-LS.	LIFE SCIENCE
BENCHMARK	3-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

INDICATOR 3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

STANDARD	KS.3-5- ETS.	ENGINEERING DESIGN
BENCHMARK	3-5- ETS1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Kansas Academic Standards Science

		Grade 4 - Adopted: 2013
STANDARD	KS.4-LS.	LIFE SCIENCE
BENCHMARK	4-LS1.	From Molecules to Organisms: Structures and Processes
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
STANDARD	KS.3-5- ETS.	ENGINEERING DESIGN
BENCHMARK	3-5- ETS1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

INDICATOR 3-5-Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of ETS1-3. a model or prototype that can be improved.

Kansas Academic Standards Technology Education

Grade 3 - Adopted: 2019

STANDARD		Computer Science Standards – Grade 3
BENCHMARK		Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL		Program Development
INDICATOR	3.AP.PD. 01.	Create a plan using an iterative process to plan the development of a program while solving simple problems (e.g., storyboard, flowchart, pseudo-code, story map).

Kansas Academic Standards ${\sf Technology\,Education}$

Grade 4 - Adopted: 2019

STANDARD	Computer Science Standards – Grade 4
BENCHMARK	Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Program Development

INDICATOR

01.

4.AP.PD. Create a plan using an iterative process to plan the development of a program that includes user preferences while solving simple problems.

Kentucky Academic Standards Mathematics

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.5.	Use appropriate tools strategically.
CATEGORY / GOAL	MP.7.	Look for and make use of structure.

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.5.	Use appropriate tools strategically.
CATEGORY / GOAL	MP.7.	Look for and make use of structure.

Kentucky Academic Standards Science

Grade 3 - Adopted: 2022

STRAND		Third Grade
CATEGORY / GOAL	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.
STRAND		3-5 Engineering Design
CATEGORY / GOAL	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CATEGORY / GOAL	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CATEGORY / GOAL	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Kentucky Academic Standards

Science Grade 4 - Adopted: 2022

STRAND		Fourth Grade
CATEGORY / GOAL	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
STRAND		3-5 Engineering Design
CATEGORY / GOAL	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

CATEGORY / GOAL	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CATEGORY /	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Kentucky Academic Standards Technology Education Grade 3 - Adopted: 2018

STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY / GOAL		Algorithms and Programming
STANDARD / ORGANIZER	E-AP- 04.	Decompose precise steps needed to solve a problem. Decomposition is the act of breaking down tasks into smaller tasks. Smaller tasks or sub parts (steps that can be broken down into smaller steps) may be broken down even further. The process of decomposition assists in areas of program development by enabling different people to work on different parts at the same time. Students should demonstrate the process of decomposition by enabling different people to work on different parts of program development at the same time.
EXPECTATION		Modularity
INDICATOR	E-AP- 04.3.	Generate and correctly order the steps needed to solve a complex problem.

Grade 3 - Adopted: 2015

STRAND	Technology – Primary
CATEGORY / GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, to increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
ST ANDARD / ORGANIZER	Academic Expectations

EXPECTATION P.BI1.AE. Students connect knowledge and experiences from different subject areas.

STRAND		Technology – Primary
CATEGORY / GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER		Academic Expectations
EXPECTATION	P.BI3.AE. 5.5.	Students use problem-solving processes to develop solutions to relatively complex problems.
EXPECTATION	P.BI3.AE.	Students connect knowledge and experiences from different subject areas.

EXPECTATION P.BI3.AE. Students connect knowledge and experiences from different subject areas.

6.1.

STRAND	Technology – Primary
CATEGORY / GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER	Primary Skills and Concepts – Inquiry/Problem-solving

EXPECTATION	P.BI3.SC 2.1.	Gather technology information/data and use for problem solving in all content areas.
EXPECTATION	P.BI3.SC 2.2.	Describe at least one strategy for problem solving while using technology (e.g., inquiry/problem-solving software, troubleshooting technology issues).

Kentucky Academic Standards Technology Education

Grade 4 - Adopted: 2015

STRAND	Technology – Intermediate
CATEGORY / GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
STANDARD / ORGANIZER	Academic Expectations

EXPECTATION I.BI1.AE.6 Students connect knowledge and experiences from different subject areas.

.1.

STRAND		Technology – Intermediate
CATEGORY / GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		Academic Expectations
EXPECTATION	I.BI3.AE.5 .5.	Students use problem-solving processes to develop solutions to relatively complex problems.
EXPECTATION	I BI3 AF 6	Students connect knowledge and experiences from different subject areas

EXPECTATION I.BI3.AE.6 Students connect knowledge and experiences from different subject areas

.1.

STRAND		Technology – Intermediate
CATEGORY / GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER		Intermediate Enduring Knowledge – Understandings
EXPECTATION	I.BI3.EK.1.	Technology assists in gathering, organizing and evaluating information from a variety of sources to answer essential questions.

EXPECTATION I.BI3.EK.2. Technology supports critical thinking skills used in inquiry/problem solving to make informed decisions.

STRAND	Technology – Intermediate
CATEGORY / GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER	Intermediate Skills and Concepts – Inquiry/Problem-solving

EXPECTATION	I.BI3.SC2. 2.	Use technology to solve problems using critical thinking and problem-solving strategies.
EXPECTATION	I.BI3.SC2.	Solve content-specific problems using a combination of technologies.

STRAND	Technology – Intermediate
CATEGORY / GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER	Intermediate Skills and Concepts – Innovation

EXPECTATION I.BI3.SC3. Use technology to organize and develop creative solutions, ideas or product.

1.

Louisiana Academic Standards Mathematics

Grade 3 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.5.	Use appropriate tools strategically.

Louisiana Academic Standards Mathematics

Grade 4 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.5.	Use appropriate tools strategically.

Louisiana Academic Standards Science

|--|--|

TITLE	3-LS4.	BIOLOGICAL EVOLUTION: UNITY AND DIVERSITY
PERFORMANC E EXPECTATION	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

Louisiana Academic Standards Science

Grade 4 - Adopted: 2017

STRAND	LA.SC.4.	Science – Grade 4
TITLE	4-LS1.	FROM MOLECULES TO ORGANISMS: STRUCTURE AND PROCESSES
PERFORMANC E EXPECTATION	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Louisiana Academic Standards Technology Education

Grade 3 - Adopted: 2008

STRAND	LA.ET.	Educational Technology
TITLE		PreK-12 Educational Technology Content Standards
PERFORMANC E EXPECTATION	ET.4.	Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.
STRAND	LA.ET.	Educational Technology
TITLE		Performance Indicators for Grades 3-5
PERFORMANC E EXPECTATION	ET.E.	Identify and investigate a world issue and generate a possible solution using digital tools and resources. (3, 4)

Louisiana Academic Standards Technology Education

STRAND	LA.ET.	Educational Technology
TITLE		PreK-12 Educational Technology Content Standards
PERFORMANC E EXPECTATION	ET.4.	Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.
STRAND	LA.ET.	Educational Technology
TITLE		Performance Indicators for Grades 3-5
		Performance indicators for Grades 3-3

STRAND / DOMAIN		Standards for Mathematical Practice
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical relationships as they solve problems.
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.
CATEGORY / PERFORMANC E INDICATOR	MP5.	Use appropriate tools strategically: Students will use math tools such as tables, diagrams, and technology to explore and deepen their understanding of concepts.

Maine Learning Results Mathematics

Grade 4 - Adopted: 2020/Implemented 2020

STRAND / DOMAIN		Standards for Mathematical Practice
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical relationships as they solve problems.
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.
CATEGORY / PERFORMANC E INDICATOR	MP5.	Use appropriate tools strategically: Students will use math tools such as tables, diagrams, and technology to explore and deepen their understanding of concepts.

Maine Learning Results Science

|--|

CATEGORY / PERFORMANC E INDICATOR	3-LS4.	Biological Evolution: Unity and Diversity
STANDARD		Students who demonstrate understanding can:
EVECTATION	21644	

EXPECTATION 3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

STRAND / DOMAIN	NGSS.3- 5-ETS.	ENGINEERING DESIGN
CATEGORY / PERFORMANC E INDICATOR	3-5- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Maine Learning Results Science

STRAND / DOMAIN	NGSS.4- LS.	LIFE SCIENCE
CATEGORY I PERFORMANC E INDICATOR	4-LS1.	From Molecules to Organisms: Structures and Processes
STANDARD		Students who demonstrate understanding can:
EXPECTATION	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
STRAND / DOMAIN	NGSS.3- 5-ETS.	ENGINEERING DESIGN
CATEGORY I PERFORMANC E INDICATOR	3-5- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

STRAND / TOPIC / STANDARD	NGSS.3- LS.	LIFE SCIENCE
TOPIC / INDICATOR	3-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE 3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

STRAND / TOPIC / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	3-5- ETS1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
OBJECTIVE	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
OBJECTIVE	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Maryland College and Career-Ready Standards Science

Grade 4 - Adopted: 2013

STRAND / TOPIC / STANDARD	NGSS.4- LS.	LIFE SCIENCE
TOPIC / INDICATOR	4-LS1.	From Molecules to Organisms: Structures and Processes
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE 4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

STRAND / TOPIC / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	3-5- ETS1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
OBJECTIVE	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
OBJECTIVE	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Massachusetts Curriculum Frameworks Mathematics

Grade 3 - Adopted: 2017

FOCUS / COURSE	МА.МР.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.

Massachusetts Curriculum Frameworks Mathematics

Grade 4 - Adopted: 2017

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.

Massachusetts Curriculum Frameworks Science

FOCUS / COURSE	MA.3- ETS.	Grade 3: Technology/Engineering
STRAND	ETS1.	Engineering Design

STANDARD / CONCEPT / SKILL	3.3-5- ETS1-1.	Define a simple design problem that reflects a need or a want. Include criteria for success and constraints on materials, time, or cost that a potential solution must meet.
STANDARD / CONCEPT / SKILL	3.3-5- ETS1-2.	Generate several possible solutions to a given design problem. Compare each solution based on how well each is likely to meet the criteria and constraints of the design problem.
STANDARD / CONCEPT / SKILL	3.3-5- ETS1- 4(MA).	Gather information using various informational resources on possible solutions to a design problem. Present different representations of a design solution.

Massachusetts Curriculum Frameworks Science

Grade 4 - Adopted: 2016

FOCUS / COURSE MA.4-LS. Grade 4: Life Science

STRAND	LS1.	From Molecules to Organisms: Structures and Processes
STANDARD / CONCEPT / SKILL	4-LS1-1.	Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction.
FOCUS / COURSE	MA.4- ETS.	Grade 4: Technology/Engineering
STRAND	ETS1.	Engineering Design
STANDARD / CONCEPT / SKILL	4.3-5- ETS1-3.	Plan and carry out tests of one or more design features of a given model or prototype in which variables are controlled and failure points are considered to identify which features need to be improved. Apply the results of tests to redesign a model or prototype.
STANDARD / CONCEPT / SKILL	4.3-5- ETS1- 5(MA).	Evaluate relevant design features that must be considered in building a model or prototype of a solution to a given design problem.

Massachusetts Curriculum Frameworks Technology Education

COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.a.	Abstraction
STANDARD / CONCEPT / SKILL	3- 5.CT.a.3.	Make a list of sub-problems to consider, while addressing a larger problem.
FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.b.	Algorithms

STANDARD / CONCEPT / SKILL	3- 5.CT.b.1.	Define an algorithm as a sequence of instructions that can be processed by a computer.
STANDARD / CONCEPT / SKILL	3- 5.CT.b.4.	Individually and collaboratively create an algorithm to solve a problem (e.g., move a character/robot/person through a maze).
FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.d.	Programming and Development
STANDARD / CONCEPT / SKILL	3- 5.CT.d.1.	Individually and collaboratively create, test, and modify a program in a graphical environment (e.g., block-based visual programming language).
		Massachusetts Curriculum Frameworks
		Technology Education
		Grade 4 - Adopted: 2016

Grade 4 - Adopted: 2016			
FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)	
STRAND	3- 5.CT.a.	Abstraction	
STANDARD / CONCEPT /	3- 5.CT.a.3.	Make a list of sub-problems to consider, while addressing a larger problem.	

SKILL

FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.b.	Algorithms
STANDARD / CONCEPT / SKILL	3- 5.CT.b.1.	Define an algorithm as a sequence of instructions that can be processed by a computer.
STANDARD / CONCEPT / SKILL	3- 5.CT.b.4.	Individually and collaboratively create an algorithm to solve a problem (e.g., move a character/robot/person through a maze).

FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.d.	Programming and Development
STANDARD / CONCEPT / SKILL	3- 5.CT.d.1.	Individually and collaboratively create, test, and modify a program in a graphical environment (e.g., block-based visual programming language).

STRAND / STANDARD CATEGORY	MI.CC.MP .3.	Mathematical Practices
STANDARD	MP.3.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.3.2.	Reason abstractly and quantitatively.
STANDARD	MP.3.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.3.4.	Model with mathematics.
STANDARD	MP.3.5.	Use appropriate tools strategically.

Michigan Academic Standards Mathematics

Grade 4 - Adopted: 2010

STRAND / STANDARD CATEGORY	MI.CC.MP .4.	Mathematical Practices
STANDARD	MP.4.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.4.2.	Reason abstractly and quantitatively.
STANDARD	MP.4.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.4.4.	Model with mathematics.
STANDARD	MP.4.5.	Use appropriate tools strategically.

Michigan Academic Standards Science

STRAND / STANDARD CATEGORY	MI.SC.2.	Interdependent Relationships in Ecosystems
STANDARD	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.
STRAND / STANDARD CATEGORY	MI.SC.5.	Engineering Design
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

STANDARD	3-5-	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of
	ETS1-3.	a model or prototype that can be improved.

Michigan Academic Standards Science

Grade 4 - Adopted: 2015

STRAND / STANDARD CATEGORY	MI.SC.3.	Structure, Function, and Information Processing
STANDARD	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
STRAND / STANDARD CATEGORY	MI.SC.5.	Engineering Design
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Michigan Academic Standards Technology Education Grade 3 - Adopted: 2017

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	MITECS. 3.d.	Build knowledge by actively exploring realworld issues and problems, developing ideas and theories, and pursuing answers and solutions.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	MITECS. 4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GRADE LEVEL EXPECTATION	MITECS. 4.c.	Develop, test, and refine prototypes as part of a cyclical design process.
GRADE LEVEL EXPECTATION	MITECS. 4.d.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 3 - Adopted: 2019

STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 1B: UPPER ELEMENTARY (GRADES 3-5)
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING
EXPECTATION	1B-AP- 11.	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2
EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. Subconcept Program Development; Practice 1.1, 5.1
EXPECTATION	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. Subconcept: Program Development; Practice 2.2
EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. Subconcept: Program Development; Practice 7.2

Michigan Academic Standards Technology Education Grade 4 - Adopted: 2017

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	MITECS. 3.d.	Build knowledge by actively exploring realworld issues and problems, developing ideas and theories, and pursuing answers and solutions.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	MITECS.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

GRADE LEVEL EXPECTATION	MITECS. 4.d.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

MITECS. Develop, test, and refine prototypes as part of a cyclical design process.

Grade 4 - Adopted: 2019

e and a substantial state of the state of th		
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 1B: UPPER ELEMENTARY (GRADES 3-5)
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING
EXPECTATION	1B-AP- 11.	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2
EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. Subconcept: Program Development; Practice 1.1, 5.1
EXPECTATION	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. Subconcept: Program Development; Practice 2.2
EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. Subconcept: Program Development; Practice 7.2

Minnesota Academic Standards Science

Grade 3 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.3.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	3.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	3.1.3.4.	The student will understand that tools and mathematics help scientists and engineers see more, measure more accurately, and do things that they could not otherwise accomplish.

INDICATORS OF PROGRESS

GRADE LEVEL

EXPECTATION 4.c.

3.1.3.4.1. Use tools, including rulers, thermometers, magnifiers and simple balances, to improve observations and keep a record of the observations made.

S	CONTENT STANDARD / OOMAIN	MN.3.4.	Life Science
E	PERFORMANC E INDICATOR / DOMAIN COMPONENT	3.4.1.	Structure and Function in Living Systems
I	INDICATORS OF PROGRESS / STRAND	3.4.1.1.	The student will understand that living things are diverse with many different characteristics that enable them to grow, reproduce and survive.
	NDICATORS OF PROGRESS	3.4.1.1.1.	Compare how the different structures of plants and animals serve various functions of growth, survival and reproduction.

Minnesota Academic Standards

Science

Grade 4 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.4.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	4.1.2.	Practice of Engineering
INDICATORS OF PROGRESS / STRAND	4.1.2.1.	The student will understand that engineers design, create and develop structures, processes and systems that are intended to improve society and may make humans more productive.
INDICATORS OF PROGRESS	4.1.2.1.1.	Describe the positive and negative impacts that the designed world has on the natural world as more and more engineered products and services are created and used.
CONTENT STANDARD / DOMAIN	MN.4.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	4.1.2.	Practice of Engineering
INDICATORS OF PROGRESS / STRAND	4.1.2.2.	The student will understand that engineering design is the process of identifying problems, developing multiple solutions, selecting the best possible solution, and building the product.
INDICATORS OF PROGRESS	4.1.2.2.1.	Identify and investigate a design solution and describe how it was used to solve an everyday problem.
INDICATORS OF PROGRESS	4.1.2.2.2.	Generate ideas and possible constraints for solving a problem through engineering design.
INDICATORS OF PROGRESS	4.1.2.2.3.	Test and evaluate solutions, including advantages and disadvantages of the engineering solution, and communicate the results effectively.

Minnesota Academic Standards
Technology Education
Grade 3 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.IT L.3- 5.	Information and Technology Literacy Standards (Refresh 2009)
PERFORMANC E INDICATOR / DOMAIN COMPONENT	3-5.3.	Technology Use and Concepts: explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.
INDICATORS OF PROGRESS / STRAND	3-5.3.I.	Use of Technology
INDICATORS OF PROGRESS	3- 5.3.I.D.	Strategically solve information and technology issues.
INDICATOR	3- 5.3.I.D.1.	Seek assistance to trouble shoot technical problems.

Minnesota Academic Standards Technology Education

Grade 4 - Adopted: 2009

	Graue 4 - Authieu. 2009		
CONTENT STANDARD / DOMAIN	MN.IT L.3- 5.	Information and Technology Literacy Standards (Refresh 2009)	
PERFORMANC E INDICATOR / DOMAIN COMPONENT	3-5.3.	Technology Use and Concepts: explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.	
INDICATORS OF PROGRESS / STRAND	3-5.3.I.	Use of Technology	
INDICATORS OF PROGRESS	3- 5.3.I.D.	Strategically solve information and technology issues.	
INDICATOR	3- 5.3.l.D.1.	Seek assistance to trouble shoot technical problems.	

5.3.I.D.1.

Mississippi College & Career Readiness Standards Mathematics

ТНЕМЕ	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.5.	Use appropriate tools strategically.

THEME	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.5.	Use appropriate tools strategically.

Mississippi College & Career Readiness Standards Science

Grade 3 - Adopted: 2018

ТНЕМЕ	MS.L.3.	GRADE THREE: Life Science
SUBJECT		Hierarchical Organization
STANDARD	L.3.1.	Students will demonstrate an understanding of internal and external structures in plants and animals and how they relate to their growth, survival, behavior, and reproduction within an environment.
OBJECTIVE	L.3.1.2.	Examine evidence to communicate information that the internal and external structures of plant (e.g., thorns, leaves, stems, roots, or colored petals) function to support survival, growth, behavior, and reproduction.
OBJECTIVE	L.3.1.3.	Obtain and communicate examples of physical features or behaviors of vertebrates and invertebrates and how these characteristics help them survive in particular environments, (e.g., animals hibernate, migrate, or estivate to stay alive when food is scarce or temperatures are not favorable).
ТНЕМЕ	MS.L.3.	GRADE THREE: Life Science
SUBJECT		Adaptations and Diversity
STANDARD	L.3.4.	Students will demonstrate an understanding of how adaptations allow animals to satisfy life needs and respond both physically and behaviorally to their environment.
OBJECTIVE	L.3.4.1.	Obtain data from informational text to explain how changes in habitats (both those that occur naturally and those caused by organisms) can be beneficial or harmful to the organisms that live there.
OBJECTIVE	L.3.4.2.	Ask questions to predict how natural or man-made changes in a habitat cause plants and animals to respond in different ways, including hibernating, migrating, responding to light, death, or extinction (e.g., sea turtles, the dodo bird, or nocturnal species).
OBJECTIVE	L.3.4.4.	Define and improve a solution to a problem created by environmental changes and any resulting impacts on the types of density and distribution of plant and animal populations living in the environment (e.g., replanting sea oats in coastal areas or developing or preserving wildlife corridors and green belts). Use an engineering design process to define the problem, design, construct, evaluate, and improve the environment.

Missouri Learning Standards Science

STRAND: BIG DEA / STANDARD	MO.3.LS3	Heredity: Inheritance and Variation of Traits
STANDARD		

CONCEPT: GLE / BENCHMARK	3.LS3.D.	Biodiversity and Humans
GLE / COMPONENT	3.LS3.D.1	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change. [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.]
STRAND: BIG IDEA <i>I</i> STANDARD	MO.3.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	3.ETS1. A.	Defining and Delimiting Engineering Problems
GLE / COMPONENT	3.ETS1.A. 1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STRAND: BIG IDEA <i>I</i> STANDARD	MO.3.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	3.ETS1. B.	Developing Possible Solutions
GLE / COMPONENT	3.ETS1.B. 1.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STRAND: BIG IDEA / STANDARD	MO.3.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	3.ETS1. C.	Optimizing the Solution Process
GLE / COMPONENT	3.ETS1.C .1.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Missouri Learning Standards Science

STRAND: BIG IDEA / STANDARD	MO.4.LS1	From Molecules to Organisms: Structure and Processes
CONCEPT: GLE / BENCHMARK	4.LS1.A.	Structure and Function
GLE / COMPONENT	4.LS1.A.1	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and plant reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.]
STRAND: BIG IDEA / STANDARD	MO.4.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	4.ETS1. A.	Defining and Delimiting Engineering Problems

GLE / COMPONENT	4.ETS1.A .1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STRAND: BIG IDEA / STANDARD	MO.4.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	4.ETS1. B.	Developing Possible Solutions
GLE / COMPONENT	4.ETS1.B .1.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STRAND: BIG IDEA <i>I</i> STANDARD	MO.4.ET S1.	Engineering Design
IDEA /		Engineering Design Optimizing the Solution Process
IDEA / STANDARD CONCEPT: GLE /	4.ETS1. C.	
IDEA / STANDARD CONCEPT: GLE / BENCHMARK	4.ET S1. C.	Optimizing the Solution Process Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of

STRAND: BIG IDEA / STANDARD

CONCEPT: Algorithms & Programming GLE / BENCHMARK

GLE / COMPONENT

Algorithms

INDICATOR / 3.AP.A.01 Compare multiple algorithms (sets of step-by-step instructions) for accomplishing the same task verbally and PROFICIENCY . kinesthetically, with robot devices or a programming language.

STRAND: BIG IDEA <i>I</i> STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Variables

INDICATOR / 3.A.V.01. Create programs that use variables to store and modify grade level appropriate data. PROFICIENCY

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming

GLE / COMPONENT		Modularity
INDICATOR / PROFICIENCY	3.AP.M.0 1.	Decompose (break down) the steps needed to solve a problem into precise sequence of instructions.

		Missouri Learning Standards Technology Education Grade 4 - Adopted: 2019
STRAND: BIG IDEA / STANDARD		Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK		Algorithms & Programming
GLE / COMPONENT		Algorithms
INDICATOR / PROFICIENCY	4.AP.A.0 1.	Compare and simplify multiple algorithms (sets of step-by-step instructions) for accomplishing the same task verbally and kinesthetically, with robot devices or a programming language.
STRAND: BIG IDEA <i>I</i> STANDARD		Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK		Algorithms & Programming
GLE / COMPONENT		Modularity
INDICATOR / PROFICIENCY	4.AP.M.0 2.	With grade appropriate complexity, modify, remix or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features.