Main Criteria: Forward Education

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 3, 4, Key Stage 1, Key Stage 2

Forward Education

Protecting Pollinators with a Bee Counter

Nebraska Content Area Standards

Science

Grade 3 - Adopted: 2017

CONTENT STANDARD	NE.SC.3. 7.	Interdependent Relationships in Ecosystems
STRAND	SC.3.7.2	Gather and analyze data to communicate an understanding of the interdependent relations in ecosystems.
INDICATOR	SC.3.7.2. D.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

Nebraska Content Area Standards

Science

Grade 4 - Adopted: 2017

CONTENT STANDARD	NE.SC.4. 4.	Energy: Conservation and Transfer
STRAND	SC.4.4. 2.	Gather, analyze and communicate evidence of energy conservation and transfer.
INDICATOR	SC.4.4.2. E.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
CONTENT STANDARD	NE.SC.4. 6.	Structure, Function, and Information Processing
STRAND	SC.4.6.3	Gather and analyze data to communicate an understanding of structure, function and information processing of living things.
INDICATOR	SC.4.6.3. B.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Nebraska Content Area Standards Technology Education Grade 3 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST AND ARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS

STRAND	Create a	alg

Create algorithms, or series of ordered steps, to solve problems.

STRAND

Decompose a problem into smaller more manageable parts.

CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND

Write programs using visual (block-based) programming languages (scratch, code.org).

Nebraska Content Area Standards

Technology Education

Grade 4 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST ANDARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.

STRAND

Decompose a problem into smaller more manageable parts.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND

Write programs using visual (block-based) programming languages (scratch, code.org).

Nevada Academic Content Standards

Mathematics

Grade 3 - Adopted: 2010

	NV.CC.M P.3.	Mathematical Practices
STRAND / INDICATOR	MP.3.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.3.2.	Reason abstractly and quantitatively.

STRAND / INDICATOR	MP.3.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.3.4.	Model with mathematics.
STRAND / INDICATOR	MP.3.5.	Use appropriate tools strategically.

Nevada Academic Content Standards

Mathematics

Grade 4 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.4.	Mathematical Practices
STRAND / INDICATOR	MP.4.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.4.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.4.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.4.4.	Model with mathematics.
STRAND / INDICATOR	MP.4.5.	Use appropriate tools strategically.

Nevada Academic Content Standards

Science

Grade 3 - Adopted: 2014

CONTENT ST ANDARD	NV.3-LS.	LIFE SCIENCE
STRAND / INDICATOR	3-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL3-LS4-4.Make a claim about the merit of a solution to a problem caused when the environment changes and the types of
plants and animals that live there may change.

CONTENT STANDARD	NV.3-5- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	3-5- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL3-5-Define a simple design problem reflecting a need or a want that includes specified criteria for success andEXPECTATIONETS1-1.constraints on materials, time, or cost.

GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Nevada Academic Content Standards

Science

Grade 4 - Adopted: 2014

Glade 4 - Adopted. 2014			
CONTENT STANDARD	NV.4-LS.	LIFE SCIENCE	
STRAND / INDICATOR	4-LS1.	From Molecules to Organisms: Structures and Processes	
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	

GRADE LEVEL4-LS1-1.Construct an argument that plants and animals have internal and external structures that function to support survival,
growth, behavior, and reproduction.

CONTENT STANDARD	NV.3-5- ET S.	
STRAND / INDICATOR	3-5- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Nevada Academic Content Standards

Technology Education

Grade 3 - Adopted: 2019

CONTENT ST ANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture

GRADE LEVELP1.2.Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and
usability.

GRADE LEVEL P1.3. EI EXPECTATION

L.3. Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

EXPECTATION

 CONTENT STANDARD
 NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

 STRAND / INDICATOR
 Practices

 INDICATOR / GRADE LEVEL EXPECTATION
 P4.
 Developing and Using Abstractions

GRADE LEVELP4.3.Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL P6.1. EXPECTATION Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Communicating About Computing

GRADE LEVEL P7.1. EXPECTATION

Select, organize, and interpret large data sets from multiple sources to support a claim.

Nevada Academic Content Standards

Technology Education

Grade 4 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
	D1 2	Employ celf and poor advagagy to address bias in interactions, product design, and development methods

GRADE LEVELP1.3.Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL P4.3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

GRADE LEVEL EXPECTATION P5.2.

P6.1.

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Testing and Refining Computational Artifacts

GRADE LEVEL EXPECTATION

Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing

GRADE LEVEL P7.1. Select, organize, and interpret large data sets from multiple sources to support a claim. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	4.ID.D.1.	Demonstrate perseverance when working with open-ended problems.

New Hampshire College and Career Ready Standards

Mathematics

Grade 3 - Adopted: 2010

STRAND /	NH.CC.M	Mathematical Practices
STANDARD	Р.3.	

STANDARD / GLE	MP.3.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.3.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.3.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.3.4.	Model with mathematics.
STANDARD / GLE	MP.3.5.	Use appropriate tools strategically.

New Hampshire College and Career Ready Standards Mathematics

Grade 4 - Adopted: 2010

STRAND / STANDARD	NH.CC.M P.4.	Mathematical Practices
STANDARD / GLE	MP.4.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.4.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.4.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.4.4.	Model with mathematics.
STANDARD / GLE	MP.4.5.	Use appropriate tools strategically.

New Hampshire College and Career Ready Standards

Science

Grade 3 - Adopted: 2016

	NGSS.3- LS.	
STANDARD / GLE	3-LS4.	Biological Evolution: Unity and Diversity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION 3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
STANDARD / GLE	3-5- ET S1.	Engineering Design

GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Hampshire College and Career Ready Standards

Science

Grade 4 - Adopted: 2016

	NGSS.4- .S.	LIFE SCIENCE
STANDARD / GLE	4-LS1.	From Molecules to Organisms: Structures and Processes
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION 4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
ST ANDARD / GLE	3-5- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Hampshire College and Career Ready Standards

Technology Education

Grade 3 - Adopted: 2005			
STRAND STANDAR		NH.ICT.	Information and Communication Technologies Program
ST ANDA GLE	RD /	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE L EXPECTA		ICT.2.d.	Science

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
----------------------	---------	--

ST ANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL	ICT.3.c.	Problem solving

EXPECTATION

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
	ICTED	Papersont proficient othical responsible use of 21st century tools within the centext of the care subjects

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

Grade 3 - Adopted: 2018

STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences.
GRADE LEVEL EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations.

New Hampshire College and Career Ready Standards

Technology Education

Grade 4 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL	ICT.3.c.	Problem solving

EXPECTATION	
EXPECTATION	

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences.
	1R_AD_	Describe choices made during program development using code comments, presentations, and demonstrations

GRADE LEVEL1B-AP-Describe choices made during program development using code comments, presentations, and demonstrations.EXPECTATION17.

New Jersey Student Learning Standards

Mathematics

Grade 3 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.

New Jersey Student Learning Standards

Mathematics

Grade 4 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.

New Jersey Student Learning Standards

Science

Grade 3 - Adopted: 2020/Effective 2021

CONTENT 3-5-ETS. Engineering Design AREA / STANDARD	
---	--

STRAND	3-5- ET S1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STATEMENT	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

CONTENT AREA / STANDARD	3-LS.	Life Science
STRAND	3-LS4:	Biological Evolution: Unity and Diversity
CONTENT STATEMENT	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

New Jersey Student Learning Standards Science

Grade 4 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	3-5-ET S.	Engineering Design
STRAND	3-5- ET S1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STATEMENT	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

CONTENT AREA / STANDARD	4-LS.	Life Science
STRAND	4-LS1:	From Molecules to Organisms: Structures and Processes
CONTENT STATEMENT	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

New Jersey Student Learning Standards

Technology Education

Grade 3 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture

CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONT ENT ST AT EMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE	Plan the development of a computational artifact using an iterative process that includes reflection on and

CUMULATIVE PROGRESS INDICATOR Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts
CONTENT STATEMENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:

CUMULATIVE	
PROGRESS	

Systematically test computational artifacts by considering all scenarios and using test cases.

INDICATOR

CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 2:	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements include desired features and limitations that need to be considered.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 4:	Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desired features, constraints).
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 5:	Describe how specifications and limitations impact the engineering design process.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 6:	Evaluate and test alternative solutions to a problem using the constraints and tradeoffs identified in the design process.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology innovation and improvement may be influenced by a variety of factors. Engineers create and modify technologies to meet people's needs and wants; scientists ask questions about the natural world.

CUMULATIVE
PROGRESS
INDICATOR

New Jersey Student Learning Standards

Technology Education

Grade 4 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR

AREA / STA<u>NDARD</u> Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT Computer Science and Design Thinking Practices AREA / STANDARD STRAND **3 Recognizing and Defining Computational Problems** CONTENT The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that STATEMENT develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students: CUMULATIVE Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or PROGRESS procedures. INDICATOR CUMULATIVE Evaluate whether it is appropriate and feasible to solve a problem computationally. PROGRESS INDICATOR

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT	Computer Science and Design Thinking Practices

STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
CTRAND	C. Tastian and Defining Opportunitational Artifacto

STRAND	6 Testing and Refining Computational Artifacts
CONTENT STATEMENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:

CUMULATIVE	Systematically test computational artifacts by considering all scenarios and using test cases.
PROGRESS	
INDICATOR	

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.

CUMULATIVE	8.2.5.ED.	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to
PROGRESS	2:	provide the best results with supporting sketches or models.
INDICATOR		

CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements include desired features and limitations that need to be considered.
CUMULATIVE	8.2.5.ED.	Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desired

 CUMULATIVE
 8.2.5.ED.
 Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desire

 PROGRESS
 4:
 features, constraints).

 INDICATOR
 1

CUMULATIVE	8.2.5.ED.	Describe how specifications and limitations impact the engineering design process.
PROGRESS	5:	
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology innovation and improvement may be influenced by a variety of factors. Engineers create and modify technologies to meet people's needs and wants; scientists ask questions about the natural world.

CUMULATIVE 8.2.5.NT.1 Troubleshoot a product that has stopped working and brainstorm ideas to correct the problem. PROGRESS : INDICATOR

New Mexico Content Standards Mathematics

Grade 3 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
		New Mexico Content Standards Mathematics

Mathematics Grade 4 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.

BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK /	MP.5.	Use appropriate tools strategically.

STANDARD

appropriate toole state gloany.

New Mexico Content Standards

Science

Grade 3 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.3- LS.	LIFE SCIENCE	
BENCHMARK / ST ANDARD	3-LS4.	Biological Evolution: Unity and Diversity	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:	
PERFORMANCE STANDARD / INDICATOR	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.	

STRAND / CONTENT STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	3-5- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Mexico Content Standards

Science

Grade 4 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.4- LS.	LIFE SCIENCE
BENCHMARK / ST ANDARD	4-LS1.	From Molecules to Organisms: Structures and Processes

PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	Students who demonstrate understanding can:
---	---

STANDARD / INDICATOR

PERFORMANCE 4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

STRAND / CONTENT STANDARD	NGSS.3- 5-ET S.	
BENCHMARK / STANDARD	3-5- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Mexico Content Standards Technology Education Grade 3 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	1B-AP- 13.	Use an iterative process to plan the development of a program by including others'' perspectives and considering user preferences. (P1.1, P5.1)
INDICATOR	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
INDICATOR	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards

BENCHMARK /	CST A.1	Level 1B (Ages 8-11)
STANDARD	В.	
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	1B-IC-20.	Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)
		New Mexico Content Standards Technology Education Grade 4 - Adopted: 2019
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR		Program Development
INDICATOR	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
INDICATOR	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
INDICATOR	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	1B-IC-20	Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

INDICATOR 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

New York State Learning Standards and Core Curriculum Mathematics Grade 3 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
		New York State Learning Standards and Core Curriculum Mathematics
		Grade 4 - Adopted: 2017/Updat ed 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
DOMAIN / UNIFYING	MP.1	Mathematical Practices Make sense of problems and persevere in solving them.
DOMAIN / UNIFYING THEME CATEGORY / CLUSTER / KEY	MP.1 MP.2	
CATEGORY / CLUSTER / KEY IDEA CATEGORY / CLUSTER / KEY		Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA CATEGORY / CLUSTER / KEY IDEA CATEGORY / CLUSTER / KEY	MP.2	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA CATEGORY / CLUSTER / KEY IDEA CATEGORY / CLUSTER / KEY IDEA CATEGORY / CLUSTER / KEY	MP.2 MP.3	Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others.

Grade 3 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.3.2.	Interdependent Relationships in Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

UNDERSTANDI

STRAND / DOMAIN / UNIFYING THEME	NY.3- 5.ED.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum

		New Tork State Learning Standards and Sofe Suffering
		Science
		Grade 4 - Adopted: 2016
STRAND / DOMAIN / UNIFYING THEME	NY.4.3.	Structure, Function, and Information Processing
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

STRAND / DOMAIN / UNIFYING THEME	NY.3- 5.ED.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum

Technology Education

	Grade 3 - Adopted: 1996			
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.		
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.		
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.2.	Students investigate prior solutions and ideas from books, magazines, family, friends, neighbors, and community members.		
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.		
CATEGORY / CLUSTER / KEY IDEA	5.3.	Computer Technology: Computers, as tools for design, modeling, information processing, communication, and system control, have greatly increased human productivity and knowledge.		
STANDARD / CONCEPTUAL UNDERSTANDI	5.3.2.	Students use the computer as a tool for generating and drawing ideas.		

NG

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.7.	Management of Technology: Project management is essential to ensuring that technological endeavors are profitable and that products and systems are of high quality and built safely, on schedule, and within budget.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.7.2.	Students speculate on and model possible technological solutions that can improve the safety and quality of the school or community environment.

New York State Learning Standards and Core Curriculum Technology Education Grade 4 - Adopted: 1996

STRAND / DOMAIN / JNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL JNDERSTANDI NG	5.1.2.	Students investigate prior solutions and ideas from books, magazines, family, friends, neighbors, and community members.
TRAND / OMAIN / INIFYING HEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.3.	Computer Technology: Computers, as tools for design, modeling, information processing, communication, and system control, have greatly increased human productivity and knowledge.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.3.2.	Students use the computer as a tool for generating and drawing ideas.
STRAND / DOMAIN / JNIFYING 'HEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.7.	Management of Technology: Project management is essential to ensuring that technological endeavors are profitable and that products and systems are of high quality and built safely, on schedule, and within budget.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.7.2.	Students speculate on and model possible technological solutions that can improve the safety and quality of the school or community environment.

North Carolina Standard Course of Study

Mathematics Grade 3 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.

STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
		North Carolina Standard Course of Study Mathematics
		Grade 4 - Adopted: 2017/IMPL 2018
CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL	MP.5.	Use appropriate tools strategically.

North Carolina Standard Course of Study

STANDARD

Science

Grade 3 - Adopted: 2010

CONTENT AREA / STRAND		Life Science
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	3.L.2.	Understand how plants survive in their environments.
CLARIFYING OBJECTIVE	3.L.2.1.	Remember the function of the following structures as it relates to the survival of plants in their environments:
OBJECTIVE		environments:

North Carolina Standard Course of Study

Science

Grade 4 - Adopted: 2010

CONTENT AREA / STRAND		Life Science
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	4.L.1.	Understand the effects of environmental changes, adaptations and behaviors that enable animals (including humans) to survive in changing habitats.
CLARIFYING OBJECTIVE	4.L.1.2.	Explain how animals meet their needs by using behaviors in response to information received from the environment.

North Carolina Standard Course of Study

Technology Education

Grade 3 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 3 - Adopted: 2020

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	35-AP-	Create multiple algorithms for the same task to determine which is the most accurate and efficient.

01.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	35-AP- 12.	Describe choices made during program development using code comments, presentations, and demonstrations.

North Carolina Standard Course of Study Technology Education Grade 4 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

ESSENTIAL	ISTE-	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and
STANDARD /	S.3.d.	pursuing answers and solutions.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 4 - Adopted: 2020

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	35-AP-	Create multiple algorithms for the same task to determine which is the most accurate and efficient.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Program Development

INDICATOR

12.

35-AP-Describe choices made during program development using code comments, presentations, and demonstrations.

North Dakota Content Standards

Mathematics Grade 3 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.

North Dakota Content Standards Mathematics

Grade 4 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.

North Dakota Content Standards

Science

BENCHMARK	2	Developing and using models	
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.	
CONTENT STANDARD		Science and Engineering Practices	
BENCHMARK	6	Constructing explanations and designing solutions	
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.	
CONTENT STANDARD		Engineering & Technology (ET)	
BENCHMARK	3-ET1.	Engineering & Technology	
GRADE LEVEL EXPECTATION	3-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.	
GRADE LEVEL EXPECTATION	3-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	
GRADE LEVEL EXPECTATION	3-ET1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	
	North Dakota Content Standards		

Science

Grade 4 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

CONTENT STANDARD		Life Science (LS)
BENCHMARK	4-LS1.	From Molecules to Organisms: Structures and Processes
GRADE LEVEL EXPECTATION	4-LS1-1.	Construct an argument that plants, and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
CONTENT STANDARD		Engineering & Technology (ET)

BENCHMARK	4-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	4-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	4-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	4-ET1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

North Dakota Content Standards Technology Education Grade 3 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	3.PSA.1.	Solve a task by breaking it into smaller pieces.
CONTENT STANDARD		Computer Science and Cybersecurity Standards

STANDARD	
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Development & Design
INDICATOR	Design processes to create new, useful, and imaginative solutions to problems.

INDICATOR 3.DD.2. Convert an algorithm into code.

North Dakota Content Standards

Technology Education

Grade 4 - Adopted: 2019

CONTENT STANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms
INDICATOR	Strategies for understanding and solving problems.

INDICATOR 4.PSA.1. Decompose (break down) a large task into smaller, manageable subtasks.

Ohio Learning Standards

Mathematics

Grade 3 - Adopted: 2017

STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
		Ohio Learning Standards Mathematics Grade 4 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
Ohio Learning Standards		

Science

Grade 4 - Adopted: 2018

DOMAIN / ACADEMIC CONTENT STANDARD		LIFE SCIENCE (LS)
STANDARD / BENCHMARK		Topic: Earth's Living History - This topic focuses on using fossil evidence and living organisms to observe that suitable habitats depend upon a combination of biotic and abiotic factors.
BENCHMARK / GRADE LEVEL INDICATOR	4.LS.1:	Changes in an organism's environment are sometimes beneficial to its survival and sometimes harmful.
PROFICIENCY LEVEL		Ecosystems are based on interrelationships among and between biotic and abiotic factors. These include the diversity of other organisms present, the availability of food and other resources, and the physical attributes of the environment.

Ohio Learning Standards Technology Education

Grade 3 - Adopted: 2017

		Grade 3 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	3- 5.DT.1.b.	Give examples of how requirements for a product can limit the design possibilities for that product.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	3- 5.DT.2.b.	Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible solutions, test and evaluate solution(s), present a possible solution, and redesign to improve the solution.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICAT OR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.
PROFICIENCY LEVEL	3- 5.DT.3.b.	Explore and document connections between technology and other fields of study.
		Grade 3 - Adopted: 2022
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 3
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.3.a.	Apply troubleshooting strategies given problems and solutions to resolve hardware and software problems.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 3

STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY ATP.A.3.a Construct and reflect on errors in an algorithm to accomplish a given task. LEVEL .

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 3
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Variables and Data Representation

PROFICIENCYATP.VDRDefine and identify a variable, a placeholder for storing a value, to understand how it is used in a multi-step processLEVEL.3.a.(i.e., algorithm).

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 3
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

 PROFICIENCY
 ATP.CS.3 Create a program using sequences, events, loops and conditionals to solve a problem.

 LEVEL
 .a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 3
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Modularity

PROFICIENCYATP.M.3.Decompose (i.e., break down) the steps needed or not needed (i.e., abstraction) into precise sequences ofLEVELa.instructions to design an algorithm.

Ohio Learning Standards Technology Education Grade 4 - Adopted: 2017

DOMAIN /
ACADEMIC
CONTENT
STANDARDOhio Learning Standards in TechnologySTANDARD /
BENCHMARKDesign and Technology: Addresses the nature of technology to develop and improve products and
systems over time to meet human/societal needs and wants through design processes.

BENCHMARK / GRADE LEVEL INDICATOR	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.

PROFICIENCY LEVEL

Give examples of how requirements for a product can limit the design possibilities for that product. 3-5.DT.1.b.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.

PROFICIENCY 3-LEVEL

Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible 5.DT.2.b. solutions, test and evaluate solution(s), present a possible solution, and redesign to improve the solution.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.

PROFICIENCY 3-Explore and document connections between technology and other fields of study. LEVEL 5.DT.3.b.

Grade 4 - Adopted: 2022		
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 4
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.4.a.	Diagnose problems and select an appropriate solution from a list of problems and solutions to resolve hardware and software issues.
DOMAIN / ACADEMIC CONTENT		Computer Science, Grade 4

STANDARD	
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY ATP.A.4. Construct and refine an algorithm to accomplish a given task. a.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 4
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .4.a.	Identify and use a variable, a placeholder for storing a value, to understand how it works in a multi-step process (i.e., algorithm).
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 4
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Control Structures
PROFICIENCY LEVEL	ATP.CS.4 .a.	Create a program using sequences, events, loops and conditionals to solve a problem.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 4
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Modularity
PROFICIENCY LEVEL	ATP.M.4. a.	Decompose (i.e., break down) the steps needed or not needed (i.e., abstraction) into precise sequences of instructions to design an algorithm.
		Oklahoma Academic Standards Mathematics Grade 3 - Adopted: 2022
CONTENT STANDARD / COURSE		Mathematical Actions and Processes
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD		Develop Strategies for Problem Solving
STRAND / STANDARD		Develop Mathematical Reasoning
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize

Oklahoma Academic Standards Mathematics

Grade 4 - Adopted: 2022

CONTENT STANDARD / COURSE	Mathematical Actions and Processes	
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency	
STRAND / STANDARD	Develop Strategies for Problem Solving	
STRAND / STANDARD	Develop Mathematical Reasoning	
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize	
STRAND / STANDARD	Develop the Ability to Communicate Mathematically	

Oklahoma Academic Standards

Science

Grade 3 - Adopted: 2020

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Biological Unity and Diversity (LS4)
OBJECTIVE	3.LS4.4	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

Oklahoma Academic Standards

Science

Grade 4 - Adopted: 2020		
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		From Molecules to Organisms: Structure and Processes (LS1)
OBJECTIVE	4.LS.1.1	Construct an argument that plants and animals have internal and external structures that function to support survival,

Oklahoma Academic Standards

Technology Education

Grade 3 - Adopted: 2023

CONTENT	
STANDARD /	
COURSE	

Oklahoma Academic Standards - Computer Science

growth, behavior, and reproduction.

STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by

include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT
STANDARD /
COURSEOklahoma Academic Standards - Computer ScienceSTRAND /
STANDARDComputer Science PracticesOBJECTIVEDeveloping and Using Abstractions

SKILL / CONCEPT Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment
SKILL / CONCEPT	Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

usability and to meet the needs of all potential end users (including themselves).

 SKILL /
 Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by

 CONCEPT
 defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	3	Third Grade (3)
OBJECTIVE	3.CS.	Computing Systems (CS)
SKILL / CONCEPT	3.CS.T.	Troubleshooting (T)

SKILL

3.CS.T.01 Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use,
 discuss problems with peers and adults, and apply strategies for solving these problems (e.g., refresh screen, closing/reopening an application or file).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	3	Third Grade (3)
OBJECTIVE	3.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	3.AP.A.	Algorithms (A)
SKILL	3.AP.A.01	Model and compare multiple algorithms for the same task.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	3	Third Grade (3)
OBJECTIVE	3.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	3.AP.PD.	Program Development (PD)
SKILL	3.AP.PD. 01.	Use an iterative process to plan the development of a program while solving simple problems.
SKILL	3.AP.PD. 04.	Communicate and explain program development choices using comments, presentations, and demonstrations.

	Grade 3 - Adopted: 2019		
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)	
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)	
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	

STANDARD	S.4.	solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE-	Students select and use digital tools to plan and manage a design process that considers design constraints and

S.4.b.

calculated risks.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards Technology Education Grade 4 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

SKILL / CONCEPT Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

SKILL / CONCEPT Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

SKILL / CONCEPT Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.CS.	Computing Systems (CS)
SKILL / CONCEPT	4.CS.T.	Troubleshooting (T)

SKILL

4.CS.T.01 Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use, discuss problems with peers and adults, and apply strategies for solving these problems (e.g., rebooting the device, force shut down).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	4.AP.A.	Algorithms (A)

SKILL

1.

4.AP.A.0 Model, compare, and refine multiple algorithms for the same task.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	4.AP.PD.	Program Development (PD)
SKILL	4.AP.PD. 01.	Use an iterative process to plan the development of a program that includes user preferences while solving simple problems.
SKILL	4.AP.PD. 04.	Communicate and explain program development choices using comments, presentations, and demonstrations.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science

COURSE		
STRAND / STANDARD	4	Fourth Grade (4)
OBJECTIVE	4.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	4.IC.CU.	Culture (CU)

SKILL

4.IC.CU.0 Consider a variety of users' backgrounds and needs to brainstorm ways to improve computing devices to increase 2. accessibility.

		Grade 4 - Adopted: 2019
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	IST E- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
Oregon Academic Content Standards Mathematics Grade 3 - Adopted: 2021		
STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD /	1	Make sense of problems and persevere in solving them.

CONTENT 2 Reason abstractly and quantitatively. STANDARD / PROFICIENCY

PROFICIENCY

CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.

Oregon Academic Content Standards

Mathematics

Grade 4 - Adopted: 2021		
STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.

Oregon Academic Content Standards

Science

ST ANDARD / CONTENT AREA	OR.3- LS4.	Biological Evolution: Unity and Diversity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-LS4-4.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.
ST ANDARD / CONT ENT AREA	OR.3-5- ET S1.	Engineering Design

CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Oregon Academic Content Standards

Science

Grade 4 - Adopted: 2022			
STANDARD / CONTENT AREA	OR.4- LS1.	From Molecules to Organisms: Structures and Processes	
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:	
BENCHMARK / STRAND	4-LS1-1.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.	
STANDARD / CONTENT AREA	OR.3-5- ET S1.	Engineering Design	
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:	
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.	
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	