Main Criteria: Forward Education

Secondary Criteria: Next Generation Science Standards (NGSS)

Subjects: Mathematics, Science, Technology Education

Grades: 9, 10, Key Stage 3, Key Stage 4

Forward Education

Replanting our Forests with Automated Tree Seeders

Next Generation Science Standards (NGSS)

Science

Grade 9 - Adopted: 2013

STRAND	NGSS.HS -PS	PHYSICAL SCIENCE
TITLE	HS-PS4	Waves and Their Applications in Technologies for Information Transfer
		Students who demonstrate understanding can:

PERFORMANCE HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. EXPECTATION 2

STRAND	NGSS.HS -LS	LIFE SCIENCE
TITLE	HS-LS2	Ecosystems: Interactions, Energy, and Dynamics
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS-LS2-2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANCE EXPECTATION	HS-LS2- 4	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANCE EXPECTATION	HS-LS2- 5	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANCE EXPECTATION	HS-LS2-7	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND	NGSS.HS -LS	LIFE SCIENCE
TITLE	HS-LS4	Biological Evolution: Unity and Diversity
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS-LS4- 6	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

STRAND	NGSS.HS -ESS	EARTH AND SPACE SCIENCE
TITLE	HS- ESS2	Earth's Systems
		Students who demonstrate understanding can:

PERFORMANCEHS-Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes inEXPECTATIONESS2-4climate.

PERFORMANCEHS-Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,EXPECTATIONESS2-6and biosphere.

STRAND	NGSS.HS -ESS	EARTH AND SPACE SCIENCE
TITLE	HS- ESS3	Earth and Human Activity
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS- ESS3-1	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANCE EXPECTATION	HS- ESS3-2	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANCE EXPECTATION	HS- ESS3-3	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANCE EXPECTATION	HS- ESS3-6	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STRAND	NGSS.HS -ETS	ENGINEERING DESIGN
TITLE	HS- ET S1	Engineering Design
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS- ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANCE EXPECTATION	HS- ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

 PERFORMANCE
 HS Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a

 EXPECTATION
 ETS1-3
 range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Next Generation Science Standards (NGSS)

Science

Grade 10 - Adopted: 2013

	NGSS.HS -PS	PHYSICAL SCIENCE
TITLE	HS-PS4	Waves and Their Applications in Technologies for Information Transfer
		Students who demonstrate understanding can:

PERFORMANCE HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. EXPECTATION 2

0		NGSS.HS -LS	LIFE SCIENCE
	TITLE	HS-LS2	Ecosystems: Interactions, Energy, and Dynamics

		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS-LS2-2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANCE EXPECTATION	HS-LS2- 4	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANCE EXPECTATION	HS-LS2- 5	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANCE EXPECTATION	HS-LS2-7	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND	NGSS.HS -LS	LIFE SCIENCE
TITLE	HS-LS4	Biological Evolution: Unity and Diversity
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS-LS4- 6	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STRAND	NGSS.HS -ESS	EARTH AND SPACE SCIENCE
TITLE	HS- ESS2	Earth's Systems
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS- ESS2-4	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
PERFORMANCE EXPECTATION	HS- ESS2-6	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND	NGSS.HS -ESS	EARTH AND SPACE SCIENCE
TITLE	HS- ESS3	Earth and Human Activity
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS- ESS3-1	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANCE EXPECTATION	HS- ESS3-2	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANCE EXPECTATION	HS- ESS3-3	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANCE EXPECTATION	HS- ESS3-6	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND	NGSS.HS -ETS	ENGINEERING DESIGN
TITLE	HS- ETS1	Engineering Design
		Students who demonstrate understanding can:
PERFORMANCE EXPECTATION	HS- ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANCE EXPECTATION	HS- ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
PERFORMANCE EXPECTATION	HS- ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.