Main Criteria: Forward Education

Secondary Criteria: Alabama Courses of Study, Alaska Content and Performance Standards, Arizona's College and Career Ready Standards, Arkansas Standards, California Content Standards, Colorado Academic Standards (CAS), Connecticut State Standards, Delaware Standards and Instruction, Florida Standards, Georgia Standards of Excellence, Hawaii Content and Performance Standards

Subjects: Mathematics, Science, Technology Education

Grades: 9, 10, Key Stage 3, Key Stage 4

Forward Education

Replanting our Forests with Automated Tree Seeders

Alabama Courses of Study

Mathematics

Grade 9 - Adopted: 2019/Impl. 2020

STRAND / DOMAIN		Mathematical Practices
OBJECTIVE / CATEGORY	MP1	Make sense of problems and persevere in solving them.
OBJECTIVE / CATEGORY	MP2	Reason abstractly and quantitatively.
OBJECTIVE / CATEGORY	MP3	Construct viable arguments and critique the reasoning of others.
OBJECTIVE / CATEGORY	MP4	Model with mathematics.
OBJECTIVE / CATEGORY	MP6	Attend to precision.
OBJECTIVE / CATEGORY	MP7	Look for and make use of structure.
OBJECTIVE / CATEGORY	MP8	Look for and express regularity in repeated reasoning.
STRAND / DOMAIN		Geometry with Data Analysis Content Standards
OBJECTIVE / CATEGORY		Data Analysis, Statistics, and Probability - Focus 2: Visualizing and Summarizing Data
STANDARD		Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or more subgroups with respect to a variable.
RELATED CONTENT / EXPECTATION	10.	Use statistics appropriate to the shape of the data distribution to compare and contrast two or more data sets, utilizing the mean and median for center and the interquartile range and standard deviation for variability.
GRADE EXPECTATION	10.a.	Explain how standard deviation develops from mean absolute deviation.
STRAND / DOMAIN		Geometry with Data Analysis Content Standards
OBJECTIVE / CATEGORY		Data Analysis, Statistics, and Probability - Focus 2: Visualizing and Summarizing Data

STANDARD Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or more subgroups with respect to a variable.

RELATED CONTENT / EXPECTATION 11.

Interpret differences in shape, center, and spread in the context of data sets, accounting for possible effects of extreme data points (outliers) on mean and standard deviation.

STRAND / DOMAIN		Mathematical Modeling Content Standards
OBJECTIVE / CATEGORY		Modeling
STANDARD		Mathematical modeling and statistical problem-solving are extensive, cyclical processes that can be used to answer significant real-world problems.
RELATED	1.	Use the full Mathematical Modeling Cycle or Statistical Problem-Solving Cycle to answer a real-world problem of

CONTENT /

Use the full Mathematical Modeling Cycle or Statistical Problem-Solving Cycle to answer a real-world problem of particular student interest, incorporating standards from across the course.

EXPECTATION

STRAND / Mathematical Modeling Content Standards DOMAIN **OBJECTIVE** / **Financial Planning and Management** CATEGORY **STANDARD** Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing; spreadsheets are a frequently-used and powerful tool to assist with modeling financial situations.

RELATED CONTENT /

2.

Use elements of the Mathematical Modeling Cycle to solve real-world problems involving finances.

EXPECTATION

STRAND / DOMAIN		Mathematical Modeling Content Standards
OBJECTIVE / CATEGORY		Modeling to Interpret Statistical Studies
STANDARD		Statistical studies allow a conclusion to be drawn about a population that is too large to survey completely or about cause and effect in an experiment.
RELATED CONTENT / EXPECTATION	18.	Construct a probability distribution based on empirical observations of a variable.
GRADE EXPECTATION	18.c.	Find the mean, standard deviation, median, and interquartile range of a probability distribution and make long-term predictions about future possibilities. Determine which measures are most appropriate based upon the shape of the distribution.
		Alabama Courses of Study
		Mathematics
		Grade 10 - Adopted: 2019/Impl. 2020
STRAND / DOMAIN		Mathematical Practices
OBJECTIVE /	MP1	Make sense of problems and persevere in solving them.

CATEGORY

OBJECTIVE / CATEGORY	MP2	Reason abstractly and quantitatively.
OBJECTIVE / CATEGORY	MP3	Construct viable arguments and critique the reasoning of others.
OBJECTIVE / CATEGORY	MP4	Model with mathematics.
OBJECTIVE / CATEGORY	MP6	Attend to precision.
OBJECTIVE / CATEGORY	MP7	Look for and make use of structure.
OBJECTIVE / CATEGORY	MP8	Look for and express regularity in repeated reasoning.

STRAND / DOMAIN		Geometry with Data Analysis Content Standards
OBJECTIVE / CATEGORY		Data Analysis, Statistics, and Probability - Focus 2: Visualizing and Summarizing Data
STANDARD		Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or more subgroups with respect to a variable.
RELATED CONTENT / EXPECTATION	10.	Use statistics appropriate to the shape of the data distribution to compare and contrast two or more data sets, utilizing the mean and median for center and the interquartile range and standard deviation for variability.
GRADE EXPECTATION	10.a.	Explain how standard deviation develops from mean absolute deviation.
STRAND / DOMAIN		Geometry with Data Analysis Content Standards
OBJECTIVE / CATEGORY		Data Analysis, Statistics, and Probability - Focus 2: Visualizing and Summarizing Data
STANDARD		Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or more subgroups with respect to a variable.
RELATED CONTENT / EXPECTATION	11.	Interpret differences in shape, center, and spread in the context of data sets, accounting for possible effects of extreme data points (outliers) on mean and standard deviation.

STRAND / DOMAIN	Mathematical Modeling Content Standards
OBJECTIVE / CATEGORY	Modeling
STANDARD	Mathematical modeling and statistical problem-solving are extensive, cyclical processes that can be used to answer significant real-world problems.

RELATED	1.
CONTENT /	
EXPECTATION	

Use the full Mathematical Modeling Cycle or Statistical Problem-Solving Cycle to answer a real-world problem of particular student interest, incorporating standards from across the course.

STRAND / DOMAIN		Mathematical Modeling Content Standards
OBJECTIVE / CATEGORY		Financial Planning and Management
STANDARD		Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing; spreadsheets are a frequently-used and powerful tool to assist with modeling financial situations.
RELATED	2.	Use elements of the Mathematical Modeling Cycle to solve real-world problems involving finances.

CONTENT / EXPECTATION

distribution.

STRAND / DOMAIN		Mathematical Modeling Content Standards
OBJECTIVE / CATEGORY		Modeling to Interpret Statistical Studies
STANDARD		Statistical studies allow a conclusion to be drawn about a population that is too large to survey completely or about cause and effect in an experiment.
RELATED CONTENT / EXPECTATION	18.	Construct a probability distribution based on empirical observations of a variable.
GRADE EXPECTATION	18.c.	Find the mean, standard deviation, median, and interquartile range of a probability distribution and make long-term predictions about future possibilities. Determine which measures are most appropriate based upon the shape of the

Alabama Courses of Study

Science

Grade 9 - Adopted: 2015

STRAND / DOMAIN	AL.HS.PS	PHYSICAL SCIENCE
OBJECTIVE / CATEGORY		Waves and Their Applications in Technologies for Information Transfer
STANDARD	HS.PS.1 5.	Obtain and communicate information from published materials to explain how transmitting and receiving devices (e.g., cellular telephones, medical-imaging technology, solar cells, wireless Internet, scanners, Sound Navigation and Ranging [SONAR]) use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.

STRAND / DOMAIN	AL.HS.B.	BIOLOGY
OBJECTIVE / CATEGORY		Ecosystems: Interactions, Energy, and Dynamics
STANDARD	HS.B.8.	Develop and use models to describe the cycling of matter (e.g., carbon, nitrogen, water) and flow of energy (e.g.,

food chains, food webs, biomass pyramids, ten percent law) between abiotic and biotic factors in ecosystems.

STRAND / DOMAIN	AL.HS.ES	ENVIRONMENTAL SCIENCE
OBJECTIVE / CATEGORY		Earth and Human Activity

STANDARD	HS.ES.2.	Use models to illustrate and communicate the role of photosynthesis and cellular respiration as carbon cycles through the biosphere, atmosphere, hydrosphere, and geosphere.
STANDARD	HS.ES.3.	Use mathematics and graphic models to compare factors affecting biodiversity and populations in ecosystems.
STANDARD	HS.ES.4.	Engage in argument from evidence to evaluate how biological or physical changes within ecosystems (e.g., ecological succession, seasonal flooding, volcanic eruptions) affect the number and types of organisms, and that changing conditions may result in a new or altered ecosystem.
STANDARD	HS.ES.6.	Obtain, evaluate, and communicate information to describe how human activity may affect biodiversity and genetic variation of organisms, including threatened and endangered species.
STANDARD	HS.ES.12	Analyze and interpret data and climate models to predict how global or regional climate change can affect Earth's systems (e.g., precipitation and temperature and their associated impacts on sea level, glacial ice volumes, and atmosphere and ocean composition).
STANDARD	HS.ES.13	Obtain, evaluate, and communicate information based on evidence to explain how key natural resources (e.g., water sources, fertile soils, concentrations of minerals and fossil fuels), natural hazards, and climate changes influence human activity (e.g., mass migrations).
STANDARD	HS.ES.15	Construct an explanation based on evidence to determine the relationships among management of natural resources, human sustainability, and biodiversity (e.g., resources, waste management, per capita consumption, agricultural efficiency, urban planning).
STANDARD	HS.ES.16	Obtain and evaluate information from published results of scientific computational models to illustrate the relationships among Earth's systems and how these relationships may be impacted by human activity (e.g., effects of an increase in atmospheric carbon dioxide on photosynthetic biomass, effect of ocean acidification on marine populations).

Grade 9 - Adopted: 2014			
STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / CATEGORY		Key Ideas and Details	
STANDARD	RH.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.	
STANDARD	RH.9- 10.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.	
STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / CATEGORY		Craft and Structure	
STANDARD	RH.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to Grades 9-10 texts and topics.	

STANDARDRH.9-
10.5.Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
force, friction, reaction force, energy).

STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
--------------------	-----------------	--

OBJECTIVE / CATEGORY		Integration of Knowledge and Ideas
STANDARD	RH.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / CATEGORY		Range of Reading and Level of Text Complexity
STANDARD	RH.9- 10.10.	By the end of Grade 10, read and comprehend science/technical texts in the Grades 9-10 text complexity band independently and proficiently.
STRAND / DOMAIN	AL.WHST 9-10.	.Writing Standards for Literacy in Science, and Technical Subjects
OBJECTIVE / CATEGORY		Text Types and Purposes
STANDARD	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
RELATED CONTENT / EXPECTATION	WHST.9- 10.2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND / DOMAIN	AL.WHST .9-10.	Writing Standards for Literacy in Science, and Technical Subjects
OBJECTIVE / CATEGORY		Production and Distribution of Writing

STANDARD	WHST.9-	Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
	10.4.	purpose, and audience.

STANDARD	WHST.9-	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking
	10.6.	advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Alabama Courses of Study

Science

Grade 10 - Adopted: 2015

STRAND / DOMAIN	AL.HS.PS	PHYSICAL SCIENCE
OBJECTIVE / CATEGORY		Waves and Their Applications in Technologies for Information Transfer
STANDARD	HS.PS.1 5.	Obtain and communicate information from published materials to explain how transmitting and receiving devices (e.g., cellular telephones, medical-imaging technology, solar cells, wireless Internet, scanners, Sound Navigation and Ranging [SONAR]) use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.
STRAND / DOMAIN	AL.HS.B.	BIOLOGY

OBJECTIVE / CATEGORY	Ecosystems: Interactions, Energy, and Dynamics

STANDARD

HS.B.8. Develop and use models to describe the cycling of matter (e.g., carbon, nitrogen, water) and flow of energy (e.g., food chains, food webs, biomass pyramids, ten percent law) between abiotic and biotic factors in ecosystems.

STRAND / DOMAIN	AL.HS.ES	ENVIRONMENTAL SCIENCE
OBJECTIVE / CATEGORY		Earth and Human Activity
STANDARD	HS.ES.2.	Use models to illustrate and communicate the role of photosynthesis and cellular respiration as carbon cycles through the biosphere, atmosphere, hydrosphere, and geosphere.
STANDARD	HS.ES.3.	Use mathematics and graphic models to compare factors affecting biodiversity and populations in ecosystems.
STANDARD	HS.ES.4.	Engage in argument from evidence to evaluate how biological or physical changes within ecosystems (e.g., ecological succession, seasonal flooding, volcanic eruptions) affect the number and types of organisms, and that changing conditions may result in a new or altered ecosystem.
STANDARD	HS.ES.6.	Obtain, evaluate, and communicate information to describe how human activity may affect biodiversity and genetic variation of organisms, including threatened and endangered species.
STANDARD	HS.ES.12	Analyze and interpret data and climate models to predict how global or regional climate change can affect Earth's systems (e.g., precipitation and temperature and their associated impacts on sea level, glacial ice volumes, and atmosphere and ocean composition).
STANDARD	HS.ES.13	Obtain, evaluate, and communicate information based on evidence to explain how key natural resources (e.g., water sources, fertile soils, concentrations of minerals and fossil fuels), natural hazards, and climate changes influence human activity (e.g., mass migrations).
STANDARD	HS.ES.15	Construct an explanation based on evidence to determine the relationships among management of natural resources, human sustainability, and biodiversity (e.g., resources, waste management, per capita consumption, agricultural efficiency, urban planning).
STANDARD	HS.ES.16	Obtain and evaluate information from published results of scientific computational models to illustrate the relationships among Earth's systems and how these relationships may be impacted by human activity (e.g., effects of an increase in atmospheric carbon dioxide on photosynthetic biomass, effect of ocean acidification on marine populations).
		Grade 10 - Adopted: 2014
STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / CATEGORY		Key Ideas and Details
STANDARD	RH.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD	RH.9- 10.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / CATEGORY		Craft and Structure

STANDARD	RH.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to Grades 9-10 texts and topics.
STANDARD	RH.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / CATEGORY		Integration of Knowledge and Ideas
STANDARD	RH.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STRAND / DOMAIN	AL.RH.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / CATEGORY		Range of Reading and Level of Text Complexity
STANDARD	RH.9- 10.10.	By the end of Grade 10, read and comprehend science/technical texts in the Grades 9-10 text complexity band independently and proficiently.
STRAND / DOMAIN	AL.WHST 9-10.	Writing Standards for Literacy in Science, and Technical Subjects
OBJECTIVE / CATEGORY	1	Text Types and Purposes
STANDARD	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
RELATED CONTENT / EXPECTATION	WHST.9- 10.2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND / DOMAIN	AL.WHST .9-10.	Writing Standards for Literacy in Science, and Technical Subjects
OBJECTIVE / CATEGORY		Production and Distribution of Writing
STANDARD	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Alabama Courses of Study Technology Education Grade 9 - Adopted: 2018
STRAND / DOMAIN	AL.DLCS. 9-12.	Digital Literacy and Computer Science
OBJECTIVE / CATEGORY	9-12.1.	Computational Thinker
STANDARD		Algorithms

RELATED CONTENT / EXPECTATION	9-12.1.3.	Differentiate between a generalized expression of an algorithm in pseudocode and its concrete implementation in a programming language.
GRADE EXPECTATION	9- 12.1.3.a.	Explain that some algorithms do not lead to exact solutions in a reasonable amount of time and thus approximations are acceptable.
GRADE EXPECTATION	9- 12.1.3.c.	Distinguish when a problem solution requires decisions to be made among alternatives, such as selection constructs, or when a solution needs to be iteratively processed to arrive at a result, such as iterative "loop" constructs or recursion.
GRADE EXPECTATION	9- 12.1.3.d.	Evaluate and select algorithms based on performance, reusability, and ease of implementation.
GRADE	9-	Explain how more than one algorithm may solve the same problem and yet he characterized with different priorities

EXPECTATION 12.1.3.e.

GRADE 9- Explain how more than one algorithm may solve the same problem and yet be characterized with different priorities.

STRAND / DOMAIN	AL.DLCS. 9-12.	Digital Literacy and Computer Science
OBJECTIVE / CATEGORY	9-12.1.	Computational Thinker
STANDARD		Algorithms
RELATED	9-12.1.4.	Use and adapt classic algorithms to solve computational problems.

CONTENT / EXPECTATION

STRAND / DOMAIN	AL.DLCS. 9-12.	Digital Literacy and Computer Science
OBJECTIVE / CATEGORY	9-12.5.	Innovative Designer
STANDARD		Human/Computer Partnerships
RELATED CONTENT /	9- 12.5.39.	Identify a problem that cannot be solved by either humans or machines alone and discuss a solution for it by decomposing the task into sub-problems suited for a human or machine to accomplish.

EXPECTATION

Alabama Courses of Study Technology Education

Grade 10 - Adopted: 2018

STRAND / DOMAIN	AL.DLCS. 9-12.	Digital Literacy and Computer Science
OBJECTIVE / CATEGORY	9-12.1.	Computational Thinker
STANDARD		Algorithms
RELATED CONTENT / EXPECTATION	9-12.1.3.	Differentiate between a generalized expression of an algorithm in pseudocode and its concrete implementation in a programming language.
GRADE	9-	Explain that some algorithms do not lead to exact solutions in a reasonable amount of time and thus approximations

EXPECTATION 12.1.3.a. are acceptable.

GRADE EXPECTATION	9- 12.1.3.c.	Distinguish when a problem solution requires decisions to be made among alternatives, such as selection constructs, or when a solution needs to be iteratively processed to arrive at a result, such as iterative "loop" constructs or recursion.

GRADE	9-	Evaluate and select algorithms based on performance, reusability, and ease of implementation.
EXPECTATION	12.1.3.d.	

GRADE	9-	Explain how more than one algorithm may solve the same problem and yet be characterized with different priorities.
EXPECTATION	12.1.3.e.	

OBJECTIVE / 9-12.1. Computational Thinker CATEGORY	
STANDARD Algorithms	

RELATED 9-12.1.4. Use and adapt classic algorithms to solve computational problems. CONTENT / EXPECTATION

OBJECTIVE / 9-12.5. Innovative Designer		AL.DLCS. 9-12.	Digital Literacy and Computer Science
		9-12.5.	Innovative Designer
ST ANDARD Human/Computer Partnerships	STANDARD		Human/Computer Partnerships

RELATED	9-	Identify a problem that cannot be solved by either humans or machines alone and discuss a solution for it by
CONTENT /	12.5.39.	decomposing the task into sub-problems suited for a human or machine to accomplish.
EXPECTATION		

Alaska Content and Performance Standards

Mathematics

Grade 9 -	Adopted: 2012
-----------	---------------

PERFORMANCE / CONTENT STANDARD	AK.MP.	Mathematical Practices
GRADE LEVEL EXPECTATION / STRAND	MP.1.	Make sense of problems and persevere in solving them.
GRADE LEVEL EXPECTATION / STRAND	MP.2.	Reason abstractly and quantitatively.
GRADE LEVEL EXPECTATION / STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
GRADE LEVEL EXPECTATION / STRAND	MP.4.	Model with mathematics.

GRADE LEVEL EXPECTATION / STRAND	MP.6.	Attend to precision.
GRADE LEVEL EXPECTATION / STRAND	MP.7.	Look for and make use of structure.
GRADE LEVEL EXPECTATION / STRAND	MP.8.	Look for and express regularity in repeated reasoning.

PERFORMANCE / CONTENT ST ANDARD	AK.HS.F.	Functions
GRADE LEVEL EXPECT ATION / STRAND	F-IF.	Interpreting Functions
GOAL		Interpret functions that arise in applications in terms of the context.
INDICATOR	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

Alaska Content	and Performance	Standards

specified interval. Estimate the rate of change from a graph.

Mathematics

Grade 10 - Adopted: 2012

PERFORMANCE / CONTENT ST ANDARD	AK.MP.	Mathematical Practices
GRADE LEVEL EXPECTATION / STRAND	MP.1.	Make sense of problems and persevere in solving them.
GRADE LEVEL EXPECTATION / STRAND	MP.2.	Reason abstractly and quantitatively.
GRADE LEVEL EXPECTATION / STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
GRADE LEVEL EXPECTATION / STRAND	MP.4.	Model with mathematics.
GRADE LEVEL EXPECTATION / STRAND	MP.6.	Attend to precision.
GRADE LEVEL EXPECTATION / STRAND	MP.7.	Look for and make use of structure.

GRADE LEVEL MP.8. EXPECTATION / STRAND

Look for and express regularity in repeated reasoning.

PERFORMANCE AK.HS.F. Functions / CONTENT STANDARD GRADE LEVEL F-IF. Interpreting Functions **EXPECTATION** / STRAND GOAL Interpret functions that arise in applications in terms of the context. INDICATOR F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

Alaska Content and Performance Standards

specified interval. Estimate the rate of change from a graph.

Science

Grade 9 - Adopted: 2019		
PERFORMANCE / CONTENT STANDARD		HIGH SCHOOL PHYSICAL SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Waves and Electromagnetic Radiation
GOAL	HS-PS4-	Evaluate questions about the advantages and disadvantages of using digital transmission and storage of information

HS-PS4- Evaluate questions about the advantages and disadvantages of using digital transmission and storage of information 2. with respect to that of forms other than digital, including analog.

PERFORMANCE / CONTENT STANDARD		HIGH SCHOOL LIFE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Matter and Energy in Organisms and Ecosystems
GOAL	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

GOAL	HS-LS2-	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the
	5.	biosphere, atmosphere, hydrosphere, and geosphere.

PERFORMANCE / CONTENT STANDARD		HIGH SCHOOL LIFE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Interdependent Relationships in Ecosystems
GOAL	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GOAL	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
GOAL	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

PERFORMANCE / CONTENT STANDARD	HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND	Earth's Systems

GOAL

HS-

Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, ESS2-6. and biosphere.

PERFORMANCE / CONTENT STANDARD	HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND	Weather and Climate

GOAL

Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in HS-ESS2-4. climate.

PERFORMANCE / CONTENT ST ANDARD		HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Human Sustainability
GOAL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GOAL	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GOAL	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
GOAL	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

PERFORMANCE / CONTENT ST ANDARD		HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Engineering Design
GOAL	HS- ETS1-1.	Analyze major global challenges to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GOAL	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GOAL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Science

Grade 10 - Adopted: 2019

Grade 10 - Adopted: 2019		
PERFORMANCE / CONTENT ST ANDARD		HIGH SCHOOL PHYSICAL SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Waves and Electromagnetic Radiation
GOAL	HS-PS4- 2.	Evaluate questions about the advantages and disadvantages of using digital transmission and storage of information with respect to that of forms other than digital, including analog.
PERFORMANCE / CONTENT STANDARD		HIGH SCHOOL LIFE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Matter and Energy in Organisms and Ecosystems
GOAL	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
GOAL	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANCE / CONTENT STANDARD		HIGH SCHOOL LIFE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Interdependent Relationships in Ecosystems
GOAL	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GOAL	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
GOAL	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
PERFORMANCE / CONTENT STANDARD		HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Earth's Systems
GOAL	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
PERFORMANCE / CONTENT ST ANDARD		HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Weather and Climate

 GOAL
 HS Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in ESS2-4.

 climate.
 Climate.

PERFORMANCE / CONTENT ST ANDARD		HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Human Sustainability
GOAL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GOAL	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GOAL	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
GOAL	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
PERFORMANCE / CONTENT STANDARD		HIGH SCHOOL EARTH AND SPACE SCIENCES
GRADE LEVEL EXPECTATION / STRAND		Engineering Design
GOAL	HS- ETS1-1.	Analyze major global challenges to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GOAL	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GOAL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Alaska Content and Performance Standards

Technology Education Grade 9 - Adopted: 2019

PERFORMANCE / CONTENT ST ANDARD		Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND		Entry Level Employment Competence
GOAL		Algorithms and Programming
INDICATOR		Algorithms
INDICATOR	L1.AP.A.0 1.	Use algorithms (e.g., sequencing, selection, iteration, recursion, etc.) to create a prototype to provide a possible solution for a common problem.

PERFORMANCE / CONTENT ST ANDARD		Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND		Entry Level Employment Competence
GOAL		Algorithms and Programming
INDICATOR		Control
INDICATOR	L1.AP.C. 02.	Develop an eventIbased program that will solve a practical problem, or allow selfIexpression.
PERFORMANCE / CONTENT STANDARD		Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND		Post-Secondary Education
GOAL		Algorithms and Programming
INDICATOR		Algorithms
INDICATOR	L2.AP.A.0 2.	Develop an artificial intelligence algorithm to play a game against a human opponent or solve a common problem.
PERFORMANCE / CONTENT STANDARD		Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND		Post-Secondary Education
GOAL		Algorithms and Programming
INDICATOR		Program Development
INDICATOR	L2.AP.PD .02.	Using the software life cycle process, create software that will provide solutions for a variety of users.
PERFORMANCE / CONTENT STANDARD		Alaska Digital Literacy Standards
GRADE LEVEL EXPECTATION / STRAND		Innovative Design
GOAL		Students engage in a design process and employ it to generate ideas, create innovative products or solve authentic problems.
GOAL		Students engage in a design process to develop, test and revise prototypes, embracing the cyclical process of trial and error and understanding problems or setbacks as potential opportunities for improvement.
GOAL		Students demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.

PERFORMANCE / CONTENT STANDARD		Alaska Digital Literacy Standards
GRADE LEVEL EXPECTATION / STRAND		Computational Thinking
GOAL	6- 12.CT.1.	Students practice defining problems to solve by computing for data analysis, modeling or algorithmic thinking.
GOAL	6- 12.CT.3.	Students break problems into component parts, identify key pieces and use that information to problem solve.
GOAL	6- 12.CT.4.	Students demonstrate an understanding of how automation works and use algorithmic thinking to design and automate solutions.

Alaska Content and Performance Standards

Technology Education

Grade 10 - Adopted: 2019

PERFORMANCE / CONTENT ST ANDARD		Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND		Entry Level Employment Competence
GOAL		Algorithms and Programming
INDICATOR		Algorithms
INDICATOR	L1.AP.A.0 1.	Use algorithms (e.g., sequencing, selection, iteration, recursion, etc.) to create a prototype to provide a possible solution for a common problem.

PERFORMANCE / CONTENT STANDARD	Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND	Entry Level Employment Competence
GOAL	Algorithms and Programming
INDICATOR	Control

INDICATOR $\label{eq:L1.AP.C.} L1.AP.C. \quad Develop \ an event based program that will solve a practical problem, or allow self expression.$ 02.

PERFORMANCE / CONTENT STANDARD	Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND	Post-Secondary Education
GOAL	Algorithms and Programming
INDICATOR	Algorithms

INDICATOR

L2.AP.A.0 Develop an artificial intelligence algorithm to play a game against a human opponent or solve a common problem.

2.

PERFORMANCE / CONTENT STANDARD	Alaska Computer Science Standards
GRADE LEVEL EXPECTATION / STRAND	Post-Secondary Education
GOAL	Algorithms and Programming
INDICATOR	Program Development

INDICATOR

.02.

L2.AP.PD Using the software life cycle process, create software that will provide solutions for a variety of users.

PERFORMANCE / CONTENT ST ANDARD		Alaska Digital Literacy Standards
GRADE LEVEL EXPECTATION / STRAND		Innovative Design
GOAL	6-12.ID.1.	Students engage in a design process and employ it to generate ideas, create innovative products or solve authentic problems.
GOAL	6-12.ID.3.	Students engage in a design process to develop, test and revise prototypes, embracing the cyclical process of trial and error and understanding problems or setbacks as potential opportunities for improvement.
GOAL	6- 12.ID.4.	Students demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
PERFORMANCE / CONTENT ST ANDARD		Alaska Digital Literacy Standards
/ CONTENT		Alaska Digital Literacy Standards Computational Thinking
/ CONTENT STANDARD GRADE LEVEL EXPECTATION	6- 12.CT.1.	
/ CONTENT STANDARD GRADE LEVEL EXPECTATION / STRAND	-	Computational Thinking

Arizona's College and Career Ready Standards

Mathematics

		Grade 9 - Adopted: 2018
STRAND		Standards for Mathematical Practice
CONCEPT / STANDARD	MP.1	Make sense of problems and persevere in solving them.
CONCEPT / STANDARD	MP.2	Reason abstractly and quantitatively.

CONCEPT / STANDARD	MP.3	Construct viable arguments and critique the reasoning of others.
CONCEPT / STANDARD	MP.4	Model with mathematics.
CONCEPT / STANDARD	MP.6	Attend to precision.
CONCEPT / STANDARD	MP.7	Look for and make use of structure.
CONCEPT / STANDARD	MP.8	Look for and express regularity in repeated reasoning.

STRAND		Algebra 1
CONCEPT / STANDARD	A1.F-IF	Functions – Interpreting Functions (F-IF)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.F- IF.B	Interpret functions that arise in applications in terms of the context.
		Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on

OBJECTIVE /	A1.F-	Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on
GRADE LEVEL	IF.B.6	a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world
EXPECTATION		context. Focus on linear, absolute value, quadratic, and exponential functions.

STRAND		Algebra 2
CONCEPT / STANDARD	A2.F-IF	Functions – Interpreting Functions (F-IF)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A2.F- IF.B	Interpret functions that arise in applications in terms of the context.
	A2E	Calculate and interpret the average rate of change of a continuous function (precented symbolically or as a table) on

OBJECTIVE /	A2.F-	Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on
GRADE LEVEL	IF.B.6	a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world
EXPECTATION		context. Extend from linear, quadratic and exponential functions to include polynomial, radical, logarithmic, rational,
		sine, cosine, tangent, exponential, and piecewise-defined functions.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.1	Make sense of problems and persevere in solving them.

Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.3	Construct viable arguments and critique the reasoning of others.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their

STRANDPrecalculusCONCEPT /
STANDARDPC.MPStandards for Mathematical PracticePERFORMANC
E OBJECTIVE /
PROFICIENCY
LEVELPC.MP.4Model with mathematics.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Attend to precision.0

Mathematically proficient students clearly communicate to others using appropriate mathematical terminology, and craft explanations that convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Look for and make use of structure.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students use structure and patterns to assist in making connections among mathematical ideas or concepts when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective when needed.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.8	Look for and express regularity in repeated reasoning.
OBJECTIVE /		Mathematically proficient students look for and describe regularities as they solve multiple related problems. They

GRADE LEVEL EXPECTATION Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Statistical and Probabilistic Reasoning (SPR)
PERFORMANC E OBJECTIVE / PROFICIENCY	QR.SPR. 4:	Represent center, shape, and spread of two or more data sets. Reason, communicate, and compare data sets in context.

LEVEL

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 1	Make sense of problems and persevere in solving them.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Quantitative Reasoning
CONCEPT / ST ANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 3	Construct viable arguments and critique the reasoning of others.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 4	Model with mathematics.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Attend to precision.0

Mathematically proficient students clearly communicate to others using appropriate mathematical terminology, and craft explanations that convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.

STRAND		Quantitative Reasoning
CONCEPT / ST ANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE PROFICIENCY LEVEL		Look for and make use of structure.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students use structure and patterns to assist in making connections among mathematical ideas or concepts when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective when needed.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	-	Look for and express regularity in repeated reasoning.
		Mathematically proficient students look for and describe regularities as they solve multiple related problems. They

OBJECTIVE /Mathematically proficient students look for and describe regularities as they solve multiple related problems. TheyGRADE LEVELformulate conjectures about what they notice and communicate observations with precision. While solving problems,EXPECTATIONstudents maintain oversight of the process and continually evaluate the reasonableness of their results. This informs
and strengthens their understanding of the structure of mathematics which leads to fluency.

Arizona's College and Career Ready Standards

Ma	thematics
0	

STRAND		Standards for Mathematical Practice
CONCEPT / STANDARD	MP.1	Make sense of problems and persevere in solving them.
CONCEPT / STANDARD	MP.2	Reason abstractly and quantitatively.
CONCEPT / STANDARD	MP.3	Construct viable arguments and critique the reasoning of others.
CONCEPT / STANDARD	MP.4	Model with mathematics.
CONCEPT / STANDARD	MP.6	Attend to precision.
CONCEPT / STANDARD	MP.7	Look for and make use of structure.

CONCEPT / STANDARD

MP.8 Look for and express regularity in repeated reasoning.

STRAND		Algebra 1
CONCEPT / STANDARD	A1.F-IF	Functions – Interpreting Functions (F-IF)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.F- IF.B	Interpret functions that arise in applications in terms of the context.

OBJECTIVE / A1.F-Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on GRADE LEVEL IF.B.6 a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world EXPECTATION context. Focus on linear, absolute value, quadratic, and exponential functions.

STRAND		Algebra 2
CONCEPT / STANDARD	A2.F-IF	Functions – Interpreting Functions (F-IF)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A2.F- IF.B	Interpret functions that arise in applications in terms of the context.
OBJECTIVE / GRADE LEVEL EXPECTATION	A2.F- IF.B.6	Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world context. Extend from linear, quadratic and exponential functions to include polynomial, radical, logarithmic, rational,

context. Extend from linear, quadratic and exponential functions to include polynomial, radical, logarithmic, rational, sine, cosine, tangent, exponential, and piecewise-defined functions.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.1	Make sense of problems and persevere in solving them.

OBJECTIVE / GRADE LEVEL **EXPECTATION** Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Precalculus
CONCEPT / ST ANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.2	Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.3	Construct viable arguments and critique the reasoning of others.

OBJECTIVE / GRADE LEVEL EXPECTATION

STRAND

Precalculus

Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.4	Model with mathematics.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.6	Attend to precision.0
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students clearly communicate to others using appropriate mathematical terminology, and craft explanations that convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.

CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.7	Look for and make use of structure.
OBJECTIVE /		Mathematically proficient students use structure and patterns to assist in making connections among mathematical

GRADE LEVEL EXPECTATION Mathematically proficient students use structure and patterns to assist in making connections among mathematical ideas or concepts when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective when needed.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.8	Look for and express regularity in repeated reasoning.
OBJECTIVE /		Mathematically proficient students look for and describe regularities as they solve multiple related problems. They

GRADE LEVEL EXPECTATION Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Statistical and Probabilistic Reasoning (SPR)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.SPR. 4:	Represent center, shape, and spread of two or more data sets. Reason, communicate, and compare data sets in context.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 1	Make sense of problems and persevere in solving them.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and

work on the problem, and plan and choose a solution patiway. While engaging in productive stuggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 2	Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	-	Construct viable arguments and critique the reasoning of others.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	.	Model with mathematics.
OBJECTIVE /		Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life,

GRADE LEVEL EXPECTATION Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 6	Attend to precision.0
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students clearly communicate to others using appropriate mathematical terminology, and craft explanations that convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.
STRAND		Quantitative Reasoning

CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 7	Look for and make use of structure.
OBJECTIVE /		Mathematically proficient students use structure and patterns to assist in making connections among mathematical

GRADE LEVEL EXPECTATION Mathematically proficient students use structure and patterns to assist in making connections among mathematical ideas or concepts when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective when needed.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 8	Look for and express regularity in repeated reasoning.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs

Arizona's College and Career Ready Standards

and strengthens their understanding of the structure of mathematics which leads to fluency.

Science

Grade 9 - Adopted: 2018

STRAND		Core Ideas for Knowing Science
CONCEPT / STANDARD		Earth and Space Science
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	E1:	The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
STRAND		Core Ideas for Using Science
ST RAND CONCEPT / STANDARD	U2:	Core Ideas for Using Science The knowledge produced by science is used in engineering and technologies to solve problems and/or create products.

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Weather & Climate

OBJECTIVE /	HS+E.E1	Develop and use models to describe how variations in the flow of energy into and out of Earth's systems result in
GRADE LEVEL	U1.2.	changes in climate.
EXPECTATION		

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Roles of Water in Earth's Surface Processes

OBJECTIVE /	HS.E1U1.	Develop and use models of the Earth that explains the role of energy and matter in Earth's constantly changing
GRADE LEVEL	12.	internal and external systems (geosphere, hydrosphere, atmosphere, biosphere).
EXPECTATION		

STRAND		High School Earth and Space Sciences
CONCEPT / ST ANDARD		Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Earth and Human Activity
OBJECTIVE / GRADE LEVEL EXPECTATION	HS.E1U3. 14.	Engage in argument from evidence about the availability of natural resources, occurrence of natural hazards, changes in climate, and human activity and how they influence each other.
OBJECTIVE / GRADE LEVEL EXPECTATION	HS+E.E1 U3.9.	Construct an explanation, based on evidence, for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
OBJECTIVE / GRADE LEVEL	HS+E.E1 U3.11.	Develop and use a quantitative model to illustrate the relationship among Earth systems and the degree to which those relationships are being modified due to human activity.

OIVIDE	
EXPECT	ATION

STRAND		High School Life Sciences
CONCEPT / ST ANDARD		Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms & L4: The unity and diversity of organisms, living and extinct, is the result of evolution.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Ecosystems
OBJECTIVE / GRADE LEVEL EXPECTATION	HS.L2U3. 18.	Obtain, evaluate, and communicate about the positive and negative ethical, social, economic, and political implications of human activity on the biodiversity of an ecosystem.
OBJECTIVE / GRADE LEVEL EXPECTATION	HS+B.L4 U1.2.	Engage in argument from evidence that changes in environmental conditions or human interventions may change species diversity in an ecosystem.
STRAND		High School Life Sciences

CONC ST ANI	 Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms.

PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Ecosystems
OBJECTIVE / GRADE LEVEL EXPECTATION	HS.L2U1. 19.	Develop and use models that show how changes in the transfer of matter and energy within an ecosystem and interactions between species may affect organisms and their environment.

OBJECTIVE /	HS+B.L2	Use mathematics and computational thinking to support claims for the cycling of matter and flow of energy through
GRADE LEVEL	U1.3.	trophic levels in an ecosystem.
EXPECTATION		

STRAND		High School Life Sciences
CONCEPT / STANDARD		Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Cells & Organisms
OBJECTIVE / GRADE LEVEL	HS.L2U1. 21.	Obtain, evaluate, and communicate data showing the relationship of photosynthesis and cellular respiration; flow of energy and cycling of matter.

Arizona's College and Career Ready Standards

EXPECTATION

Science

Grade 10 - Adopted: 2018

STRAND		Core Ideas for Knowing Science
CONCEPT / STANDARD		Earth and Space Science
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	E1:	The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.

STRAND		Core Ideas for Using Science
CONCEPT / STANDARD	U2:	The knowledge produced by science is used in engineering and technologies to solve problems and/or create products.
CONCEPT / STANDARD	U3:	Applications of science often have both positive and negative ethical, social, economic, and/or political implications.

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Weather & Climate

OBJECTIVE /HS+E.E1Develop and use models to describe how variations in the flow of energy into and out of Earth's systems result in
changes in climate.GRADE LEVELU1.2.changes in climate.EXPECTATION

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Roles of Water in Earth's Surface Processes

12.

HS.E1U1. Develop and use models of the Earth that explains the role of energy and matter in Earth's constantly changing internal and external systems (geosphere, hydrosphere, atmosphere, biosphere).

STRAND High School Earth and Space Sciences **CONCEPT /** Earth and Space - E1: The composition of the Earth and its atmosphere and the natural and human **STANDARD** processes occurring within them shape the Earth's surface and its climate. PERFORMANC Earth and Human Activity E OBJECTIVE / PROFICIENCY LEVEL OBJECTIVE / HS.E1U3. Engage in argument from evidence about the availability of natural resources, occurrence of natural hazards, **GRADE LEVEL** 14. changes in climate, and human activity and how they influence each other. EXPECTATION OBJECTIVE / HS+E.E1 Construct an explanation, based on evidence, for how the availability of natural resources, occurrence of natural **GRADE LEVEL** U3.9. hazards, and changes in climate have influenced human activity. **EXPECTATION** OBJECTIVE / HS+E.E1 Develop and use a quantitative model to illustrate the relationship among Earth systems and the degree to which

```
GRADE LEVEL
                 U3.11.
                            those relationships are being modified due to human activity.
EXPECTATION
```

STRAND		High School Life Sciences
CONCEPT / STANDARD		Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms & L4: The unity and diversity of organisms, living and extinct, is the result of evolution.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Ecosystems
OBJECTIVE / GRADE LEVEL EXPECTATION	HS.L2U3. 18.	Obtain, evaluate, and communicate about the positive and negative ethical, social, economic, and political implications of human activity on the biodiversity of an ecosystem.

OBJECTIVE /	HS+B.L4	Engage in argument from evidence that changes in environmental conditions or human interventions may change
GRADE LEVEL	U1.2.	species diversity in an ecosystem.
EXPECTATION		

STRAND	High School Life Sciences
CONCEPT / STANDARD	Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Ecosystems

OBJECTIVE /	HS.L2U1.	Develop and use models that show how changes in the transfer of matter and energy within an ecosystem and
GRADE LEVEL	19.	interactions between species may affect organisms and their environment.
EXPECTATION		

OBJECTIVE /HS+B.L2Use mathematics and computational thinking to support claims for the cycling of matter and flow of energy throughGRADE LEVELU1.3.trophic levels in an ecosystem.EXPECTATION

STRAND	High School Life Sciences
CONCEPT / STANDARD	Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Cells & Organisms

OBJECTIVE /HS.L2U1.Obtain, evaluate, and communicate data showing the relationship of photosynthesis and cellular respiration; flow ofGRADE LEVEL21.energy and cycling of matter.EXPECTATIONEXPECTATION

Arizona's College and Career Ready Standards

Technology Education Grade 9 - Adopted: 2022

STRAND		Arizona Educational Technology Standards 2022
CONCEPT / STANDARD	Standar d 4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STRAND		Arizona Educational Technology Standards 2022
CONCEPT / STANDARD	Standar d 5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
E OBJECTIVE / PROFICIENCY		

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 3.	Recognizing and Defining Computational Problems: The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
OBJECTIVE / GRADE LEVEL EXPECTATION	3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
OBJECTIVE / GRADE LEVEL EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 5.	Creating Computational Artifacts: The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

 OBJECTIVE /
 5.2.
 Create a computational artifact for practical intent, personal expression, or to address a societal issue.

 GRADE LEVEL
 EXPECTATION

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 6.	Testing and Refining Computational Artifacts: Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts.
OBJECTIVE / GRADE LEVEL EXPECTATION	6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
OBJECTIVE / GRADE LEVEL EXPECTATION	6.3.	Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility.

STRAND	Computer Science
CONCEPT / STANDARD	Concept: Algorithms and Programming (AP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Subconcept: Algorithms (A)

OBJECTIVE /	HS.AP.A.	Create prototypes that use algorithms for practical intent, personal expression, or to address a societal issue.
GRADE LEVEL	1.	Practice(s): Creating Computational Artifacts: 5.2
EXPECTATION		

STRAND	Computer Science
CONCEPT / STANDARD	Concept: Impacts of Computing (IC)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Subconcept: Culture (C)

OBJECTIVE /HS.IC.C.3Demonstrate ways a given algorithm applies to problems across disciplines. Practice(s): Recognizing and DefiningGRADE LEVEL.Computational Problems: 3.1EXPECTATION..

Arizona's College and Career Ready Standards

Technology Education

Grade 10 - Adopted: 2022

STRAND		Arizona Educational Technology Standards 2022
CONCEPT / STANDARD	Standar d 4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
PERFORMANC	9-12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and

E OBJECTIVE / calculated risks.

LEVEL

STRAND		Arizona Educational Technology Standards 2022
CONCEPT / STANDARD	Standar d 5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.c.	Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
		Grade 10 - Adopted: 2018
STRAND		Computer Science

CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 3.	Recognizing and Defining Computational Problems: The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
OBJECTIVE / GRADE LEVEL EXPECTATION	3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
OBJECTIVE / GRADE LEVEL EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 5.	Creating Computational Artifacts: The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

OBJECTIVE / GRADE LEVEL 5.2.

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

EXPECTATION

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 6.	Testing and Refining Computational Artifacts: Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts.
OBJECTIVE / GRADE LEVEL EXPECTATION	6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
OBJECTIVE /	6.3.	Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and

GRADE LEVEL accessibility. EXPECTATION

STRAND	Computer Science
CONCEPT / ST ANDARD	Concept: Algorithms and Programming (AP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Subconcept: Algorithms (A)

HS.AP.A. Create prototypes that use algorithms for practical intent, personal expression, or to address a societal issue. OBJECTIVE / GRADE LEVEL Practice(s): Creating Computational Artifacts: 5.2 1. EXPECTATION

STRAND	Computer Science
CONCEPT / ST ANDARD	Concept: Impacts of Computing (IC)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Subconcept: Culture (C)

 OBJECTIVE /
 HS.IC.C.3
 Demonstrate ways a given algorithm applies to problems across disciplines. Practice(s): Recognizing and Defining

 GRADE LEVEL
 .
 Computational Problems: 3.1

 EXPECTATION
 .

Arkansas Standards Mathematics Grade 9 - Adopted: 2023

STRAND / TOPIC		Algebra I Mathematics Standards
CONTENT ST ANDARD	A1.LFE.	Linear Functions, Equations, & Inequalities
PERFORMANC E EXPECTATION		Interpret Key Features - Students interpret key features of equations that model linear relationships.
BENCHMARK / PROFICIENCY	A1.LFE.8.	Flexibly use different representations of a linear function, including graphs, tables, and equations.
		Coloulate and interpret the rate of change of a linear function represented in a table, graph, or as an equation in

BENCHMARK /	A1.LFE.9.	Calculate and interpret the rate of change of a linear function represented in a table, graph, or as an equation in
PROFICIENCY		context of real-world and mathematical problems.

Grade 9 - Adopted: 2016

STRAND / TOPIC	Algebra I Part A
CONTENT STANDARD	Interpreting Functions
PERFORMANC E EXPECT AT ION	Interpret functions that arise in applications in terms of the context

BENCHMARK /HSF.IF.B.Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aPROFICIENCY6specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC	Algebra I Part B
CONTENT STANDARD	Interpreting Functions
PERFORMANC E EXPECTATION	Interpret functions that arise in applications in terms of the context
	Coloulate and interpret the overage rate of change of a function (precented algebraically or as a table) over a

BENCHMARK / H PROFICIENCY 6

HSF.IF.B. Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a
specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC	Algebra II
CONTENT ST ANDARD	Interpreting Functions

	PERFORMAN E EXPECTATIO		Interpret functions that arise in applications in terms of the context
--	------------------------------	--	--

BENCHMARK /HSF.IF.B.Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aPROFICIENCY6specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC	Bridge to Algebra II
CONTENT STANDARD	Function Modeling
PERFORMANC E EXPECTATION	Create equations that describe numbers or relationships, interpret functions that arise in applications in terms of a context, analyze functions using different representations, build a function that models a relationship between two quantities, and build new functions from existing functions.

BENCHMARK / FM.3. PROFICIENCY II.7

FM.3.BTACalculate and interpret the average rate of change of a function (presented algebraically or as a table) over aII.7specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC	Pre-Calculus
CONTENT STANDARD	Functions
PERFORMANC E EXPECTATION	Students will be able to interpret different types of functions and their key characteristics including polynomial, exponential, logarithmic, power, trigonometric, rational, and other types of functions.

BENCHMARK / F

F.7.PC.5 Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a specified interval. Estimate the rate of change from a graph.

Grade 9 - Adopted: 2017

STRAND / TOPIC	Quantitative Literacy
CONTENT STANDARD	Modeling
PERFORMANC E EXPECTATION	Students will use appropriate mathematical models to solve problems.

BENCHMARK / M.1.QL.2 Analyze mathematical models, describe limitations, and suggest improvements PROFICIENCY

STRAND / TOPIC	Quantitative Literacy
CONTENT STANDARD	Numerical Reasoning
PERFORMANC E EXPECTATION	Students will use number sense and proportional reasoning in real world settings to make and communicate decisions in order to draw conclusions based on quantitative analysis.

BENCHMARK / NR.2.QL. Solve real world problems requiring interpretation and comparison of various representations of rates and ratios PROFICIENCY 6

STRAND / TOPIC	Quantitative Literacy
CONTENT STANDARD	Statistics and Probability

PERFORMANC E EXPECTATION	Students will apply statistical and probabilistic reasoning to draw conclusions, to make decisions, and to evaluate outcomes of decisions.

BENCHMARK /SP.3.QL.Make decisions about data summarized numerically using measures of center: compare measures of center of twoPROFICIENCY4or more data sets; interpret the differences in context; justify the use of a chosen measure

STRAND / TOPIC		Technical Math for College and Career
CONTENT STANDARD		Numerical and Proportional Reasoning
PERFORMANC E EXPECTATION	NPR.1.	Students will use number sense and proportional reasoning in real-world scenarios to make and communicate decisions in order to draw conclusions.

BENCHMARK / NI PROFICIENCY .5

NPR.1.TM Utilize real-world scenarios requiring interpretation and comparison of various representations of rates, ratios, and .5 proportions including scale drawings

STRAND / TOPIC		Technical Math for College and Career
CONTENT STANDARD		Mathematical Processes and Models
PERFORMANC E EXPECTATION	MPM.2.	Students will use mathematical processes and models to acquire, demonstrate, and communicate mathematical understanding in real-world scenarios.
BENCHMARK / PROFICIENCY	MPM.2.T M.3	Create mathematical models and use problem-solving skills, independently and as a collaborative team, for real-world scenarios to
DESCRIPTOR		formulate a plan or strategy
DESCRIPTOR		describe limitations
DESCRIPTOR		identify how results are affected by changing parameters(e.g., cost of materials, cost of labor, work time required to improve the overall cost of a project)

DESCRIPTOR suggest improvements

STRAND /
TOPICTechnical Math for College and CareerCONTENT
STANDARDMathematical Processes and ModelsPERFORMANC
EXPECT ATIONMPM.2.Students will use mathematical processes and models to acquire, demonstrate, and communicate
mathematical understanding in real-world scenarios.

BENCHMARK /MPM.2.TDemonstrate effective use of resources (e.g., faculty, other students, reference materials, industry resources, thePROFICIENCYM.5internet)

STRAND / TOPIC	Technical Math for College and Career
CONTENT ST AND ARD	Algebraic Relationships

PERFORMANC E EXPECTATION		Students will use mathematical concepts of algebra to explain linear and non-linear applications in real-world scenarios.
--------------------------------	--	---

BENCHMARK / AR.3.TM. Analyze and apply rate of change in terms of real-world scenarios (e.g., rise and run of stair stringers, roof pitch) PROFICIENCY 1

Arkansas Standards Mathematics Grade 10 - Adopted: 2023

STRAND /
TOPICAllebra I Mathematics StandardsCONTENT
STANDARDA1.LFE.Linear Functions, Equations, & InequalitiesPERFORMANC
EXPECT ATIONInterpret Key Features - Students interpret key features of equations that model linear relationships.BENCHMARK /
PROFICIENCYA1.LFE.8.Flexibly use different representations of a linear function, including graphs, tables, and equations.

BENCHMARK /	A1.LFE.9.	Calculate and interpret the rate of change of a linear function represented in a table, graph, or as an equation in
PROFICIENCY		context of real-world and mathematical problems.

Grade 10 - Adopted: 2016

STRAND / TOPIC	Algebra I Part A
CONTENT STANDARD	Interpreting Functions
PERFORMANC E EXPECTATION	Interpret functions that arise in applications in terms of the context

BENCHMARK /HSF.IF.B.Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aPROFICIENCY6specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC	Algebra I Part B
CONTENT STANDARD	Interpreting Functions
PERFORMANC E EXPECTATION	Interpret functions that arise in applications in terms of the context

BENCHMARK / HSF.IF.B PROFICIENCY 6

HSF.IF.B. Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aspecified interval. Estimate the rate of change from a graph.

STRAND / TOPIC	Algebra II
CONTENT STANDARD	Interpreting Functions
PERFORMANC E EXPECT AT ION	Interpret functions that arise in applications in terms of the context

BENCHMARK /HSF.IF.B.Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aPROFICIENCY6specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC	Bridge to Algebra II
CONTENT STANDARD	Function Modeling
PERFORMANC E EXPECTATION	Create equations that describe numbers or relationships, interpret functions that arise in applications in terms of a context, analyze functions using different representations, build a function that models a relationship between two quantities, and build new functions from existing functions.

BENCHMARK /FM.3.BTACalculate and interpret the average rate of change of a function (presented algebraically or as a table) over aPROFICIENCYII.7specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC		Pre-Calculus
CONTENT STANDARD		Functions
PERFORMANC E EXPECTATION		Students will be able to interpret different types of functions and their key characteristics including polynomial, exponential, logarithmic, power, trigonometric, rational, and other types of functions.
BENCHMARK /	F.7.PC.5	Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a

 BENCHMARK /
 F.7.PC.5
 Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a

 PROFICIENCY
 specified interval. Estimate the rate of change from a graph.

Grade 10 - Adopted: 2017

STRAND / TOPIC	Quantitative Literacy
CONTENT STANDARD	Modeling
PERFORMANC E EXPECTATION	Students will use appropriate mathematical models to solve problems.

BENCHMARK / M.1.QL.2 Analyze mathematical models, describe limitations, and suggest improvements PROFICIENCY

STRAND / TOPIC	Quantitative Literacy
CONTENT STANDARD	Numerical Reasoning
PERFORMANC E EXPECT AT ION	Students will use number sense and proportional reasoning in real world settings to make and communicate decisions in order to draw conclusions based on quantitative analysis.

BENCHMARK / NR.2.QL. Solve real world problems requiring interpretation and comparison of various representations of rates and ratios PROFICIENCY 6

STRAND / TOPIC	Quantitative Literacy
CONTENT STANDARD	Statistics and Probability
PERFORMANC E EXPECTATION	Students will apply statistical and probabilistic reasoning to draw conclusions, to make decisions, and to evaluate outcomes of decisions.

BENCHMARK /SP.3.QL.Make decisions about data summarized numerically using measures of center: compare measures of center of twoPROFICIENCY4or more data sets; interpret the differences in context; justify the use of a chosen measure

Grade 10 - Adopted: 2019		
STRAND / TOPIC		Technical Math for College and Career
CONTENT STANDARD		Numerical and Proportional Reasoning
PERFORMANC E EXPECTATION	NPR.1.	Students will use number sense and proportional reasoning in real-world scenarios to make and communicate decisions in order to draw conclusions.

BENCHMARK /NPR.1.TMUtilize real-world scenarios requiring interpretation and comparison of various representations of rates, ratios, andPROFICIENCY.5proportions including scale drawings

	Technical Math for College and Career
	Mathematical Processes and Models
MPM.2.	Students will use mathematical processes and models to acquire, demonstrate, and communicate mathematical understanding in real-world scenarios.
MPM.2.T M.3	Create mathematical models and use problem-solving skills, independently and as a collaborative team, for real-world scenarios to
	formulate a plan or strategy
	describe limitations
	identify how results are affected by changing parameters(e.g., cost of materials, cost of labor, work time required to improve the overall cost of a project)
	MPM.2. MPM.2.T

DESCRIPTOR

suggest improvements

STRAND / TOPIC		Technical Math for College and Career
CONTENT STANDARD		Mathematical Processes and Models
PERFORMANC E EXPECTATION	MPM.2.	Students will use mathematical processes and models to acquire, demonstrate, and communicate mathematical understanding in real-world scenarios.
BENCHMARK / PROFICIENCY	MPM.2.T M.5	Demonstrate effective use of resources (e.g., faculty, other students, reference materials, industry resources, the internet)
STRAND / TOPIC		Technical Math for College and Career
CONTENT STANDARD		Algebraic Relationships
PERFORMANC E EXPECTATION	AR.3.	Students will use mathematical concepts of algebra to explain linear and non-linear applications in real-world scenarios.

BENCHMARK /	AR.3.TM.	Analyze and apply rate of change in terms of real-world scenarios (e.g., rise and run of stair stringers, roof pitch)
PROFICIENCY	1	

Arkansas Standards Science

Grade 9 - Adopted: 2016

STRAND / TOPIC	AR.BI.	Biology – Integrated
CONTENT STANDARD		Cycling of Matter and Energy
PERFORMANC E EXPECTATION	BI-LS2-3.	Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.
PERFORMANC E EXPECTATION	BI-LS2-4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E EXPECTATION	BI-LS2-5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANC E EXPECTATION	BI-ESS2- 6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / TOPIC	AR.BI.	Biology – Integrated
CONTENT STANDARD		Biodiversity and Population Dynamics
PERFORMANC E EXPECTATION	BI-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANC E EXPECTATION		Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
PERFORMANC E EXPECTATION	BI-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on Biodiversity.
PERFORMANC E EXPECTATION	BI3- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
PERFORMANC E EXPECTATION	BI3- ETS1-4.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
STRAND / TOPIC	AR.BI.	Biology – Integrated

CONTENT STANDARD		Life and Earth's Systems
PERFORMANC E EXPECTATION	BI-ESS2- 4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
PERFORMANC E EXPECTATION	BI-ESS3- 5.	Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.
PERFORMANC E EXPECTATION	BI6- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
PERFORMANC E EXPECTATION	BI6- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STRAND / TOPIC	AR.BI.	Biology – Integrated
CONTENT STANDARD		Human Impacts on Earth's Systems
PERFORMANC E EXPECTATION	BI-ESS3- 1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	BI-ESS3- 2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	BI-ESS3- 3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	BI-ESS3- 6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
PERFORMANC E EXPECTATION	BI7- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANC E EXPECTATION	BI7- ETS1-4.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
STRAND / TOPIC	AR.CI.	Chemistry – Integrated
CONTENT ST ANDARD		Nuclear Reactions
PERFORMANC E EXPECTATION	Cl2- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

STRAND / TOPIC	AR.ES.	Earth Science
CONTENT STANDARD		Earth's Systems
PERFORMANC E EXPECTATION	ES- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
PERFORMANC E EXPECTATION	ES2- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STRAND / TOPIC	AR.ES.	Earth Science
CONTENT STANDARD		Human Sustainability
PERFORMANC E EXPECTATION	ES- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	ES- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	ES- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	ES- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
PERFORMANC E EXPECTATION	ES- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STRAND / TOPIC	AR.ES.	Earth Science
CONTENT STANDARD		Weather and Climate
PERFORMANC E EXPECTATION	ES- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT STANDARD		Systems

PERFORMANC E EXPECTATION	EVS- ESS3-5.	Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.
		Analyze a major stabel shellower to encosify suplitative and supplicative arithmic and constraints for colutions that

PERFORMANC	EVS1-	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that
E	ETS1-1.	account for societal needs and wants.
EXPECTATION		

STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT ST AND ARD		Energy

PERFORMANCEVS-Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes inEESS2-4.climate.

EXPECTATION

STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT STANDARD		Populations
PERFORMANC E EXPECTATION	EVS- LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANC E	EVS3- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and

EXPECTATION environmental impacts.

STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT STANDARD		Sustainability
PERFORMANC E EXPECTATION	EVS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrences of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	EVS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	EVS- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	EVS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
PERFORMANC E EXPECTATION	EVS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

PERFORMANC E EXPECTATION	EVS- LS2-7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity
PERFORMANC E EXPECTATION	EVS- LS4-6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
PERFORMANC E EXPECTATION	EVS4- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STRAND / TOPIC	AR.PSI.	Physical Science – Integrated
CONTENT ST ANDARD		Matter in Organisms
PERFORMANC E EXPECTATION	PSI-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STRAND / TOPIC	AR.PSI.	Physical Science – Integrated
CONTENT ST ANDARD		Forces and Motion
PERFORMANC E EXPECTATION	PSI3- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
LAFECTATION		
STRAND / TOPIC	AR.PSI.	Physical Science – Integrated
STRAND /	AR.PSI.	Physical Science – Integrated Waves
STRAND / TOPIC CONTENT	AR.PSI. PSI- PS4-2.	
STRAND / TOPIC CONTENT STANDARD PERFORMANC E	PSI-	Waves
STRAND / TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION	PSI- PS4-2.	Waves Evaluate questions about the advantages of using a digital transmission and storage of information.
STRAND / TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION STRAND / TOPIC CONTENT	PSI- PS4-2.	Waves Evaluate questions about the advantages of using a digital transmission and storage of information. Physical Science – Integrated
STRAND / CONTENT STANDARDPERFORMANC E EXPECTATIONSTRAND / TOPICCONTENT STANDARDPERFORMANC E	PSI- PS4-2. AR.PSI. PSI-LS2-	Waves Evaluate questions about the advantages of using a digital transmission and storage of information. Physical Science – Integrated Interactions of Humans and the Environment Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and

PERFORMANC E EXPECTATION	PSI6- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANC E EXPECTATION	PSI6- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
PERFORMANC E EXPECTATION	PSI6- ETS1-4.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

STRAND / TOPIC	AR.P.	Physics
CONTENT STANDARD		Work and Energy
PERFORMANC E EXPECTATION	P2- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

STRAND / TOPIC	AR.P.	Physics
CONTENT ST ANDARD		Heat and Thermodynamics
PERFORMANC E	P3- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and

E	ETS1-3.	range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and
EXPECTATION		environmental impacts.

STRAND / TOPIC	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Key Ideas and Details
PERFORMANC E EXPECTATION	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
PERFORMANC E EXPECTATION	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STRAND / TOPIC	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Craft and Structure
PERFORMANC E	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.

EXPECTATION

PERFORMANC	RST.9-	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
E	10.5.	force, friction, reaction force, energy).
EXPECTATION		

STRAND / TOPIC	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Integration of Knowledge and Ideas
PERFORMANC E EXPECTATION	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

STRAND / TOPIC	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT ST ANDARD		Range of Reading and Level of Text Complexity
PERFORMANC E	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

EXPECTATION

STRAND / TOPIC	AR.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Text Types and Purposes
PERFORMANC E EXPECTATION	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
BENCHMARK / PROFICIENCY	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND / TOPIC	AR.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT		Production and Distribution of Writing

STANDARD		
PERFORMANC E EXPECTATION	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
PERFORMANC E EXPECTATION	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Arkansas Standards Science

Grade 10 - Adopted: 2016

STRAND / TOPIC	AR.BI.	Biology – Integrated
CONTENT STANDARD		Cycling of Matter and Energy

PERFORMANC E EXPECTATION	BI-LS2-3.	Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.
PERFORMANC E EXPECTATION	BI-LS2-4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E EXPECTATION	BI-LS2-5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANC E EXPECTATION	BI-ESS2- 6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / TOPIC	AR.BI.	Biology – Integrated
CONTENT STANDARD		Biodiversity and Population Dynamics
PERFORMANC E EXPECTATION	BI-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANC E EXPECTATION	BI-LS2-7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
PERFORMANC E EXPECTATION	BI-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on Biodiversity.
PERFORMANC E EXPECTATION	BI3- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
PERFORMANC E EXPECTATION	BI3- ETS1-4.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
STRAND / TOPIC	AR.BI.	Biology – Integrated
CONTENT ST ANDARD		Life and Earth's Systems
PERFORMANC E EXPECTATION	BI-ESS2- 4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
PERFORMANC E EXPECTATION	BI-ESS3- 5.	Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.

PERFORMANC E EXPECTATION	BI6- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
PERFORMANC E EXPECTATION	BI6- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STRAND / TOPIC	AR.BI.	Biology – Integrated
CONTENT STANDARD		Human Impacts on Earth's Systems
PERFORMANC E EXPECTATION	BI-ESS3- 1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	BI-ESS3- 2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	BI-ESS3- 3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	BI-ESS3- 6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
PERFORMANC E EXPECTATION	BI7- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANC E EXPECTATION	BI7- ETS1-4.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
STRAND / TOPIC	AR.CI.	Chemistry – Integrated
CONTENT STANDARD		Nuclear Reactions
PERFORMANC E EXPECTATION	Cl2- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STRAND / TOPIC	AR.ES.	Earth Science
CONTENT STANDARD		Earth's Systems
PERFORMANC E EXPECTATION	ES- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

PERFORMANC	ES2-	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a
E	ETS1-3.	range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and
EXPECTATION		environmental impacts.

STRAND / TOPIC	AR.ES.	Earth Science
CONTENT STANDARD		Human Sustainability
PERFORMANC E EXPECTATION	ES- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	ES- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	ES- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	ES- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
PERFORMANC E EXPECTATION	ES- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / TOPIC	AR.ES.	Earth Science
CONTENT ST AND ARD		Weather and Climate
PERFORMANC E EXPECTATION	ES- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT STANDARD		Systems
PERFORMANC E EXPECTATION	EVS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
PERFORMANC E EXPECTATION	EVS- ESS3-5.	Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.
PERFORMANC E EXPECTATION	EVS1- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT STANDARD		Energy
PERFORMANC E EXPECTATION	EVS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT STANDARD		Populations
PERFORMANC E EXPECTATION	EVS- LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANC E EXPECTATION	EVS3- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
STRAND / TOPIC	AR.EVS.	Environmental Science
CONTENT STANDARD		Sustainability
PERFORMANC E EXPECTATION	EVS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrences of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	EVS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	EVS- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	EVS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
PERFORMANC E EXPECTATION	EVS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
PERFORMANC E EXPECTATION	EVS- LS2-7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity
PERFORMANC E EXPECTATION	EVS- LS4-6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

PERFORMANC	EVS4-	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a
E	ETS1-3.	range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and
EXPECTATION		environmental impacts.

STRAND / TOPIC	AR.PSI.	Physical Science – Integrated
CONTENT STANDARD		Matter in Organisms
PERFORMANC	PSI-LS2-	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in

E 4. an ecosystem. EXPECTATION

STRAND / TOPIC	AR.PSI.	Physical Science – Integrated
CONTENT ST AND ARD		Forces and Motion
PERFORMANC E	PSI3- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

EXPECTATION

STRAND / TOPIC	AR.PSI.	Physical Science – Integrated
CONTENT STANDARD		Waves
PERFORMANC E	PSI- PS4-2.	Evaluate questions about the advantages of using a digital transmission and storage of information.

EXPECTATION

STRAND / TOPIC	AR.PSI.	Physical Science – Integrated
CONTENT STANDARD		Interactions of Humans and the Environment
PERFORMANC E EXPECTATION	PSI-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
PERFORMANC E EXPECTATION	PSI- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	PSI- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	PSI6- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANC E EXPECTATION	PSI6- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

PERFORMANC PSI6-Е ETS1-4. **EXPECTATION**

Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

STRAND / TOPIC AR.P. Physics CONTENT Work and Energy **STANDARD**

PERFORMANC P2-Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a ETS1-3. range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and Е EXPECTATION environmental impacts.

STRAND / TOPIC	AR.P.	Physics
CONTENT ST ANDARD		Heat and Thermodynamics
PERFORMANC E EXPECTATION	P3- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Grade 10 - Adopted: 2010

STRAND / TOPIC	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Key Ideas and Details
PERFORMANC E EXPECTATION	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
PERFORMANC E EXPECTATION	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.

STRAND / TOPIC	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Craft and Structure
PERFORMANC E EXPECTATION	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
PERFORMANC	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

E	
EXPECTATION	

force, friction, reaction force, energy).

	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Integration of Knowledge and Ideas

PERFORMANC	RST.9-	Compare and contrast findings presented in a text to those from other sources (including their own experiments),
E	10.9.	noting when the findings support or contradict previous explanations or accounts.
EXPECTATION		

STRAND / TOPIC	AR.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT ST AND ARD		Range of Reading and Level of Text Complexity
PERFORMANC E	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

EXPECTATION

STRAND / TOPIC	AR.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT ST ANDARD		Text Types and Purposes
PERFORMANC E EXPECTATION	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

BENCHMARK /	WHST.9-	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style
PROFICIENCY	10.2(d)	appropriate to the discipline and context as well as to the expertise of likely readers.

STRAND / TOPIC	AR.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD		Production and Distribution of Writing
PERFORMANC E EXPECTATION	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
PERFORMANC E EXPECTATION	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Arkansas Standards Technology Education

Grade 9 - Adopted: 2020/Beginning 2021

STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	AIML.Y1. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y1. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity

BENCHMARK / PROFICIENCY	AIML.Y1. 1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 1
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	AIML.Y1. 5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
BENCHMARK / PROFICIENCY	AIML.Y1. 5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms
BENCHMARK / PROFICIENCY	AIML.Y1. 5.4.	Use a systematic approach to detect and resolve errors in a given algorithm
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 1
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	AIML.Y1. 6.1.	Create programs using procedures to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y1. 6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 2
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	AIML.Y2. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML Y2:	Include solving problems by backtracking, pattern recognition, and searching through classic searches including, but not limited to, heuristic search strategies
BENCHMARK / PROFICIENCY	AIML.Y2. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	AIML Y2:	Include representations of backtracking of constraint satisfaction problems, decision trees with and without operator costs, and game-based adversarial searches

BENCHMARK / PROFICIENCY	AIML.Y2. 1.5.	Decompose problems, including constraint satisfaction problems, of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y2. 1.6.	Analyze and utilize decision theory techniques (e.g., adversarial searches, decision networks, game theory, influence diagrams, Markov decision processes, probability theory, satisficing, utility theory) to represent and solve problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 2
CONT ENT ST AND ARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	AIML.Y2. 5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	AIML.Y2. 5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms
BENCHMARK / PROFICIENCY	AIML.Y2. 5.5.	Identify and utilize the metrics for measuring artificial intelligence and machine learning algorithms
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
		Strand: Algorithms and Programs Content Cluster 6: Students will create programs to solve problems.
ST AND ARD PERFORMANC E	AIML Y2:	
ST ANDARD PERFORMANC E EXPECT AT ION BENCHMARK /	AIML Y2: AIML.Y2. 6.2.	Content Cluster 6: Students will create programs to solve problems. Programs must also utilize supervised learning algorithms, unsupervised learning algorithms, or reinforcement
ST ANDARD PERFORMANC E EXPECT AT ION BENCHMARK / PROFICIENCY BENCHMARK /	AIML.Y2.	Content Cluster 6: Students will create programs to solve problems. Programs must also utilize supervised learning algorithms, unsupervised learning algorithms, or reinforcement learning algorithms at an appropriate level Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,
ST ANDARD PERFORMANC E EXPECT AT ION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY ST RAND /	AIML.Y2.	Content Cluster 6: Students will create programs to solve problems. Programs must also utilize supervised learning algorithms, unsupervised learning algorithms, or reinforcement learning algorithms at an appropriate level Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
ST ANDARD PERFORMANC E EXPECT AT ION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY STRAND / TOPIC CONTENT	AIML.Y2.	Content Cluster 6: Students will create programs to solve problems. Programs must also utilize supervised learning algorithms, unsupervised learning algorithms, or reinforcement learning algorithms at an appropriate level Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace) Computer Science: Artificial Intelligence and Machine Learning – Year 2
ST ANDARD PERFORMANC EXPECT AT ION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY ST RAND / TOPIC CONTENT ST ANDARD PERFORMANC E	AIML.Y2.	Content Cluster 6: Students will create programs to solve problems. Programs must also utilize supervised learning algorithms, unsupervised learning algorithms, or reinforcement learning algorithms at an appropriate level Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace) Computer Science: Artificial Intelligence and Machine Learning – Year 2 Strand: Computers and Communications
ST ANDARD PERFORMANC EXPECT AT ION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY ST RAND / T OPIC CONTENT ST ANDARD PERFORMANC EXPECT AT ION BENCHMARK /	AIML.Y2. 6.2.	Content Cluster 6: Students will create programs to solve problems. Programs must also utilize supervised learning algorithms, unsupervised learning algorithms, or reinforcement learning algorithms at an appropriate level Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace) Computer Science: Artificial Intelligence and Machine Learning – Year 2 Strand: Computers and Communications Content Cluster 7: Students will analyze the utilization of computers within industry.

PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	AIML.Y3. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity, including but not limited to, utilizing advanced pattern recognition strategies; advanced search techniques (e.g., continuous space searches, nondeterministic actions, partial observations); backtracking; and searches within complex environments and online environments
BENCHMARK / PROFICIENCY	AIML.Y3. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity including, but not limited to, backtracking of constraint satisfaction problems and game-based adversarial searches
BENCHMARK / PROFICIENCY	AIML.Y3. 1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y3. 1.5.	Decompose problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y3. 1.6.	Utilize decision theory techniques (e.g., adversarial searches, decision networks, game theory, influence diagrams, information value theory, Markov decision processes, multi-attribute utility theory, noncooperative game theory, probability theory, satisficing, utility theory) to represent and solve problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 3
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	AIML.Y3. 5.1.	Design and implement level-appropriate algorithms that use appropriate techniques (e.g., dynamic programming, linear programming, policy iteration, value iteration) to solve Markov decision process problems and other complex decisions
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 3
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	AIML.Y3. 6.1.	Create level-appropriate programs that utilize supervised learning algorithms, unsupervised learning algorithms, and reinforcement learning algorithms to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y3. 6.2.	Apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Computer Engineering – Year 1
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.

BENCHMARK / PROFICIENCY	CSCE.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCE.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK /	CSCE.Y1	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity

PROFICIENCY

.1.3.

STRAND / TOPIC	Computer Science: Computer Engineering – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK / CSCE.Y1 Design and implement level-appropriate algorithms that use iteration, selection, and sequence PROFICIENCY .5.1.

STRAND / TOPIC	Computer Science: Computer Engineering – Year 1
CONTENT ST ANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 6: Students will create programs to solve problems.

CSCE.Y1 Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, **BENCHMARK /** indentation, user experience design, whitespace) PROFICIENCY .6.2.

STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONT ENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCE.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCE.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSCE.Y2 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics

and computer science.

Е

EXPECTATION

 BENCHMARK /
 CSCE.Y2
 Solve problems of level-appropriate complexity using fundamental laws of electricity (e.g., Faraday, Kirchhoff, Ohms)

 PROFICIENCY
 .29.

STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONT ENT ST AND ARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSCE.Y2 .5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	CSCE Y2:	Include evaluation of scheduling algorithms on system performance; algorithms used in application domains including control applications; discrete event simulation applications; encryption/decryption algorithms; and location-aware or mobile applications
STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSCE.Y2 .6.1.	Create programs to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCE.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
BENCHMARK / PROFICIENCY	CSCE.Y2 .6.8.	Describe the sampling theorem and related concepts of the aliasing and Nyquist frequency
STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONTENT STANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 9: Students will utilize appropriate hardware and software.
BENCHMARK / PROFICIENCY	CSCE.Y2 .9.10.	Define important engineering constraints such as cost, performance, power, size, timing, and weight and their tradeoffs in the context of digital systems design

STRAND / TOPIC	Computer Science: Computer Engineering – Year 2
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing

PERFORMANC Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community. EXPECTATION Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.	4
--	---

BENCHMARK /CSCE.Y2Create and maintain a digital collection of self-created workPROFICIENCY.10.9.

STRAND / TOPIC		Computer Science: Computer Engineering – Year 3
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCE.Y3 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCE.Y3 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSCE.Y3 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Computer Engineering – Year 3
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.
BENCHMARK / PROFICIENCY	CSCE.Y3 .2.9.	Solve problems of level-appropriate complexity using fundamental laws of electricity (e.g., Faraday, Kirchhoff, Ohms)
STRAND / TOPIC		Computer Science: Computer Engineering – Year 3
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSCE.Y3 .5.1.	Design and implement level-appropriate algorithms including, but not limited to, brute force, divide and conquer, and greedy algorithms
BENCHMARK / PROFICIENCY	CSCE.Y3 .5.2.	Illustrate the flow of execution of algorithms in level-appropriate programs including high-impedance state and logic gate implementation including a tristate buffer
STRAND / TOPIC		Computer Science: Computer Engineering – Year 3
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSCE.Y3Apply best practices of program design and format (e.g., descriptive names, documentation, indentation, userPROFICIENCY.6.2.experience design, whitespace)

STRAND / TOPIC	Computer Science: Computer Engineering – Year 3
CONTENT STANDARD	Strand: Computers and Communications
PERFORMANC E EXPECTATION	Content Cluster 9: Students will utilize appropriate hardware and software.

BENCHMARK /CSCE.Y3Create programs that use one or more external sensors for monitoring physical propertiesPROFICIENCY.9.11.

STRAND / TOPIC	Computer Science: Computer Engineering – Year 3
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK / CSCE.Y3 Create and maintain a professional digital portfolio comprised of self-created work PROFICIENCY .10.9.

STRAND / TOPIC		Computer Science: Cybersecurity – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCS.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCS.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSCS.Y1 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Cybersecurity – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSCS.Y1Design and implement level-appropriate algorithms that use iteration, selection, and sequencePROFICIENCY.5.1.

BENCHMARK /CSCS.Y1Illustrate the flow of execution of algorithms in level-appropriate programs including branching and loopingPROFICIENCY.5.2.

STRAND / TOPIC	Computer Science: Cybersecurity – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSCS.Y1Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,PROFICIENCY.6.2.indentation, user experience design, whitespace)

STRAND / TOPIC		Computer Science: Cybersecurity – Year 2
CONTENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCS.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCS Y2:	Extend problem-solving strategies to include an understanding of adversarial thinking
BENCHMARK / PROFICIENCY	CSCS.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSCS.Y2 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Cybersecurity – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.
BENCHMARK / PROFICIENCY	CSCS.Y2 .2.3.	Research and implement level-appropriate common cryptography algorithms and concepts such as random number generation and hashing functions

STRAND / TOPIC	Computer Science: Cybersecurity – Year 2
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSCS.Y2Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequencePROFICIENCY.5.1.

STRAND /		Computer Science: Cybersecurity – Year 2
OPIC		
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSCS.Y2 .6.1.	Create programs to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCS.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
BENCHMARK / PROFICIENCY	CSCS Y2:	Discuss the vulnerabilities of not applying best practices of program design, format, and distribution
STRAND / COPIC		Computer Science: Cybersecurity – Year 2
CONTENT ST ANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 7: Students will analyze the utilization of computers within industry.
BENCHMARK / PROFICIENCY	CSCS.Y2 .7.1.	Utilize hardware and/or software to solve level-appropriate industry-based problems
STRAND / FOPIC		Computer Science: Cybersecurity – Year 3
CONT ENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCS.Y3 .1.1.	Leverage adversarial thinking and risk concepts to solve complex cybersecurity problems

STRAND / TOPIC	Computer Science: Cybersecurity – Year 3
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSCS.Y3Design and implement algorithms that solve level-appropriate, student-identified problemsPROFICIENCY.5.1.

CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSCS.Y3Create programs to solve problems of level-appropriate complexity that obtain data from external sourcesPROFICIENCY.6.1.

STRAND / TOPIC	Computer Science: Cybersecurity – Year 3
CONTENT ST ANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECT AT ION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

 BENCHMARK /
 CSCS.Y3
 Create and maintain a professional digital portfolio comprised of self-created work

 PROFICIENCY
 .10.7.

STRAND / TOPIC		Computer Science: Data Science – Year 1
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSDS.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSDS.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity

BENCHMARK /CSDS.Y1Analyze and utilize collaborative methods in problem solving of level-appropriate complexityPROFICIENCY.1.3.

STRAND / TOPIC	Computer Science: Data Science – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSDS.Y1Design and implement level-appropriate algorithms that use iteration, selection, and sequencePROFICIENCY.5.1.

STRAND / TOPIC	Computer Science: Data Science – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs

	PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.
--	--------------------------------	---

BENCHMARK / CSDS.Y1 PROFICIENCY .6.2.

CSDS.Y1 Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, .6.2. indentation, user experience design, whitespace)

STRAND / TOPIC	Computer Science: Data Science – Year 2
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION	Content Cluster 1: Students will analyze and utilize problem-solving strategies.

 BENCHMARK /
 CSDS.Y2
 Leverage problem-solving strategies to solve problems of level-appropriate complexity

 PROFICIENCY
 .1.1.

```
BENCHMARK /CSDS.Y2Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriatePROFICIENCY.1.2.complexity
```

STRAND / TOPIC	Computer Science: Data Science – Year 2
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSDS.Y2Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequencePROFICIENCY.5.1.

STRAND / TOPIC	Computer Science: Data Science – Year 2
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMAN E EXPECTATIO	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

 BENCHMARK /
 CSDS.Y2
 Create and maintain a digital collection of self-created work

 PROFICIENCY
 .10.10.

STRAND / TOPIC	Computer Science: Data Science – Year 3
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION	Content Cluster 1: Students will analyze and utilize problem-solving strategies.

BENCHMARK /CSDS.Y3Analyze and utilize collaborative methods in problem solving of level-appropriate complexityPROFICIENCY.1.3.

|--|

CONTENT		Strand: Professionalism and Impacts of Computing
ST ANDARD PERFORMANC E EXPECT AT ION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSDS.Y3 .10.10.	Create and maintain a professional digital portfolio comprised of self-created work
STRAND / TOPIC		Computer Science: Game Development and Design – Year 1
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSGD.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y1 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Game Development and Design – Year 1
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSGD.Y1 .5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
BENCHMARK / PROFICIENCY	CSGD.Y1 .5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms
STRAND / TOPIC		Computer Science: Game Development and Design – Year 1
CONTENT ST AND ARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSGD.Y1 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Game Development and Design – Year 2
CONTENT ST AND ARD		Strand: Computational Thinking and Problem Solving

PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSGD.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y2 .1.5.	Decompose problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Game Development and Design – Year 2
CONTENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.
BENCHMARK / PROFICIENCY	CSGD.Y2 .2.7.	Research physics and mathematical principles to adapt to more immersive game mechanics
STRAND / TOPIC		Computer Science: Game Development and Design – Year 2
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSGD.Y2 .5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	CSGD.Y2 .5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms
BENCHMARK / PROFICIENCY	CSGD.Y2 .5.5.	Analyze game elements of analog games (e.g., board, card, dice) and how those elements can be represented as algorithms for digital games
STRAND / TOPIC		Computer Science: Game Development and Design – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSGD.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Game Development and Design – Year 2

CONTENT ST ANDARD	Strand: Computers and Communications
PERFORMANC E EXPECT AT ION	Content Cluster 7: Students will analyze the utilization of computers within industry.

BENCHMARK /CSGD.Y2Utilize hardware and/or software to solve level-appropriate industry-based problemsPROFICIENCY.7.1.

STRAND / TOPIC		Computer Science: Game Development and Design – Year 2
CONTENT STANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSGD.Y2 .10.10.	Create and maintain a digital collection of self-created work
STRAND / TOPIC		Computer Science: Game Development and Design – Year 3—Advanced
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.5.	Decompose problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Game Development and Design – Year 3—Advanced
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.

BENCHMARK /CSGD.Y3Research and utilize physics and mathematical principles to adapt to more immersive game mechanicsPROFICIENCY.2.7.

STRAND / TOPIC	Computer Science: Game Development and Design – Year 3—Advanced
CONTENT STANDARD	Strand: Algorithms and Programs

PERFORMANC Content Cluster 5: Students will create, evaluate, and modify algorithms. E EXPECT ATION

BENCHMARK /CSGD.Y3Design and implement algorithms to solve student-identified problems of level-appropriate complexityPROFICIENCY.5.1.

STRAND / TOPIC		Computer Science: Game Development and Design – Year 3—Advanced
CONTENT STANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 9: Students will utilize appropriate hardware and software.
BENCHMARK / PROFICIENCY	CSGD.Y3 .9.2.	Contribute to team collaboration in the development of a computational artifact (e.g, creating and managing repositories)
STRAND / TOPIC		Computer Science: Game Development and Design – Year 3—Advanced
CONTENT STANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSGD.Y3 .10.10.	Create and maintain a professional digital portfolio comprised of self-created work
BENCHMARK / PROFICIENCY	CSGD.Y3 .10.11.	Utilize and model effective professional project management tools
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSMD.Y 1.1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSMD.Y 1.1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSMD.YDesign and implement level-appropriate algorithms that use iteration, selection, and sequencePROFICIENCY1.5.1.

STRAND / TOPIC		Computer Science: Mobile Application Development – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSMD.Y 1.6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSMD.Y 2.1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSMD.Y 2.1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSMD.Y 2.5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	CSMD.Y 2.5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSMD.Y 2.6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD		Strand: Computers and Communications

PERFORMANC E E Content Cluster 7: Students will analyze the utilization of computers within industry. E EXPECT ATION	
--	--

CSMD.Y Utilize hardware and/or software to solve level-appropriate industry-based problems **BENCHMARK /** PROFICIENCY 2.7.1.

STRAND / TOPIC	Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD	Strand: Computers and Communications
PERFORMANC E EXPECTATION	Content Cluster 9: Students will utilize appropriate hardware and software.

BENCHMARK / CSMD.Y Discuss mobile device limitations (e.g., memory, processing power, screen resolution) that affect mobile application PROFICIENCY 2.9.5. development

STRAND / TOPIC	Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK / PROFICIENCY

CSMD.Y Create and maintain a digital collection of self-created work 2.10.9.

STRAND / TOPIC		Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK /	CSMD.Y	Leverage problem-solving strategies to solve problems of level-appropriate complexity

PROFICIENCY 3.1.1.

BENCHMARK / CSMD.Y Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate PROFICIENCY 3.1.2. complexity

STRAND / TOPIC		Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT STANDARD		Strand: Data, Information, and Security
PERFORMANC E EXPECTATION		Content Cluster 3: Students will analyze and utilize data through the use of computing devices.
BENCHMARK / PROFICIENCY	CSMD.Y 3.3.3.	Create and evaluate models and simulations to answer student-identified questions and scenarios

BENCHMARK / CSMD.Y Create mobile applications that visually represent level-appropriate data based on user input through interfacing with PROFICIENCY 3.3.4. the application

STRAND / TOPIC	Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT ST ANDARD	Strand: Data, Information, and Security
PERFORMANC E EXPECTATION	Content Cluster 4: Students will analyze and utilize concepts of cybersecurity.

CSMD.Y Apply digital methods in securely transmitting data by using libraries and/or student-created algorithms **BENCHMARK /** PROFICIENCY 3.4.5.

STRAND / TOPIC	Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /

CSMD.Y Design and implement level-appropriate algorithms that solve student-identified problems PROFICIENCY 3.5.1.

STRAND / TOPIC	Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT ST AND ARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK / CSMD.Y Create and maintain a professional digital portfolio comprised of self-created work PROFICIENCY 3.10.9.

STRAND / TOPIC		Computer Science: Networking – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSNT.Y1. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity

CSNT.Y1. Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate **BENCHMARK /** PROFICIENCY 1.2. complexity

STRAND / TOPIC	Computer Science: Networking – Year 1
CONTENT ST ANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /	CSNT.Y1. Design and implement level-appropriate algorithms that use iteration, selection, and sequence
PROFICIENCY	5.1.

BENCHMARK /CSNT.Y1.Evaluate the qualities of level-appropriate student-created and non-student-created algorithmsPROFICIENCY5.3.

STRAND / TOPIC	Computer Science: Networking – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK / CSN PROFICIENCY 6.2.

CSNT.Y1. Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, 6.2. indentation, user experience design, whitespace)

STRAND / TOPIC	Computer Science: Networking – Year 2
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION	Content Cluster 1: Students will analyze and utilize problem-solving strategies.
	l everage problem solving strategies to solve problems of level appropriate complexity

 BENCHMARK /
 CSNT.Y2.
 Leverage problem-solving strategies to solve problems of level-appropriate complexity

 PROFICIENCY
 1.1.

BENCHMARK /CSNT.Y2.Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriatePROFICIENCY1.2.complexity

STRAND / TOPIC		Computer Science: Networking – Year 2
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSNT.Y2. 5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence

BENCHMARK /CSNT.Y2.Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classicPROFICIENCY5.3.search and sort algorithms

STRAND / TOPIC	Computer Science: Networking – Year 2
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT ATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSNT.Y2.Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,PROFICIENCY6.2.indentation, user experience design, whitespace)

STRAND / TOPIC	Computer Science: Networking – Year 2
CONTENT ST ANDARD	Strand: Computers and Communications
PERFORMANC E EXPECT AT ION	Content Cluster 7: Students will analyze the utilization of computers within industry.

BENCHMARK /CSNT.Y2.Utilize hardware and/or software to solve level-appropriate industry-based problemsPROFICIENCY7.1.

STRAND / TOPIC	Computer Science: Networking – Year 2
CONTENT STANDARD	Strand: Computers and Communications
PERFORMANC E EXPECT AT ION	Content Cluster 8: Students will analyze communication methods and systems used to transmit information among computing devices.

BENCHMARK /CSNT.Y2.Design and implement a physical or virtual network of level-appropriate complexityPROFICIENCY8.3.

STRAND / TOPIC		Computer Science: Networking – Year 3—Advanced
CONTENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSNT.Y3. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity

BENCHMARK /	CSNT.Y3.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate
PROFICIENCY	1.2.	complexity

STRAND / TOPIC		Computer Science: Networking – Year 3—Advanced
CONTENT STANDARD		Strand: Data, Information, and Security
PERFORMANC E EXPECTATION		Content Cluster 4: Students will analyze and utilize concepts of cybersecurity.
BENCHMARK / PROFICIENCY	CSNT.Y3. 4.2.	Perform and present a network vulnerabilities assessment
BENCHMARK / PROFICIENCY	CSNT.Y3. 4.3.	Orchestrate an attack against a controlled network/network environment and provide a findings assessment
STRAND / TOPIC		Computer Science: Networking – Year 3—Advanced

CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT ATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSNT.Y3. 5.1.	Design and implement algorithms for automation of level-appropriate tasks (e.g., adding hosts to a network/domain, setting switch/router configurations, utilizing DevOps)
STRAND / TOPIC		Computer Science: Networking – Year 3—Advanced
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSNT.Y3. 6.1.	Create scripts to solve problems and troubleshoot network issues of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSNT.Y3. 6.4.	Create scripts that generate, capture, and analyze network traffic
STRAND / TOPIC		Computer Science: Programming – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSPG.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Programming – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSPG.Y1 .5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
BENCHMARK / PROFICIENCY	CSPG.Y1 .5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms
STRAND / TOPIC		Computer Science: Programming – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs

PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSPG.Y1 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Programming – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSPG.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y2 .1.5.	Decompose problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Programming – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT ATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSPG.Y2 .5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	CSPG.Y2 .5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms
STRAND / TOPIC		Computer Science: Programming – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSPG.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Programming – Year 2
CONTENT STANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 7: Students will analyze the utilization of computers within industry.

 BENCHMARK /
 CSPG.Y2
 Utilize hardware and/or software to solve level-appropriate industry-based problems

 PROFICIENCY
 .7.1.

STRAND / TOPIC	Computer Science: Programming – Year 2
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK /CSPG.Y2Create and maintain a digital collection of self-created workPROFICIENCY.10.9.

STRAND / TOPIC		Computer Science: Programming – Year 3—Advanced
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSPG.Y3 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y3 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y3 .1.5.	Decompose problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Programming – Year 3—Advanced
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSPG.Y3 .5.1.	Design and implement level-appropriate algorithms that solve student-identified problems

STRAND / TOPIC	Computer Science: Programming – Year 3—Advanced
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

 BENCHMARK /
 CSPG.Y3
 Create and maintain a professional digital portfolio comprised of self-created work

 PROFICIENCY
 .10.9.

Computer Science: Robotics – Year 1

CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSRB.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSRB.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Robotics – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /	CSRB.Y1	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
PROFICIENCY	.5.1.	

BENCHMARK /CSRB.Y1Evaluate the qualities of level-appropriate student-created and non-student-created algorithmsPROFICIENCY.5.3.

STRAND / TOPIC	Computer Science: Robotics – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /	CSRB.Y1	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,
PROFICIENCY	.6.2.	indentation, user experience design, whitespace)

STRAND / TOPIC		Computer Science: Robotics – Year 2	
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving	
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.	
BENCHMARK / PROFICIENCY	CSRB.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity	
BENCHMARK / PROFICIENCY	CSRB.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity	
BENCHMARK / PROFICIENCY	CSRB Y2:	Develop schematics relevant to robotics system architecture	
STRAND / TOPIC		Computer Science: Robotics – Year 2	

CONTENT STANDARD		Strand: Computational Thinking and Problem Solving			
PERFORMANC E EXPECT AT ION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.			
BENCHMARK / PROFICIENCY	CSRB.Y2 .2.2.	Classify and utilize types of information that are stored in robotics systems including, but not limited to, 2D and 3D coordinate system and sensor data			
STRAND / FOPIC		Computer Science: Robotics – Year 2			
CONT ENT ST AND ARD		Strand: Data, Information, and Security			
PERFORMANC E EXPECTATION		Content Cluster 3: Students will analyze and utilize data through the use of computing devices.			
BENCHMARK / PROFICIENCY	CSRB Y2:	Create programs to store, access, and manipulate level-appropriate robotics system data (e.g., position, sensor input)			
STRAND / FOPIC		Computer Science: Robotics – Year 2			
CONTENT ST ANDARD		Strand: Algorithms and Programs			
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.			
BENCHMARK / PROFICIENCY	CSRB.Y2 .5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence			
BENCHMARK / PROFICIENCY	CSRB.Y2 .5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms			
STRAND / FOPIC		Computer Science: Robotics – Year 2			
CONTENT STANDARD		Strand: Algorithms and Programs			
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.			
BENCHMARK / PROFICIENCY	CSRB.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)			
BENCHMARK / PROFICIENCY	CSRB.Y2 .6.6.	Create programs that utilize various robotics system operations to solve problems			
STRAND / FOPIC		Computer Science: Robotics – Year 2			
CONTENT STANDARD		Strand: Computers and Communications			

BENCHMARK / CSRB.Y2 Utilize hardware and/or software to solve level-appropriate industry-based problems PROFICIENCY .7.1.

STRAND / TOPIC		Computer Science: Robotics – Year 2	
CONT ENT ST AND ARD		Strand: Computers and Communications	
PERFORMANC E EXPECTATION		Content Cluster 9: Students will utilize appropriate hardware and software.	
BENCHMARK / PROFICIENCY	CSRB Y2:	Use collaborative tools and processes to configure level-appropriate robotic hardware components	
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.3.	Analyze the importance and effect of updating firmware and drivers within robotic systems	
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.4.	Utilize robotic hardware components to create level-appropriate robotic systems and subsystems	
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.5.	Discuss and apply autonomous and manual robotic control by coding in various robotic programming languages (e.g., C++, Karel, Python)	
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.6.	Compare and contrast different types of industry-relevant robotic systems (e.g., 3-axis, 6-axis, AMR, cobot, delta, SCARA, T-700)	
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.7.	Utilize breadboarding in the creation of a level-appropriate closed-loop robot	
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.8.	Utilize hardware diagnostic tools to design, test, and troubleshoot robotic systems and subsystems	
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.9.	Discuss hardware and software requirements and limitations of various robotics systems	
STRAND / TOPIC		Computer Science: Robotics – Year 2	
CONTENT STANDARD		Strand: Professionalism and Impacts of Computing	
PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.	
BENCHMARK / PROFICIENCY	CSRB.Y2 .10.10.	Create and maintain a digital collection of self-created work	
STRAND / TOPIC		Computer Science: Robotics – Year 2	
CONTENT ST AND ARD		Strand: Professionalism and Impacts of Computing	

PERFORMANC E EXPECTATION		Content Cluster 11: Students will demonstrate understanding of storytelling with data and appropriately communicate about technical information.
BENCHMARK / PROFICIENCY	CSRB.Y2	Utilize level-appropriate robotic system data for storytelling

BENCHMARK /	CSRB.Y2	Communicate conditions of a robotic system in terms of performance, diagnostics, troubleshooting, and repair
PROFICIENCY	.11.6.	

STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSRB.Y3 .1.1.	Utilize the engineering design process to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSRB.Y3 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of level-appropriate complexity, such as schematics and 3D modeling
BENCHMARK /	CSRB.Y3	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity

PROFICIENCY .1.3.

STRAND / TOPIC	Computer Science: Robotics – Year 3—Advanced	
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving	
PERFORMANC E EXPECTATION	Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.	

BENCHMARK /	CSRB.Y3	Utilize types of information that are stored in robotics systems including, but not limited to, 2D and 3D coordinate
PROFICIENCY	.2.2.	system and sensor data

STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD		Strand: Data, Information, and Security
PERFORMANC E EXPECTATION		Content Cluster 3: Students will analyze and utilize data through the use of computing devices.
RENCHMARK /	CSDB V3	Create programs to store access, and manipulate with a high level of efficiency, level appropriate robotics system

BENCHMARK /	CSRB.Y3	Create programs to store, access, and manipulate, with a high level of efficiency, level-appropriate robotics system
PROFICIENCY	.3.1.	data

BENCHMARK /	CSRB.Y3	Analyze how quantitative and qualitative data are utilized in robotic systems
PROFICIENCY	.3.2.	

STRAND / TOPIC	Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD	Strand: Algorithms and Programs

PERFORMANC E EXPECT AT ION	
----------------------------------	--

BENCHMARK /CSRB.Y3Design and implement algorithms that solve student-identified problemsPROFICIENCY.5.1.

CONTENT STANDARD

STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT ST AND ARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSRB.Y3 .6.1.	Create programs that utilize robotic systems to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSRB.Y3 .6.4.	Create programs of level-appropriate complexity that leverage real-time sensory input to make decisions for completing physical tasks
BENCHMARK / PROFICIENCY	CSRB.Y3 .6.6.	Create programs that utilize various robotics system operations to solve real-world problems
STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD		Strand: Computers and Communications
PERFORMANC E		Content Cluster 9: Students will utilize appropriate hardware and software.
EXPECTATION		
EXPECTATION BENCHMARK / PROFICIENCY	CSRB.Y3 .9.2.	Use collaborative tools and processes to configure level-appropriate robotic hardware components
BENCHMARK /	.9.2.	Use collaborative tools and processes to configure level-appropriate robotic hardware components Utilize robotic hardware components to create level-appropriate robotic systems and subsystems
BENCHMARK / PROFICIENCY BENCHMARK /	.9.2. CSRB.Y3 .9.4.	
BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY BENCHMARK /	.9.2. CSRB.Y3 .9.4. CSRB.Y3 .9.7.	Utilize robotic hardware components to create level-appropriate robotic systems and subsystems
BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY BENCHMARK /	.9.2. CSRB.Y3 .9.4. CSRB.Y3 .9.7. CSRB.Y3 .9.8.	Utilize robotic hardware components to create level-appropriate robotic systems and subsystems Utilize breadboarding and prototyping in the creation of a level-appropriate closed-loop robot

Strand: Professionalism and Impacts of Computing

PERFORMANC E EXPECTATION	the
--------------------------------	-----

 BENCHMARK /
 CSRB.Y3
 Create and maintain a professional digital portfolio comprised of self-created work

 PROFICIENCY
 .10.10.

PROFICIENCY

.11.6.

STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 11: Students will demonstrate understanding of storytelling with data and appropriately communicate about technical information.
BENCHMARK / PROFICIENCY	CSRB.Y3 .11.2.	Utilize level-appropriate robotic system data for storytelling
BENCHMARK /	CSRB.Y3	Communicate conditions of a robotic system in terms of performance, diagnostics, troubleshooting, and repair

Arkansas Standards

Technology Education

Grade 10 - Adopted: 2020/Beginning 2021

		Grade 10 - Adopted. 2020 Degrinning 2021
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	AIML.Y1. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y1. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y1. 1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	AIML.Y1. 5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
BENCHMARK / PROFICIENCY	AIML.Y1. 5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms

BENCHMARK / AIML.Y1. Use a systematic approach to detect and resolve errors in a given algorithm PROFICIENCY 5.4.

STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	AIML.Y1. 6.1.	Create programs using procedures to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y1. 6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	AIML.Y2. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML Y2:	Include solving problems by backtracking, pattern recognition, and searching through classic searches including, but not limited to, heuristic search strategies
BENCHMARK / PROFICIENCY	AIML.Y2. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	AIML Y2:	Include representations of backtracking of constraint satisfaction problems, decision trees with and without operator costs, and game-based adversarial searches
BENCHMARK / PROFICIENCY	AIML.Y2. 1.5.	Decompose problems, including constraint satisfaction problems, of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y2. 1.6.	Analyze and utilize decision theory techniques (e.g., adversarial searches, decision networks, game theory, influence diagrams, Markov decision processes, probability theory, satisficing, utility theory) to represent and solve problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 2
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /AIML.Y2.Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequencePROFICIENCY5.1.

AIML.Y2. Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic BENCHMARK / PROFICIENCY 5.3. search and sort algorithms

BENCHMARK / PROFICIENCY

5.5.

AIML.Y2. Identify and utilize the metrics for measuring artificial intelligence and machine learning algorithms

STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	AIML Y2:	Programs must also utilize supervised learning algorithms, unsupervised learning algorithms, or reinforcement learning algorithms at an appropriate level
BENCHMARK / PROFICIENCY	AIML.Y2. 6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)

STRAND / TOPIC	Computer Science: Artificial Intelligence and Machine Learning – Year 2
CONTENT ST ANDARD	Strand: Computers and Communications
PERFORMANC E EXPECT AT ION	Content Cluster 7: Students will analyze the utilization of computers within industry.

BENCHMARK / AIML.Y2. Utilize hardware and/or software to solve level-appropriate industry-based problems PROFICIENCY 7.1.

STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 3
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	AIML.Y3. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity, including but not limited to, utilizing advanced pattern recognition strategies; advanced search techniques (e.g., continuous space searches, nondeterministic actions, partial observations); backtracking; and searches within complex environments and online environments
BENCHMARK / PROFICIENCY	AIML.Y3. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity including, but not limited to, backtracking of constraint satisfaction problems and game-based adversarial searches
BENCHMARK / PROFICIENCY	AIML.Y3. 1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y3. 1.5.	Decompose problems of level-appropriate complexity

BENCHMARK /AIML.Y3.Utilize decision theory techniques (e.g., adversarial searches, decision networks, game theory, influence diagrams,PROFICIENCY1.6.information value theory, Markov decision processes, multi-attribute utility theory, noncooperative game theory,
probability theory, satisficing, utility theory) to represent and solve problems of level-appropriate complexity

STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 3
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	AIML.Y3. 5.1.	Design and implement level-appropriate algorithms that use appropriate techniques (e.g., dynamic programming, linear programming, policy iteration, value iteration) to solve Markov decision process problems and other complex decisions
STRAND / TOPIC		Computer Science: Artificial Intelligence and Machine Learning – Year 3
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	AIML.Y3. 6.1.	Create level-appropriate programs that utilize supervised learning algorithms, unsupervised learning algorithms, and reinforcement learning algorithms to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	AIML.Y3. 6.2.	Apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Computer Engineering – Year 1
		Computer Science: Computer Engineering – Year 1 Strand: Computational Thinking and Problem Solving
CONTENT STANDARD PERFORMANC E	CSCE.Y1 .1.1.	Strand: Computational Thinking and Problem Solving
TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK /	.1.1.	Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies.
TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK / PROFICIENCY BENCHMARK /	.1.1. CSCE.Y1 .1.2.	Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies. Leverage problem-solving strategies to solve problems of level-appropriate complexity Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate
TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY	.1.1. CSCE.Y1 .1.2. CSCE.Y1	Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies. Leverage problem-solving strategies to solve problems of level-appropriate complexity Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY STRAND /	.1.1. CSCE.Y1 .1.2. CSCE.Y1	Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies. Leverage problem-solving strategies to solve problems of level-appropriate complexity Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity Analyze and utilize collaborative methods in problem solving of level-appropriate complexity

BENCHMARK /CSCE.Y1Design and implement level-appropriate algorithms that use iteration, selection, and sequencePROFICIENCY.5.1.

STRAND / TOPIC	Computer Science: Computer Engineering – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSCE.Y1Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,PROFICIENCY.6.2.indentation, user experience design, whitespace)

STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT ATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCE.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity

BENCHMARK /	CSCE.Y2	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate
PROFICIENCY	.1.2.	complexity

BENCHMARK /
 CSCE.Y2
 Analyze and utilize collaborative methods in problem solving of level-appropriate complexity

 PROFICIENCY
 .1.3.

STRAND / TOPIC	Computer Science: Computer Engineering – Year 2
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION	Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.

 BENCHMARK /
 CSCE.Y2
 Solve problems of level-appropriate complexity using fundamental laws of electricity (e.g., Faraday, Kirchhoff, Ohms)

 PROFICIENCY
 .29.

STRAND / TOPIC	Computer Science: Computer Engineering – Year 2
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSCE.Y2Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequencePROFICIENCY.5.1.

BENCHMARK /CSCEInclude evaluation of scheduling algorithms on system performance; algorithms used in application domainsPROFICIENCYY2:including control applications; discrete event simulation applications; encryption/decryption algorithms; and location-
aware or mobile applications

STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONTENT ST AND ARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSCE.Y2 .6.1.	Create programs to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCE.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
BENCHMARK / PROFICIENCY	CSCE.Y2 .6.8.	Describe the sampling theorem and related concepts of the aliasing and Nyquist frequency
STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONTENT ST ANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 9: Students will utilize appropriate hardware and software.
BENCHMARK / PROFICIENCY	CSCE.Y2 .9.10.	Define important engineering constraints such as cost, performance, power, size, timing, and weight and their tradeoffs in the context of digital systems design
STRAND / TOPIC		Computer Science: Computer Engineering – Year 2
CONTENT STANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSCE.Y2 .10.9.	Create and maintain a digital collection of self-created work
STRAND / TOPIC		Computer Science: Computer Engineering – Year 3
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.

BENCHMARK / CSCE.Y3 Leverage problem-solving strategies to solve problems of level-appropriate complexity PROFICIENCY .1.1.

BENCHMARK /	CSCE.Y3	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate
PROFICIENCY	.1.2.	complexity

BENCHMARK /CSCE.Y3Analyze and utilize collaborative methods in problem solving of level-appropriate complexityPROFICIENCY.1.3.

STRAND / TOPIC	Computer Science: Computer Engineering – Year 3
CONTENT ST ANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION	Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.

BENCHMARK /CSCE.Y3Solve problems of level-appropriate complexity using fundamental laws of electricity (e.g., Faraday, Kirchhoff, Ohms)PROFICIENCY.2.9.

STRAND / TOPIC		Computer Science: Computer Engineering – Year 3
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSCE.Y3 .5.1.	Design and implement level-appropriate algorithms including, but not limited to, brute force, divide and conquer, and greedy algorithms

BENCHMARK /CSCE.Y3Illustrate the flow of execution of algorithms in level-appropriate programs including high-impedance state and logicPROFICIENCY.5.2.gate implementation including a tristate buffer

STRAND / TOPIC	Computer Science: Computer Engineering – Year 3
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSCE.Y3Apply best practices of program design and format (e.g., descriptive names, documentation, indentation, userPROFICIENCY.6.2.experience design, whitespace)

STRAND / TOPIC	Computer Science: Computer Engineering – Year 3
CONTENT STANDARD	Strand: Computers and Communications
PERFORMANC E EXPECTATION	Content Cluster 9: Students will utilize appropriate hardware and software.

 BENCHMARK /
 CSCE.Y3
 Create programs that use one or more external sensors for monitoring physical properties

 PROFICIENCY
 .9.11.

STRAND /	
ТОРІС	

CONTENT STANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSCE.Y3 .10.9.	Create and maintain a professional digital portfolio comprised of self-created work
STRAND / TOPIC		Computer Science: Cybersecurity – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCS.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity

BENCHMARK /	CSCS.Y1	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate
PROFICIENCY	.1.2.	complexity

BENCHMARK /CSCS.Y1Analyze and utilize collaborative methods in problem solving of level-appropriate complexityPROFICIENCY.1.3.

STRAND / TOPIC		Computer Science: Cybersecurity – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK /	CSCS.Y1	Design and implement level-appropriate algorithms that use iteration, selection, and sequence

PROFICIENCY .5.1.

BENCHMARK /CSCS.Y1Illustrate the flow of execution of algorithms in level-appropriate programs including branching and loopingPROFICIENCY.5.2.

STRAND / TOPIC	Computer Science: Cybersecurity – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSCS.Y1Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,PROFICIENCY.6.2.indentation, user experience design, whitespace)

STRAND / TOPIC	Computer Science: Cybersecurity – Year 2
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving

PERFORMANC E EXPECT ATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSCS.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSCS Y2:	Extend problem-solving strategies to include an understanding of adversarial thinking
BENCHMARK / PROFICIENCY	CSCS.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSCS.Y2 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Cybersecurity – Year 2
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.
BENCHMARK / PROFICIENCY	CSCS.Y2 .2.3.	Research and implement level-appropriate common cryptography algorithms and concepts such as random number generation and hashing functions
STRAND / TOPIC		Computer Science: Cybersecurity – Year 2
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSCS.Y2 .5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
STRAND / TOPIC		Computer Science: Cybersecurity – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSCS.Y2 .6.1.	Create programs to solve problems of level-appropriate complexity
BENCHMARK /	CSCS.Y2	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,

BENCHMARK /CSCS.Y2Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,PROFICIENCY.6.2.indentation, user experience design, whitespace)

BENCHMARK /CSCSDiscuss the vulnerabilities of not applying best practices of program design, format, and distributionPROFICIENCYY2:

STRAND / TOPIC	Computer Science: Cybersecurity – Year 2
CONTENT ST ANDARD	Strand: Computers and Communications
PERFORMANC E EXPECTATION	Content Cluster 7: Students will analyze the utilization of computers within industry.

BENCHMARK / CSCS.Y2 Utilize hardware and/or software to solve level-appropriate industry-based problems PROFICIENCY .7.1.

STRAND / TOPIC	Computer Science: Cybersecurity – Year 3
CONTENT ST ANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION	Content Cluster 1: Students will analyze and utilize problem-solving strategies.

 BENCHMARK /
 CSCS.Y3
 Leverage adversarial thinking and risk concepts to solve complex cybersecurity problems

 PROFICIENCY
 .1.1.

STRAND / TOPIC	Computer Science: Cybersecurity – Year 3
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSCS.Y3Design and implement algorithms that solve level-appropriate, student-identified problemsPROFICIENCY.5.1.

STRAND / TOPIC	Computer Science: Cybersecurity – Year 3
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK / CSCS.Y3 Create programs to solve problems of level-appropriate complexity that obtain data from external sources PROFICIENCY .6.1.

STRAND / TOPIC	Computer Science: Cybersecurity – Year 3
CONTENT ST AND ARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK / CSCS.Y3 Create and maintain a professional digital portfolio comprised of self-created work PROFICIENCY .10.7.

STRAND / TOPIC		Computer Science: Data Science – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSDS.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSDS.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSDS.Y1 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Data Science – Year 1
CONT ENT ST AND ARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSDS.Y1 .5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence

STRAND / TOPIC	Computer Science: Data Science – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /	CSDS.Y1	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,
PROFICIENCY	.6.2.	indentation, user experience design, whitespace)

STRAND / TOPIC		Computer Science: Data Science – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSDS.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSDS.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Data Science – Year 2

CONTENT ST ANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSDS.Y2Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequencePROFICIENCY.5.1.

STRAND / TOPIC	Computer Science: Data Science – Year 2
CONTENT ST ANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECT AT ION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK /CSDS.Y2Create and maintain a digital collection of self-created workPROFICIENCY.10.10.

STRAND / TOPIC	Computer Science: Data Science – Year 3
CONTENT ST AND ARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION	Content Cluster 1: Students will analyze and utilize problem-solving strategies.

BENCHMARK /CSDS.Y3Analyze and utilize collaborative methods in problem solving of level-appropriate complexityPROFICIENCY.1.3.

STRAND / TOPIC	Computer Science: Data Science – Year 3
CONTENT ST ANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECT AT ION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK /CSDS.Y3Create and maintain a professional digital portfolio comprised of self-created workPROFICIENCY.10.10.

STRAND / TOPIC		Computer Science: Game Development and Design – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSGD.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity

BENCHMARK / PROFICIENCY	CSGD.Y1 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Game Development and Design – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSGD.Y1 .5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
BENCHMARK / PROFICIENCY	CSGD.Y1 .5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms
STRAND / TOPIC		Computer Science: Game Development and Design – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSGD.Y1 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
	.0.2.	
STRAND / TOPIC	.0.2.	Computer Science: Game Development and Design – Year 2
STRAND /	.0.2.	
STRAND / TOPIC CONTENT		Computer Science: Game Development and Design – Year 2
STRAND / TOPIC CONTENT STANDARD PERFORMANC E		Computer Science: Game Development and Design – Year 2 Strand: Computational Thinking and Problem Solving
STRAND / TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK /	CSGD.Y2 .1.1.	Computer Science: Game Development and Design – Year 2 Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies.
STRAND / TOPIC CONTENT STANDARD PERFORMANC EXPECTATION BENCHMARK / PROFICIENCY BENCHMARK /	CSGD.Y2 .1.1. CSGD.Y2 .1.2.	Computer Science: Game Development and Design – Year 2 Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies. Leverage problem-solving strategies to solve problems of level-appropriate complexity Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate
STRAND / TOPIC CONTENT STANDARD PERFORMANC EXPECTATION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY BENCHMARK /	CSGD.Y2 .1.1. CSGD.Y2 .1.2. CSGD.Y2	Computer Science: Game Development and Design - Year 2 Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies. Leverage problem-solving strategies to solve problems of level-appropriate complexity Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC CONTENT STANDARD PERFORMANC EXPECTATION BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY BENCHMARK / PROFICIENCY STRAND /	CSGD.Y2 .1.1. CSGD.Y2 .1.2. CSGD.Y2	Computer Science: Game Development and Design – Year 2 Strand: Computational Thinking and Problem Solving Content Cluster 1: Students will analyze and utilize problem-solving strategies. Leverage problem-solving strategies to solve problems of level-appropriate complexity Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity Decompose problems of level-appropriate complexity

BENCHMARK / CSGD.Y2 Research physics and mathematical principles to adapt to more immersive game mechanics PROFICIENCY .2.7.

STRAND / TOPIC		Computer Science: Game Development and Design – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSGD.Y2 .5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	CSGD.Y2 .5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms
BENCHMARK / PROFICIENCY	CSGD.Y2 .5.5.	Analyze game elements of analog games (e.g., board, card, dice) and how those elements can be represented as algorithms for digital games
STRAND / FOPIC		Computer Science: Game Development and Design – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSGD.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / FOPIC		Computer Science: Game Development and Design – Year 2
CONTENT		Strand: Computers and Communications

 ST ANDARD
 PERFORMANC

 E
 EXPECTATION

 BENCHMARK /
 CSGD.Y2
 Utilize hardware and/or software to solve level-appropriate industry-based problems

 PROFICIENCY
 .7.1.

STRAND / TOPIC	Computer Science: Game Development and Design – Year 2
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK /CSGD.Y2Create and maintain a digital collection of self-created workPROFICIENCY.10.10.

CONTENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSGD.Y3 .1.5.	Decompose problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Game Development and Design – Year 3—Advanced

CONTENT STANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION	Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.

BENCHMARK /CSGD.Y3Research and utilize physics and mathematical principles to adapt to more immersive game mechanicsPROFICIENCY.2.7.

STRAND / TOPIC	Computer Science: Game Development and Design – Year 3—Advanced
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSGD.Y3Design and implement algorithms to solve student-identified problems of level-appropriate complexityPROFICIENCY.5.1.

STRAND / TOPIC	Computer Science: Game Development and Design – Year 3—Advanced
CONTENT STANDARD	Strand: Computers and Communications
PERFORMANC E EXPECTATION	Content Cluster 9: Students will utilize appropriate hardware and software.

BENCHMARK /CSGD.Y3Contribute to team collaboration in the development of a computational artifact (e.g, creating and managingPROFICIENCY.9.2.repositories)

STRAND / TOPIC	Computer Science: Game Development and Design – Year 3—Advanced
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing

PERFORMANC E EXPECT AT ION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSGD.Y3 .10.10.	Create and maintain a professional digital portfolio comprised of self-created work
BENCHMARK / PROFICIENCY	CSGD.Y3 .10.11.	Utilize and model effective professional project management tools
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 1
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSMD.Y 1.1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSMD.Y 1.1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSMD.Y 1.5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 1
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSMD.Y 1.6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK /	CCMD V	everage problem-solving strategies to solve problems of level-appropriate complexity

BENCHMARK /CSMD.YLeverage problem-solving strategies to solve problems of level-appropriate complexityPROFICIENCY2.1.1.

BENCHMARK / PROFICIENCY	CSMD.Y 2.1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSMD.Y 2.5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	CSMD.Y 2.5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSMD.Y 2.6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT STANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 7: Students will analyze the utilization of computers within industry.
BENCHMARK / PROFICIENCY	CSMD.Y 2.7.1.	Utilize hardware and/or software to solve level-appropriate industry-based problems
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2
CONTENT ST AND ARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 9: Students will utilize appropriate hardware and software.
BENCHMARK / PROFICIENCY	CSMD.Y 2.9.5.	Discuss mobile device limitations (e.g., memory, processing power, screen resolution) that affect mobile application development
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 2

Strand: Professionalism and Impacts of Computing

CONTENT STANDARD

PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSMD.Y 2.10.9.	Create and maintain a digital collection of self-created work
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT ST ANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSMD.Y 3.1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSMD.Y 3.1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT ST ANDARD		Strand: Data, Information, and Security
PERFORMANC E EXPECTATION		Content Cluster 3: Students will analyze and utilize data through the use of computing devices.
BENCHMARK / PROFICIENCY	CSMD.Y 3.3.3.	Create and evaluate models and simulations to answer student-identified questions and scenarios
BENCHMARK / PROFICIENCY	CSMD.Y 3.3.4.	Create mobile applications that visually represent level-appropriate data based on user input through interfacing with the application
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT ST ANDARD		Strand: Data, Information, and Security
PERFORMANC E EXPECTATION		Content Cluster 4: Students will analyze and utilize concepts of cybersecurity.
BENCHMARK / PROFICIENCY	CSMD.Y 3.4.5.	Apply digital methods in securely transmitting data by using libraries and/or student-created algorithms
STRAND / TOPIC		Computer Science: Mobile Application Development – Year 3—Advanced
		Strand: Algorithms and Programs

 PERFORMANC
 Content Cluster 5: Students will create, evaluate, and modify algorithms.

 E
 EXPECT AT ION

BENCHMARK /CSMD.YDesign and implement level-appropriate algorithms that solve student-identified problemsPROFICIENCY3.5.1.

STRAND / TOPIC	Computer Science: Mobile Application Development – Year 3—Advanced
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK / CSMD.Y Create and maintain a professional digital portfolio comprised of self-created work PROFICIENCY 3.10.9.

STRAND / TOPIC	Computer Science: Networking – Year 1
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION	Content Cluster 1: Students will analyze and utilize problem-solving strategies.

BENCHMARK /
 CSNT.Y1.
 Leverage problem-solving strategies to solve problems of level-appropriate complexity

 PROFICIENCY
 1.1.

BENCHMARK /	CSNT.Y1.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate
PROFICIENCY	1.2.	complexity

STRAND / TOPIC	Computer Science: Networking – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT ATION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSNT.Y1. Design and implement level-appropriate algorithms that use iteration, selection, and sequencePROFICIENCY5.1.

BENCHMARK /CSNT.Y1. Evaluate the qualities of level-appropriate student-created and non-student-created algorithmsPROFICIENCY5.3.

STRAND / TOPIC		Computer Science: Networking – Year 1
CONTENT ST ANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSNT.Y1. 6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)

STRAND / TOPIC	Computer Science: Networking – Year 2
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving

PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSNT.Y2. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSNT.Y2. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Networking – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSNT.Y2. 5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence
BENCHMARK / PROFICIENCY	CSNT.Y2. 5.3.	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms
STRAND / TOPIC		Computer Science: Networking – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSNT.Y2. 6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)
STRAND / TOPIC		Computer Science: Networking – Year 2
CONTENT STANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 7: Students will analyze the utilization of computers within industry.
BENCHMARK / PROFICIENCY	CSNT.Y2. 7.1.	Utilize hardware and/or software to solve level-appropriate industry-based problems
STRAND / TOPIC		Computer Science: Networking – Year 2
CONT ENT ST AND ARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 8: Students will analyze communication methods and systems used to transmit information among computing devices.

BENCHMARK /CSNT.Y2.Design and implement a physical or virtual network of level-appropriate complexityPROFICIENCY8.3.

STRAND / TOPIC		Computer Science: Networking – Year 3—Advanced
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSNT.Y3. 1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSNT.Y3. 1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Networking – Year 3—Advanced
CONTENT STANDARD		Strand: Data, Information, and Security
PERFORMANC E EXPECT AT ION		Content Cluster 4: Students will analyze and utilize concepts of cybersecurity.
BENCHMARK / PROFICIENCY	CSNT.Y3. 4.2.	Perform and present a network vulnerabilities assessment
BENCHMARK / PROFICIENCY	CSNT.Y3. 4.3.	Orchestrate an attack against a controlled network/network environment and provide a findings assessment
STRAND / TOPIC		Computer Science: Networking – Year 3—Advanced
		Computer Science: Networking – Year 3—Advanced Strand: Algorithms and Programs
TOPIC CONTENT STANDARD PERFORMANC E	CSNT.Y3. 5.1.	Strand: Algorithms and Programs
TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK /		Strand: Algorithms and Programs Content Cluster 5: Students will create, evaluate, and modify algorithms. Design and implement algorithms for automation of level-appropriate tasks (e.g., adding hosts to a network/domain,
TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK / PROFICIENCY STRAND /		Strand: Algorithms and Programs Content Cluster 5: Students will create, evaluate, and modify algorithms. Design and implement algorithms for automation of level-appropriate tasks (e.g., adding hosts to a network/domain, setting switch/router configurations, utilizing DevOps)
TOPIC CONTENT STANDARD PERFORMANC E EXPECTATION BENCHMARK / PROFICIENCY STRAND / TOPIC CONTENT		Strand: Algorithms and Programs Content Cluster 5: Students will create, evaluate, and modify algorithms. Design and implement algorithms for automation of level-appropriate tasks (e.g., adding hosts to a network/domain, setting switch/router configurations, utilizing DevOps) Computer Science: Networking – Year 3—Advanced
TOPIC CONTENT STANDARD PERFORMANC EXPECTATION BENCHMARK / PROFICIENCY STRAND / TOPIC CONTENT STANDARD PERFORMANC E	5.1.	Strand: Algorithms and Programs Content Cluster 5: Students will create, evaluate, and modify algorithms. Design and implement algorithms for automation of level-appropriate tasks (e.g., adding hosts to a network/domain, setting switch/router configurations, utilizing DevOps) Computer Science: Networking – Year 3—Advanced Strand: Algorithms and Programs
TOPIC CONTENT STANDARD PERFORMANC EXPECTATION BENCHMARK / PROFICIENCY STRAND / CONTENT STANDARD PERFORMANC EXPECTATION BENCHMARK /	5.1. CSNT.Y3. 6.1.	Strand: Algorithms and Programs Content Cluster 5: Students will create, evaluate, and modify algorithms. Design and implement algorithms for automation of level-appropriate tasks (e.g., adding hosts to a network/domain, setting switch/router configurations, utilizing DevOps) Computer Science: Networking - Year 3—Advanced Strand: Algorithms and Programs Content Cluster 6: Students will create programs to solve problems.

CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSPG.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y1 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
STRAND / TOPIC		Computer Science: Programming – Year 1
CONTENT ST ANDARD		Strand: Algorithms and Programs

PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSPG.Y1 .5.1.	Design and implement level-appropriate algorithms that use iteration, selection, and sequence
BENCHMARK /	CSPG.Y1	Evaluate the qualities of level-appropriate student-created and non-student-created algorithms

PROFICIENCY .5.3.

ТОРІС	Computer Science: Programming – Year 1
CONTENT S STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /	CSPG.Y1	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,
PROFICIENCY	.6.2.	indentation, user experience design, whitespace)

STRAND / TOPIC		Computer Science: Programming – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSPG.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y2 .1.5.	Decompose problems of level-appropriate complexity
STRAND / TOPIC		Computer Science: Programming – Year 2

CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSPG.Y2 .5.1.	Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence

BENCHMARK /CSPG.Y2Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classicPROFICIENCY.5.3.search and sort algorithms

STRAND / TOPIC	Computer Science: Programming – Year 2
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSPG.Y2Discuss and apply best practices of program design and format (e.g., descriptive names, documentation,PROFICIENCY.6.2.indentation, user experience design, whitespace)

STRAND / TOPIC	Computer Science: Programming – Year 2
CONTENT ST ANDARD	Strand: Computers and Communications
PERFORMANC E EXPECTATION	Content Cluster 7: Students will analyze the utilization of computers within industry.

 BENCHMARK /
 CSPG.Y2
 Utilize hardware and/or software to solve level-appropriate industry-based problems

 PROFICIENCY
 .7.1.

STRAND / TOPIC	Computer Science: Programming – Year 2
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

 BENCHMARK /
 CSPG.Y2
 Create and maintain a digital collection of self-created work

 PROFICIENCY
 .10.9.

STRAND / TOPIC	Computer Science: Programming – Year 3—Advanced
CONTENT STANDARD	Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECT AT ION	Content Cluster 1: Students will analyze and utilize problem-solving strategies.

BENCHMARK / PROFICIENCY	CSPG.Y3 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSPG.Y3 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity

BENCHMARK /CSPG.Y3Decompose problems of level-appropriate complexityPROFICIENCY.1.5.

STRAND / TOPIC	Computer Science: Programming – Year 3—Advanced
CONTENT ST ANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSPG.Y3Design and implement level-appropriate algorithms that solve student-identified problemsPROFICIENCY.5.1.

STRAND / TOPIC	Computer Science: Programming – Year 3—Advanced
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

BENCHMARK /CSPG.Y3Create and maintain a professional digital portfolio comprised of self-created workPROFICIENCY.10.9.

STRAND / TOPIC		Computer Science: Robotics – Year 1
CONTENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSRB.Y1 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity

BENCHMARK /CSRB.Y1Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriatePROFICIENCY.1.2.complexity

STRAND / TOPIC	Computer Science: Robotics – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSRB.Y1Evaluate the qualities of level-appropriate student-created and non-student-created algorithmsPROFICIENCY.5.3.

STRAND / TOPIC	Computer Science: Robotics – Year 1
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK / CSRB.Y1 D PROFICIENCY .6.2. in

CSRB.Y1 Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, .6.2. indentation, user experience design, whitespace)

STRAND / TOPIC		Computer Science: Robotics – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.
BENCHMARK / PROFICIENCY	CSRB.Y2 .1.1.	Leverage problem-solving strategies to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSRB.Y2 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
BENCHMARK / PROFICIENCY	CSRB Y2:	Develop schematics relevant to robotics system architecture
STRAND / TOPIC		Computer Science: Robotics – Year 2
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.

BENCHMARK /CSRB.Y2Classify and utilize types of information that are stored in robotics systems including, but not limited to, 2D and 3DPROFICIENCY.2.2.coordinate system and sensor data

STRAND / TOPIC	Computer Science: Robotics – Year 2
CONTENT ST ANDARD	Strand: Data, Information, and Security
PERFORMANC E EXPECTATION	Content Cluster 3: Students will analyze and utilize data through the use of computing devices.

STRAND / TOPIC	Computer Science: Robotics – Year 2
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECT AT ION	Content Cluster 5: Students will create, evaluate, and modify algorithms.

BENCHMARK /CSRB.Y2Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequencePROFICIENCY.5.1.

BENCHMARK /CSRB.Y2Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classicPROFICIENCY.5.3.search and sort algorithms

STRAND / TOPIC		Computer Science: Robotics – Year 2
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 6: Students will create programs to solve problems.
BENCHMARK / PROFICIENCY	CSRB.Y2 .6.2.	Discuss and apply best practices of program design and format (e.g., descriptive names, documentation, indentation, user experience design, whitespace)

BENCHMARK /CSRB.Y2Create programs that utilize various robotics system operations to solve problemsPROFICIENCY.6.6.

STRAND / TOPIC	Computer Science: Robotics – Year 2
CONTENT STANDARD	Strand: Computers and Communications
PERFORMANC E EXPECT AT ION	Content Cluster 7: Students will analyze the utilization of computers within industry.

 BENCHMARK /
 CSRB.Y2
 Utilize hardware and/or software to solve level-appropriate industry-based problems

 PROFICIENCY
 .7.1.

STRAND / TOPIC		Computer Science: Robotics – Year 2
CONTENT STANDARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 9: Students will utilize appropriate hardware and software.
BENCHMARK / PROFICIENCY	CSRB Y2:	Use collaborative tools and processes to configure level-appropriate robotic hardware components

BENCHMARK / PROFICIENCY	CSRB.Y2 .9.4.	Utilize robotic hardware components to create level-appropriate robotic systems and subsystems
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.5.	Discuss and apply autonomous and manual robotic control by coding in various robotic programming languages (e.g., C++, Karel, Python)
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.6.	Compare and contrast different types of industry-relevant robotic systems (e.g., 3-axis, 6-axis, AMR, cobot, delta, SCARA, T-700)
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.7.	Utilize breadboarding in the creation of a level-appropriate closed-loop robot
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.8.	Utilize hardware diagnostic tools to design, test, and troubleshoot robotic systems and subsystems
BENCHMARK / PROFICIENCY	CSRB.Y2 .9.9.	Discuss hardware and software requirements and limitations of various robotics systems
STRAND / TOPIC		Computer Science: Robotics – Year 2
CONTENT STANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSRB.Y2 .10.10.	Create and maintain a digital collection of self-created work
STRAND / TOPIC		Computer Science: Robotics – Year 2
CONTENT ST ANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 11: Students will demonstrate understanding of storytelling with data and appropriately communicate about technical information.
BENCHMARK / PROFICIENCY	CSRB.Y2 .11.2.	Utilize level-appropriate robotic system data for storytelling
BENCHMARK / PROFICIENCY	CSRB.Y2 .11.6.	Communicate conditions of a robotic system in terms of performance, diagnostics, troubleshooting, and repair
STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 1: Students will analyze and utilize problem-solving strategies.

BENCHMARK / PROFICIENCY	CSRB.Y3 .1.1.	Utilize the engineering design process to solve problems of level-appropriate complexity
BENCHMARK / PROFICIENCY	CSRB.Y3 .1.2.	Analyze and utilize multiple representations of problem-solving logic used to solve problems of level-appropriate complexity, such as schematics and 3D modeling
BENCHMARK / PROFICIENCY	CSRB.Y3 .1.3.	Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT ST AND ARD		Strand: Computational Thinking and Problem Solving
PERFORMANC E EXPECTATION		Content Cluster 2: Students will analyze and utilize connections between concepts of mathematics and computer science.
BENCHMARK / PROFICIENCY	CSRB.Y3 .2.2.	Utilize types of information that are stored in robotics systems including, but not limited to, 2D and 3D coordinate system and sensor data
STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD		Strand: Data, Information, and Security
PERFORMANC E EXPECTATION		Content Cluster 3: Students will analyze and utilize data through the use of computing devices.
BENCHMARK / PROFICIENCY	CSRB.Y3 .3.1.	Create programs to store, access, and manipulate, with a high level of efficiency, level-appropriate robotics system data
BENCHMARK / PROFICIENCY	CSRB.Y3 .3.2.	Analyze how quantitative and qualitative data are utilized in robotic systems
STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD		Strand: Algorithms and Programs
PERFORMANC E EXPECTATION		Content Cluster 5: Students will create, evaluate, and modify algorithms.
BENCHMARK / PROFICIENCY	CSRB.Y3 .5.1.	Design and implement algorithms that solve student-identified problems

STRAND / TOPIC	Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD	Strand: Algorithms and Programs
PERFORMANC E EXPECTATION	Content Cluster 6: Students will create programs to solve problems.

BENCHMARK /CSRB.Y3Create programs that utilize robotic systems to solve problems of level-appropriate complexityPROFICIENCY.6.1.

BENCHMARK /CSRB.Y3Create programs of level-appropriate complexity that leverage real-time sensory input to make decisions forPROFICIENCY.6.4.completing physical tasks

BENCHMARK /CSRB.Y3Create programs that utilize various robotics system operations to solve real-world problemsPROFICIENCY.6.6.

STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT ST AND ARD		Strand: Computers and Communications
PERFORMANC E EXPECTATION		Content Cluster 9: Students will utilize appropriate hardware and software.
BENCHMARK / PROFICIENCY	CSRB.Y3 .9.2.	Use collaborative tools and processes to configure level-appropriate robotic hardware components
BENCHMARK / PROFICIENCY	CSRB.Y3 .9.4.	Utilize robotic hardware components to create level-appropriate robotic systems and subsystems
BENCHMARK / PROFICIENCY	CSRB.Y3 .9.7.	Utilize breadboarding and prototyping in the creation of a level-appropriate closed-loop robot
BENCHMARK / PROFICIENCY	CSRB.Y3 .9.8.	Utilize hardware diagnostic tools to design, test, and troubleshoot robotic systems and subsystems
BENCHMARK / PROFICIENCY	CSRB.Y3 .9.9.	Analyze hardware and software requirements and limitations of various robotics systems
STRAND / TOPIC		Computer Science: Robotics – Year 3—Advanced
CONTENT ST ANDARD		Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION		Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.
BENCHMARK / PROFICIENCY	CSRB.Y3 .10.10.	Create and maintain a professional digital portfolio comprised of self-created work

STRAND / TOPIC	Computer Science: Robotics – Year 3—Advanced
CONTENT STANDARD	Strand: Professionalism and Impacts of Computing
PERFORMANC E EXPECTATION	Content Cluster 11: Students will demonstrate understanding of storytelling with data and appropriately communicate about technical information.

BENCHMARK / CSRB.Y3 Utilize level-appropriate robotic system data for storytelling PROFICIENCY .11.2.

BENCHMARK /CSRB.Y3Communicate conditions of a robotic system in terms of performance, diagnostics, troubleshooting, and repairPROFICIENCY.11.6.

California Content Standards Mathematics Grade 9 - Adopted: 2013

		Grade 9 - Adopted: 2013
CONTENT STANDARD / DOMAIN / PART	CA.CC.M P.	Standards for Mathematical Practice
PERFORMANC E STANDARD / MODE	MP.1.	Make sense of problems and persevere in solving them.
PERFORMANC E STANDARD / MODE	MP.2.	Reason abstractly and quantitatively.
PERFORMANC E STANDARD / MODE	MP.3.	Construct viable arguments and critique the reasoning of others.
PERFORMANC E STANDARD / MODE	MP.4.	Model with mathematics.
PERFORMANC E STANDARD / MODE	MP.6.	Attend to precision.
PERFORMANC E STANDARD / MODE	MP.7.	Look for and make use of structure.
PERFORMANC E STANDARD / MODE	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / DOMAIN / PART	CA.AI.	Algebra I
PERFORMANC E ST ANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Linear, exponential, and quadratic]
FOUNDATION / PROFICIENCY LEVEL	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

PERFORMANC E ST ANDARD / MODE	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND	Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]

FOUNDATION / F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a PROFICIENCY specified interval. Estimate the rate of change from a graph. LEVEL

CONTENT STANDARD / DOMAIN / PART		Mathematics I
PERFORMANC E STANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Linear and exponential (linear domain)]

FOUNDATION / F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. PROFICIENCY LEVEL

CONTENT STANDARD / DOMAIN / PART		Mathematics II
PERFORMANC E ST ANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Quadratic]
FOUNDATION / PROFICIENCY	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

LEVEL

CONTENT STANDARD / Mathematics III CA.MIII. DOMAIN / PART PERFORMANC E-IE. **Functions: Interpreting Functions** E STANDARD / MODE **EXPECTATION** Interpret functions that arise in applications in terms of the context. [Include rational, square root / SUBSTRAND and cube root; emphasize selection of appropriate models.] FOUNDATION / F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a PROFICIENCY specified interval. Estimate the rate of change from a graph. LEVEL

CONTENT STANDARD / DOMAIN / PART		Advanced Placement Probability and Statistics Standards
PERFORMANC E STANDARD / MODE	PS.5.0.	Students know the definition of the mean of a discrete random variable and can determine the mean for a particular discrete random variable.

Grade 10 - Adopted: 2013

CONTENT STANDARD / DOMAIN / PART	CA.CC.M P.	Standards for Mathematical Practice
PERFORMANC E STANDARD / MODE	MP.1.	Make sense of problems and persevere in solving them.
PERFORMANC E STANDARD / MODE	MP.2.	Reason abstractly and quantitatively.
PERFORMANC E STANDARD / MODE	MP.3.	Construct viable arguments and critique the reasoning of others.
PERFORMANC E STANDARD / MODE	MP.4.	Model with mathematics.
PERFORMANC E STANDARD / MODE	MP.6.	Attend to precision.
PERFORMANC E STANDARD / MODE	MP.7.	Look for and make use of structure.
PERFORMANC E STANDARD / MODE	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / DOMAIN / PART	CA.AI.	Algebra I
PERFORMANC E STANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECT ATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Linear, exponential, and quadratic]

FOUNDATION /F-IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aPROFICIENCYspecified interval. Estimate the rate of change from a graph.LEVEL

CONTENT STANDARD / DOMAIN / PART		Algebra II
PERFORMANC E STANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]

FOUNDATION /F-IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
specified interval. Estimate the rate of change from a graph.LEVEL

CONTENT STANDARD / DOMAIN / PART	CA.MI.	Mathematics I
PERFORMANC E STANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Linear and exponential (linear domain)]
	E-IE 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

FOUNDATION /F-IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aPROFICIENCYspecified interval. Estimate the rate of change from a graph.LEVEL

CONTENT STANDARD / DOMAIN / PART	CA.MII.	Mathematics II
PERFORMANC E ST ANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Quadratic]
FOUNDATION /	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

FOUNDATION /	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
PROFICIENCY		specified interval. Estimate the rate of change from a graph.
LEVEL		

CONTENT STANDARD / DOMAIN / PART	CA.MIII.	Mathematics III
PERFORMANC E ST ANDARD / MODE	F-IF.	Functions: Interpreting Functions
EXPECTATION / SUBSTRAND		Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
FOUNDATION / PROFICIENCY LEVEL	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / DOMAIN / PART	CA.PS.	Advanced Placement Probability and Statistics Standards
PERFORMANC E STANDARD / MODE	PS.5.0.	Students know the definition of the mean of a discrete random variable and can determine the mean for a particular discrete random variable.

California Content Standards

Science

Grade 9 - Adopted: 2013

PERFORMANC E ST ANDARD / MODE	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:

FOUNDATION / HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. PROFICIENCY 2. LEVEL

CONTENT STANDARD / DOMAIN / PART	CA.HS- LS.	LIFE SCIENCE
PERFORMANC E STANDARD / MODE	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

	CA.HS- LS.	LIFE SCIENCE
PERFORMANC E STANDARD / MODE	HS-LS4.	Biological Evolution: Unity and Diversity
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:

FOUNDATION / HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. PROFICIENCY 6. LEVEL

CONTENT STANDARD / DOMAIN / PART	ESS.	EARTH AND SPACE SCIENCE
PERFORMANC E STANDARD / MODE	HS- ESS2.	Earth's Systems
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:

FOUNDATION / PROFICIENCY LEVEL	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CONTENT ST ANDARD / DOMAIN / PART	CA.HS- ESS.	EARTH AND SPACE SCIENCE
PERFORMANC E ST ANDARD / MODE	HS- ESS3.	Earth and Human Activity
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CONTENT STANDARD / DOMAIN / PART	CA.HS- ETS.	
PERFORMANC E ST ANDARD / MODE	HS- ETS1.	Engineering Design
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:
FOUNDATION / PROFICIENCY LEVEL	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
FOUNDATION / PROFICIENCY LEVEL	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
FOUNDATION / PROFICIENCY LEVEL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
CONTENT ST ANDARD / DOMAIN / PART	CA.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects

PERFORMANC E STANDARD / MODE		Key Ideas and Details
EXPECTATION / SUBSTRAND	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
EXPECTATION / SUBSTRAND	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
CONTENT STANDARD / DOMAIN / PART	CA.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
PERFORMANC E STANDARD / MODE		Craft and Structure
EXPECTATION / SUBSTRAND	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
EXPECTATION / SUBSTRAND	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
CONTENT STANDARD / DOMAIN / PART	CA.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
PERFORMANC E ST ANDARD / MODE		Integration of Knowledge and Ideas
EXPECTATION / SUBSTRAND	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD / DOMAIN / PART	CA.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
PERFORMANC E STANDARD / MODE		Range of Reading and Level of Text Complexity
EXPECTATION / SUBSTRAND	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN / PART	CA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
PERFORMANC E ST ANDARD / MODE		Text Types and Purposes
EXPECTATION / SUBSTRAND	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
FOUNDATION / PROFICIENCY LEVEL	WHST.9- 10.2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
CONTENT STANDARD / DOMAIN / PART	CA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects

PERFORMANC E ST ANDARD / MODE		Production and Distribution of Writing
EXPECTATION / SUBSTRAND	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
EXPECTATION / SUBSTRAND	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

California Content Standards

Science

 Grade 10 - Adopted: 2013

 CONTENT STANDARD / DOMAIN / PART
 CA.HS-PS.
 PHYSICAL SCIENCE

 PERFORMANC E STANDARD / MODE
 HS-PS4.
 Waves and Their Applications in Technologies for Information Transfer

 EXPECTATION / SUBSTRAND
 Students who demonstrate understanding can:

FOUNDATION /HS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.PROFICIENCY2.

LEVEL

CONTENT STANDARD / DOMAIN / PART	CA.HS- LS.	LIFE SCIENCE
PERFORMANC E STANDARD / MODE	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
FOUNDATION / PROFICIENCY LEVEL	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT	CA.HS-	LIFE SCIENCE

CONTENT STANDARD / DOMAIN / PART	LS.	LIFE SCIENCE
PERFORMANC E ST ANDARD / MODE	HS-LS4.	Biological Evolution: Unity and Diversity

EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:
----------------------------	--	---

FOUNDATION / HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. PROFICIENCY 6. LEVEL

CONTENT STANDARD / DOMAIN / PART	CA.HS- ESS.	EARTH AND SPACE SCIENCE
PERFORMANC E STANDARD / MODE	HS- ESS2.	Earth's Systems
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:
FOUNDATION / PROFICIENCY LEVEL	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CONTENT STANDARD / DOMAIN / PART	CA.HS- ESS.	EARTH AND SPACE SCIENCE
PERFORMANC E STANDARD / MODE	HS- ESS3.	Earth and Human Activity
EXPECTATION / SUBSTRAND		Students who demonstrate understanding can:
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
FOUNDATION / PROFICIENCY LEVEL	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CONTENT STANDARD / DOMAIN / PART	CA.HS- ETS.	ENGINEERING DESIGN
PERFORMANC E ST ANDARD / MODE	HS- ETS1.	Engineering Design
EXPECT ATION / SUBSTRAND		Students who demonstrate understanding can:

FOUNDATION / PROFICIENCY LEVEL	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
FOUNDATION / PROFICIENCY LEVEL	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
FOUNDATION / PROFICIENCY LEVEL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
CONTENT STANDARD / DOMAIN / PART	CA.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
PERFORMANC E ST ANDARD / MODE		Key Ideas and Details
EXPECTATION / SUBSTRAND	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
EXPECTATION / SUBSTRAND	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
CONTENT STANDARD / DOMAIN / PART	CA.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
PERFORMANC E ST ANDARD / MODE		Craft and Structure
MODE		
EXPECTATION / SUBSTRAND	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
EXPECTATION /		
EXPECTATION / SUBSTRAND EXPECTATION /	10.4. RST.9- 10.5.	specific scientific or technical context relevant to grades 9–10 texts and topics. Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
EXPECTATION / SUBSTRAND EXPECTATION / SUBSTRAND	10.4. RST.9- 10.5. CA.RST.9	specific scientific or technical context relevant to grades 9–10 texts and topics. Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
EXPECTATION / SUBSTRAND EXPECTATION / SUBSTRAND CONTENT STANDARD / DOMAIN / PART PERFORMANC E ST ANDARD /	10.4. RST.9- 10.5. CA.RST.9	specific scientific or technical context relevant to grades 9–10 texts and topics. Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy). Reading Standards for Literacy in Science and Technical Subjects
EXPECTATION / SUBSTRAND EXPECTATION / SUBSTRAND CONTENT STANDARD / DOMAIN / PART PERFORMANC E ST ANDARD / MODE EXPECTATION /	10.4. RST.9- 10.5. CA.RST.9 -10. RST.9- 10.9.	specific scientific or technical context relevant to grades 9–10 texts and topics. Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy). Reading Standards for Literacy in Science and Technical Subjects Integration of Knowledge and Ideas Compare and contrast findings presented in a text to those from other sources (including their own experiments),
EXPECTATION / SUBSTRAND EXPECTATION / SUBSTRAND CONTENT STANDARD / DOMAIN / PART PERFORMANC E ST ANDARD / EXPECTATION / SUBSTRAND CONTENT STANDARD /	10.4. RST.9- 10.5. CA.RST.9 -10. RST.9- 10.9. CA.RST.9	specific scientific or technical context relevant to grades 9–10 texts and topics. Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy). Reading Standards for Literacy in Science and Technical Subjects Integration of Knowledge and Ideas Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

EXPECTATION /RST.9-By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity bandSUBSTRAND10.10.independently and proficiently.

CONTENT STANDARD / DOMAIN / PART	CA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
PERFORMANC E STANDARD / MODE		Text Types and Purposes
EXPECTATION / SUBSTRAND	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
FOUNDATION /	WHST.9-	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style

PROFICIENCY 10.2.d. appropriate to the discipline and context as well as to the expertise of likely readers. LEVEL

CONTENT STANDARD / DOMAIN / PART	CA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
PERFORMANC E ST ANDARD / MODE		Production and Distribution of Writing
EXPECTATION / SUBSTRAND	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
EXPECTATION / SUBSTRAND	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

California Content Standards Technology Education Grade 9 - Adopted: 2018

CONTENT STANDARD / DOMAIN / PART		Computer Science Core Practices
PERFORMANC E ST ANDARD / MODE	P3.	Core Practice 3 – Recognizing and Defining Computational Problems
EXPECTATION / SUBSTRAND	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
CONTENT STANDARD / DOMAIN / PART		Computer Science Core Practices
PERFORMANC E ST ANDARD / MODE	P7.	Core Practice 7 – Communicating About Computing

EXPECTATION / P7.1. Select, organize, and interpret large data sets from multiple sources to support a claim. SUBSTRAND

CONTENT STANDARD / DOMAIN / PART	Computer Science Standards – Core
PERFORMANC E STANDARD / MODE	Algorithms & Programming
EXPECTATION / SUBSTRAND	Algorithms

FOUNDATION /	9-	Design algorithms to solve computational problems using a combination of original and existing algorithms. (P4.2,
PROFICIENCY	12.AP.12.	P5.1)
LEVEL		

CONTENT STANDARD / DOMAIN / PART	Computer Science Standards – Specialty
PERFORMANC E STANDARD / MODE	Algorithms & Programming
EXPECTATION / SUBSTRAND	Modularity

FOUNDATION /9-Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.PROFICIENCY12S.AP.17(P4.3, P5.2)LEVEL.

California Content Standards Technology Education

Grade 10 - Adopted: 2018

CONTENT STANDARD / DOMAIN / PART		Computer Science Core Practices
PERFORMANC E ST ANDARD / MODE	P3.	Core Practice 3 – Recognizing and Defining Computational Problems
EXPECTATION / SUBSTRAND	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.

CONTENT STANDARD / DOMAIN / PART		Computer Science Core Practices
PERFORMANC E STANDARD / MODE	P7.	Core Practice 7 – Communicating About Computing
EXPECTATION /	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.

SUBSTRAND

CONTENT STANDARD / DOMAIN / PART		Computer Science Standards – Core
PERFORMANC E STANDARD / MODE		Algorithms & Programming
EXPECTATION / SUBSTRAND		Algorithms
	0	Design electrithms to achie computational problems using a combination of ariginal and eviating electrithms (DA 2)

FOUNDATION /	9-	Design algorithms to solve computational problems using a combination of original and existing algorithms. (P4.2,
PROFICIENCY	12.AP.12.	P5.1)
LEVEL		

CONTENT	Computer Science Standards – Specialty
STANDARD /	
DOMAIN / PART	

PERFORMANC E STANDARD / MODE	Algorithms & Programming
EXPECTATION / SUBSTRAND	Modularity

FOUNDATION /9-Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.PROFICIENCY12S.AP.17(P4.3, P5.2)LEVEL.

Colorado Academic Standards (CAS)

Mathematics

Grade 9 - Adopted: 2018

CONTENT AREA		Prepared Graduates in Mathematics
STANDARD	MP1.	Make sense of problems and persevere in solving them.
STANDARD	MP2.	Reason abstractly and quantitatively.
STANDARD	MP3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP4.	Model with mathematics.
STANDARD	MP6.	Attend to precision.
STANDARD	MP7.	Look for and make use of structure.
STANDARD	MP8.	Look for and express regularity in repeated reasoning.

Colorado Academic Standards (CAS)

Mathematics Grade 10 - Adopted: 2018

CONTENT AREA		Prepared Graduates in Mathematics
STANDARD	MP1.	Make sense of problems and persevere in solving them.
STANDARD	MP2.	Reason abstractly and quantitatively.
STANDARD	MP3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP4.	Model with mathematics.
STANDARD	MP6.	Attend to precision.
STANDARD	MP7.	Look for and make use of structure.
STANDARD	MP8.	Look for and express regularity in repeated reasoning.

Science

Grade 9 - Adopted: 2018

problems that require understanding structure, properties and interactions of matter. STANDARD 2 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding interactions between objects and within systems of objects. STANDARD 3 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how energy is transferred and conserved. STANDARD 4 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how waves are used to transfer energy and information. STANDARD 5 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how individual organisms are configured and how these structures function to support life, growth, behavior and reproduction. STANDARD 6 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how living systems interact with the biotic and abiotic environment. STANDARD 6 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how living systems interact with the biotic and abiotic environment. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and sprobl			Grade 9 - Adopted: 2018
STANDARD 2 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding interactions between objects and within systems of objects. STANDARD 3 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how energy is transferred and conserved. STANDARD 4 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how waves are used to transfer energy and information. STANDARD 4 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how waves are used to transfer energy and information. STANDARD 5 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how lowing systems interact with the biotic and abiotic environment. STANDARD 6 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how genetic and engineering practices to make sense of natural phenomena and sproblems that require understanding how genetic and engineering practices to make sense of natural phenomena and sproblems that require understanding how genetic and engineering practices to make sense of natural phenomena and sproblems that require understanding how and and sciontomental factors influence variation of organisms acrogeneration			Prepared Graduates in Science
problems that require understanding interactions between objects and within systems of objects. STANDARD 3 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how energy is transferred and conserved. STANDARD 4 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how waves are used to transfer energy and information. STANDARD 5 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how individual organisms are configured and how these structures function as sports the, growth, behavior and reproduction. STANDARD 6 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how living systems interact with the block and abloct environment. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how inving systems interact with the block and abloct and abloct and valion of organisms accore generations. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how natural selection drives biological evolution accounting for the unity and driversity of organisms. STANDARD 8	STANDARD	1	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding structure, properties and interactions of matter.
problems that require understanding how energy is transferred and conserved. STANDARD 4 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how waves are used to transfer energy and information. STANDARD 5 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how individual organisms are configured and how these structures function to support life, growth, behavior and reproduction. STANDARD 6 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how living systems interact with the blotc and ablots environment. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how genetic and environmental factors influence variation of organisms acrogenerations. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how natural selection drives biological evolution accounting for the unity and driversity of organisms. STANDARD 8 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how natural selection drives biological evolution accounting for the unity and driversity of organisms. STANDARD 9 <td< td=""><td>STANDARD</td><td>2</td><td>Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding interactions between objects and within systems of objects.</td></td<>	STANDARD	2	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding interactions between objects and within systems of objects.
STANDARD 5 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how individual organisms are configured and how these structures function to support life, growth, behavior and reproduction. STANDARD 6 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how living systems interact with the biotic and abiotic environment. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how genetic and environmental factors influence variation of organisms acro generations. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how natural selection drives biological evolution accounting for the unity and driversity of organisms. STANDARD 8 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding the universe and Earth's place in it. STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding the universe and Earth's place in it. STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how human activities and the Earth's	STANDARD	3	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how energy is transferred and conserved.
STANDARD 6 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how living systems interact with the biotic and abiotic environment. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how genetic and environmental factors influence variation of organisms acrogenerations. STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how genetic and environmental factors influence variation of organisms acrogenerations. STANDARD 8 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how natural selection drives biological evolution accounting for the unity and diversity of organisms. STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding the universe and Earth's place in it. STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how and why Earth is constantly changing. STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how and why Earth is constantly changing. STAN	STANDARD	4	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how waves are used to transfer energy and information.
STANDARD 7 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how genetic and environmental factors influence variation of organisms acrogenerations. STANDARD 8 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how natural selection drives biological evolution accounting for the unity and diversity of organisms. STANDARD 8 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how natural selection drives biological evolution accounting for the unity and diversity of organisms. STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding the universe and Earth's place in it. STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how and why Earth is constantly changing. STANDARD 11 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how human activities and the Earth's surface processes interact. CONTENT SC.HS.1. Physical Science REA 10. Students can use the full range of science and behaviors. CONTENT <	STANDARD	5	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how individual organisms are configured and how these structures function to support life, growth, behavior and reproduction.
STANDARD 8 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how natural selection drives biological evolution accounting for the unity and diversity of organisms. STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how natural selection drives biological evolution accounting for the unity and diversity of organisms. STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding the universe and Earth's place in it. STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding the universe and Earth's place in it. STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how and why Earth is constantly changing. STANDARD 11 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how human activities and the Earth's surface processes interact. CONTENT AREA SC.HS.1. Physical Science STANDARD 10. Evidence Outcomes AND SKILLS / EVIDENCE Evidence Outcomes	STANDARD	6	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how living systems interact with the biotic and abiotic environment.
STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding the universe and Earth's place in it. STANDARD 9 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding the universe and Earth's place in it. STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how and why Earth is constantly changing. STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how and why Earth is constantly changing. STANDARD 11 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how human activities and the Earth's surface processes interact. CONTENT SC.HS.1. Physical Science STANDARD SC.HS.1. Waves have characteristic properties and behaviors. IO. Evidence Outcomes Evidence Outcomes	STANDARD	7	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how genetic and environmental factors influence variation of organisms across generations.
STANDARD 10 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how and why Earth is constantly changing. STANDARD 11 Students can use the full range of science and engineering practices to make sense of natural phenomena and sproblems that require understanding how human activities and the Earth's surface processes interact. CONTENT SC.HS.1. Physical Science STANDARD SC.HS.1. Physical Science STANDARD SC.HS.1. Physical Science CONCEPTS AND SKILLS / IO. Evidence Outcomes	STANDARD	8	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how natural selection drives biological evolution accounting for the unity and diversity of organisms.
STANDARD 11 Students can use the full range of science and engineering practices to make sense of natural phenomena and s problems that require understanding how human activities and the Earth's surface processes interact. CONTENT SC.HS.1. Physical Science STANDARD SC.HS.1. Physical Science STANDARD SC.HS.1. Waves have characteristic properties and behaviors. CONCEPTS AND SKILLS / Evidence Outcomes	STANDARD	9	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding the universe and Earth's place in it.
problems that require understanding how human activities and the Earth's surface processes interact. CONTENT AREA SC.HS.1. Physical Science ST ANDARD SC.HS.1. Waves have characteristic properties and behaviors. CONCEPTS AND SKILLS / EVIDENCE Evidence Outcomes	STANDARD	10	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how and why Earth is constantly changing.
AREA Standard Sc.HS.1. Waves have characteristic properties and behaviors. ST AND ARD Sc.HS.1. Waves have characteristic properties and behaviors. CONCEPTS AND SKILLS / Evidence Outcomes EVIDENCE Evidence Outcomes	STANDARD	11	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how human activities and the Earth's surface processes interact.
10. Evidence Outcomes CONCEPTS Evidence Outcomes		SC.HS.1.	Physical Science
AND SKILLS / EVIDENCE	STANDARD		Waves have characteristic properties and behaviors.
	AND SKILLS / EVIDENCE		Evidence Outcomes
EVIDENCE Students Can: OUTCOMES Students Can:			Students Can:

INDICATOR SC.HS.1. Evaluate questions about the advantages of using a digital transmission and storage of information. (HS-PS4-2) 10.b.

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 4.	Organisms interact with the living and nonliving components of the environment to obtain matter and energy.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUT COMES		Students Can:

INDICATOR

4.b.

SC.HS.2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. (HS-LS2-2)

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 5.	Matter and energy necessary for life are conserved as they move through ecosystems.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.2. 5.b.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. (HS-LS2-4)
INDICATOR	SC.HS.2. 5.c.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. (HS-LS2-5)

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 6.	A complex set of interactions determine how ecosystems respond to disturbances.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:

INDICATOR

6.b.

SC.HS.2. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. (HS-LS2-7)

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 13.	Humans have complex interactions with ecosystems and have the ability to influence biodiversity on the planet.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes

EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.2. 13.a.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. (HS-LS4-6)
CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 4.	Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes, and these effects occur on different time scales, from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles.
CONCEPTS AND SKILLS /		Evidence Outcomes

EVIDENCE Stude OUTCOMES	ents Can:

INDICATOR

SC.HS.3. Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in 4.d. climate. (HS-ESS2-4)

CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 7.	The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.3. 7.b.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (HS-ESS2-4)

INDICATOR	SC.HS.3.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
	7.c.	and biosphere. (HS-ESS2-6)

CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 9.	Resource availability has guided the development of human society and use of natural resources has associated costs, risks, and benefits.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.3. 9.a.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. (HS-ESS3-1)
INDICATOR	SC.HS.3. 9.b.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. (HS-ESS3-2)

CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 10.	Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.3. 10.a.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. (HS-ESS3-1)

CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 11.	Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the

11.a.

sustainability of human populations, and biodiversity. (HS-ESS3-3)

CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 12.	Global climate models used to predict future climate change continue to improve our understanding of the impact of human activities on the global climate system.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.3. 12.b.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. (HS-ESS3-6)

Colorado Academic Standards (CAS)

Science

Grade 10 - Adopted: 2018

CONTENT AREA		Prepared Graduates in Science
STANDARD	1	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding structure, properties and interactions of matter.
STANDARD	2	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding interactions between objects and within systems of objects.
STANDARD	3	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how energy is transferred and conserved.

STANDARD	4	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how waves are used to transfer energy and information.
STANDARD	5	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how individual organisms are configured and how these structures function to support life, growth, behavior and reproduction.
STANDARD	6	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how living systems interact with the biotic and abiotic environment.
STANDARD	7	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how genetic and environmental factors influence variation of organisms across generations.
STANDARD	8	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how natural selection drives biological evolution accounting for the unity and diversity of organisms.
STANDARD	9	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding the universe and Earth's place in it.
STANDARD	10	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how and why Earth is constantly changing.
STANDARD	11	Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how human activities and the Earth's surface processes interact.

CONTENT AREA	SC.HS.1.	Physical Science
STANDARD	SC.HS.1. 10.	Waves have characteristic properties and behaviors.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUT COMES		Students Can:

INDICATOR SC.HS.1. Evaluate questions about the advantages of using a digital transmission and storage of information. (HS-PS4-2) 10.b.

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 4.	Organisms interact with the living and nonliving components of the environment to obtain matter and energy.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:

INDICATOR

SC.HS.2. Use mathematical representations to support and revise explanations based on evidence about factors affectingbiodiversity and populations in ecosystems of different scales. (HS-LS2-2)

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 5.	Matter and energy necessary for life are conserved as they move through ecosystems.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUT COMES		Students Can:
INDICATOR	SC.HS.2. 5.b.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. (HS-LS2-4)

INDICATOR SC. 5.c.

SC.HS.2. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the 5.c. biosphere, atmosphere, hydrosphere, and geosphere. (HS-LS2-5)

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 6.	A complex set of interactions determine how ecosystems respond to disturbances.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:

INDICATORSC.HS.2.Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and
biodiversity. (HS-LS2-7)

CONTENT AREA	SC.HS.2.	Life Science
STANDARD	SC.HS.2. 13.	Humans have complex interactions with ecosystems and have the ability to influence biodiversity on the planet.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.2. 13.a.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. (HS-LS4-6)

CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 4.	Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes, and these effects occur on different time scales, from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES	<u>, </u>	Students Can:

INDICATOR SC.HS.3. Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in 4.d. climate. (HS-ESS2-4) CONTENT SC.HS.3. Earth and Space Science AREA The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the **STANDARD** SC.HS.3. 7. foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors. CONCEPTS **Evidence Outcomes** AND SKILLS / **EVIDENCE** OUTCOMES **EVIDENCE** Students Can: OUTCOMES INDICATOR SC.HS.3. Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in 7.b. climate. (HS-ESS2-4) INDICATOR SC.HS.3. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, 7.c. and biosphere. (HS-ESS2-6) CONTENT SC.HS.3. Earth and Space Science AREA **STANDARD** SC.HS.3. Resource availability has guided the development of human society and use of natural resources has 9. associated costs, risks, and benefits. CONCEPTS Evidence Outcomes AND SKILLS / **EVIDENCE** OUTCOMES **EVIDENCE** Students Can: OUTCOMES INDICATOR SC.HS.3. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural 9.a. hazards, and changes in climate have influenced human activity. (HS-ESS3-1) INDICATOR SC.HS.3. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based 9.b. on cost-benefit ratios. (HS-ESS3-2) CONTENT SC.HS.3. Earth and Space Science AREA **STANDARD** SC.HS.3. Natural hazards and other geological events have shaped the course of human history at local, 10. regional, and global scales. CONCEPTS **Evidence Outcomes** AND SKILLS / **EVIDENCE** OUTCOMES EVIDENCE Students Can: OUTCOMES INDICATOR SC.HS.3. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural 10.a. hazards, and changes in climate have influenced human activity. (HS-ESS3-1) CONTENT SC.HS.3. Earth and Space Science AREA

STANDARD	SC.HS.3. 11.	Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.3. 11.a.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity. (HS-ESS3-3)
CONTENT AREA	SC.HS.3.	Earth and Space Science
STANDARD	SC.HS.3. 12.	Global climate models used to predict future climate change continue to improve our understanding of the impact of human activities on the global climate system.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	SC.HS.3. 12.b.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. (HS-ESS3-6)
		Colorado Academic Standards (CAS) Technology Education Grade 9 - Adopted: 2018
CONTENT AREA		Prepared Graduates in Computer Science
STANDARD	1	Develop, utilize and evaluate algorithms, to model and solve problems.
CONTENT AREA		High School, Standard 1. Computational Thinking
STANDARD	CS.HS.1. 1	Computational thinking is used to create algorithmic solutions to real-world problems.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	CS.HS.1. 1.a.	Identify and create different types of algorithms (sort, search, etc.).
INDICATOR	CS.HS.1. 1.c.	Create or adapt algorithms to solve problems for multiple purposes (e.g., personal interests, client needs).
INDICATOR	CS.HS.1. 1.f.	Recognize problems that cannot be solved computationally.

CONTENT AREA		High School, Standard 1. Computational Thinking
STANDARD	CS.HS.1. 5	Abstraction is used to reduce complexity of larger problems by focusing on main ideas.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	CS.HS.1. 5.a.	Describe how abstraction is central to computational thinking.
INDICATOR	CS.HS.1. 5.b.	Identify and prioritize the most relevant parts of a problem while filtering out extraneous details.
INDICATOR	CS.HS.1. 5.c.	Demonstrate different ways to represent key problem components.
CONTENT AREA		High School, Standard 2. Computing Systems and Networks
STANDARD	CS.HS.2. 5	Client considerations drive system design.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUT COMES		Students Can:
INDICATOR	CS.HS.2. 5.a.	Identify client's problems/needs.
INDICATOR	CS.HS.2. 5.b.	Articulate design requirements back to client.
CONTENT AREA		High School, Standard 3. Computer Programming
STANDARD	CS.HS.3. 1	The creation of a computer program requires a design process.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUT COMES		Students Can:
INDICATOR	CS.HS.3. 1.a.	Analyze and apply a design methodology to identify constraints and requirements of an identified problem.

CONTENT AREA		High School, Standard 3. Computer Programming
STANDARD	CS.HS.3. 4	Client-based design requirements and feedback are essential to a quality computational product or service.

CONCEPTS AND SKILLS / EVIDENCE		Evidence Outcomes
OUTCOMES		
EVIDENCE OUT COMES		Students Can:
INDICATOR	CS.HS.3. 4.a.	Understand and apply principles of client-based design.
		Colorado Academic Standards (CAS) Technology Education Grade 10 - Adopted: 2018
CONTENT AREA		Prepared Graduates in Computer Science
STANDARD	1	Develop, utilize and evaluate algorithms, to model and solve problems.
CONTENT AREA		High School, Standard 1. Computational Thinking
STANDARD	CS.HS.1. 1	Computational thinking is used to create algorithmic solutions to real-world problems.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	CS.HS.1. 1.a.	Identify and create different types of algorithms (sort, search, etc.).
INDICATOR	CS.HS.1. 1.c.	Create or adapt algorithms to solve problems for multiple purposes (e.g., personal interests, client needs).
INDICATOR	CS.HS.1. 1.f.	Recognize problems that cannot be solved computationally.
INDICATOR	CS.HS.1. 1.g.	Identify and describe algorithms that exist within their personal lives.
CONTENT AREA		High School, Standard 1. Computational Thinking
STANDARD	CS.HS.1. 5	Abstraction is used to reduce complexity of larger problems by focusing on main ideas.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	CS.HS.1. 5.a.	Describe how abstraction is central to computational thinking.

INDICATOR	CS.HS.1. 5.b.	Identify and prioritize the most relevant parts of a problem while filtering out extraneous details.
INDICATOR	CS.HS.1. 5.c.	Demonstrate different ways to represent key problem components.
CONTENT AREA		High School, Standard 2. Computing Systems and Networks
STANDARD	CS.HS.2. 5	Client considerations drive system design.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	CS.HS.2. 5.a.	Identify client's problems/needs.
INDICATOR	CS.HS.2. 5.b.	Articulate design requirements back to client.
CONTENT AREA		High School, Standard 3. Computer Programming
STANDARD	CS.HS.3. 1	The creation of a computer program requires a design process.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	CS.HS.3. 1.a.	Analyze and apply a design methodology to identify constraints and requirements of an identified problem.
CONTENT AREA		High School, Standard 3. Computer Programming
STANDARD	CS.HS.3. 4	Client-based design requirements and feedback are essential to a quality computational product or service.
CONCEPTS AND SKILLS / EVIDENCE OUTCOMES		Evidence Outcomes
EVIDENCE OUTCOMES		Students Can:
INDICATOR	CS.HS.3. 4.a.	Understand and apply principles of client-based design.

Connecticut State Standards Mathematics Grade 9 - Adopted: 2010

DOMAIN / CONTENT STANDARD	CT.CC.M P.	Mathematical Practices
STATE FRAMEWORK	MP-1.	Make sense of problems and persevere in solving them.
STATE FRAMEWORK	MP-2.	Reason abstractly and quantitatively.
STATE FRAMEWORK	MP-3.	Construct viable arguments and critique the reasoning of others.
STATE FRAMEWORK	MP-4.	Model with mathematics.
STATE FRAMEWORK	MP-6.	Attend to precision.
STATE FRAMEWORK	MP-7.	Look for and make use of structure.
STATE FRAMEWORK	MP-8.	Look for and express regularity in repeated reasoning.

DOMAIN / CONTENT STANDARD	CT.CC.F.	Functions
STATE FRAMEWORK	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION		Interpret functions that arise in applications in terms of the context.

INDICATOR Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a F-IF.6. specified interval. Estimate the rate of change from a graph.

Connecticut State Standards Mathematics

|--|

DOMAIN / CONTENT STANDARD	CT.CC.M P.	Mathematical Practices
STATE FRAMEWORK	MP-1.	Make sense of problems and persevere in solving them.
STATE FRAMEWORK	MP-2.	Reason abstractly and quantitatively.
STATE FRAMEWORK	MP-3.	Construct viable arguments and critique the reasoning of others.
STATE FRAMEWORK	MP-4.	Model with mathematics.

STATE FRAMEWORK	MP-6.	Attend to precision.
STATE FRAMEWORK	MP-7.	Look for and make use of structure.
STATE	MP-8.	Look for and express regularity in repeated reasoning.

FRAMEWORK

MP-8. Look for and express regularity in repeated reasoning	g.
---	----

DOMAIN / CONTENT STANDARD	CT.CC.F.	Functions
ST AT E FRAMEWORK	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION		Interpret functions that arise in applications in terms of the context.

INDICATOR F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Connecticut State Standards

Science

Grade 9 - Adopted: 2015

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. 2.

DOMAIN / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
STATE FRAMEWORK	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

DOMAIN / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
STATE FRAMEWORK	HS-LS4.	Biological Evolution: Unity and Diversity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. 6.

DOMAIN / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATE FRAMEWORK	HS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

INDICATOR	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
	ESS2-6.	and biosphere.

DOMAIN / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATE FRAMEWORK	HS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
INDICATOR	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

	NGSS.HS -ETS.	ENGINEERING DESIGN
STATE FRAMEWORK	HS- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Connecticut State Standards

Science

Grade 10 - Adopted: 2015

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. INDICATOR

2.

DOMAIN / CONTENT STANDARD	NGSS.HS -LS.	
STATE FRAMEWORK	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
DOMAIN / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
STATE FRAMEWORK	HS-LS4.	Biological Evolution: Unity and Diversity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR

HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

6.

DOMAIN / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATE FRAMEWORK	HS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
INDICATOR	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,

`	115-	Develop a quai
	ESS2-6.	and biosphere.

ETS1-2.

DOMAIN / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATE FRAMEWORK	HS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
INDICATOR	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
DOMAIN / CONTENT STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
STATE FRAMEWORK	HS- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
INDICATOR	HS-	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems

that can be solved through engineering. INDICATOR HS-Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a ETS1-3.

range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

> **Connecticut State Standards** Technology Education Grade 9 - Adopted: 2017

DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 A.	Level 3A (Ages 14-16)
GRADE LEVEL EXPECTATION	3A-AP.	Algorithms & Programming
INDICATOR		Algorithms
INDICATOR	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. (P5.2)

DOMAIN / CONTENT ST ANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 A.	Level 3A (Ages 14-16)
GRADE LEVEL EXPECTATION	3A-IC.	Impacts of Computing
INDICATOR		Culture

INDICATOR

3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)

Grade 9 - Adopted: 2016

DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GRADE LEVEL EXPECTATION	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.

GRADE LEVEL EXPECTATION	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GRADE LEVEL	ISTE-	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test

EXPECTATION S.5.d.

Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Connecticut State Standards Technology Education

Grade 10 - Adopted: 2017

DOMAIN / CONTENT STANDARD		CSTAK-12 Computer Science Standards
STATE C FRAMEWORK A.		Level 3A (Ages 14-16)
GRADE LEVEL 3 EXPECTATION	3A-AP.	Algorithms & Programming
INDICATOR		Algorithms

INDICATOR3A-AP-
13.Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and
personal interests. (P5.2)

DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 A.	Level 3A (Ages 14-16)
GRADE LEVEL EXPECTATION	3A-IC.	Impacts of Computing
INDICATOR		Culture

INDICATOR 3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)

Grade 10 - Adopted: 2016

DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GRADE LEVEL EXPECTATION	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GRADE LEVEL EXPECTATION	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Delaware Standards and Instruction

Mathematics

Grade 9 - Adopted: 2010

ST ANDARD / ST RAND	DE.CC.9- 12.MP.	Mathematical Practices
STRAND / INDICATOR	CC.9- 12.MP-1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	CC.9- 12.MP-2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	CC.9- 12.MP-3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	CC.9- 12.MP-4.	Model with mathematics.
STRAND / INDICATOR	CC.9- 12.MP-6.	Attend to precision.
STRAND / INDICATOR	CC.9- 12.MP-7.	Look for and make use of structure.
STRAND / INDICATOR	CC.9- 12.MP-8.	Look for and express regularity in repeated reasoning.
STANDARD / STRAND	DE.CC.9- 12.F.	Functions
STRAND / INDICATOR	CC.9- 12.F-IF.	Interpreting Functions
ENDURING UNDERSTAND ING		Interpret functions that arise in applications in terms of the context.
	<u> </u>	Coloulate and interpret the average rate of abange of a function (presented symbolically or as a table) over a

 BENCHMARK
 CC.9 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a 12.F.IF.6.

 specified interval. Estimate the rate of change from a graph.

Mathematics

Grade 10 - Adopted: 2010

STANDARD / STRAND	DE.CC.9- 12.MP.	Mathematical Practices
STRAND / INDICATOR	CC.9- 12.MP-1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	CC.9- 12.MP-2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	CC.9- 12.MP-3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	CC.9- 12.MP-4.	Model with mathematics.
STRAND / INDICATOR	CC.9- 12.MP-6.	Attend to precision.
STRAND / INDICATOR	CC.9- 12.MP-7.	Look for and make use of structure.
STRAND / INDICATOR	CC.9- 12.MP-8.	Look for and express regularity in repeated reasoning.
STANDARD / STRAND	DE.CC.9- 12.F.	Functions
STRAND / INDICATOR	CC.9- 12.F-IF.	Interpreting Functions

ENDURING UNDERSTAND ING		Interpret functions that arise in applications in terms of the context.
-------------------------------	--	---

BENCHMARK

CC.9-Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a 12.F.IF.6. specified interval. Estimate the rate of change from a graph.

Delaware Standards and Instruction

Science

Grade 9 - Adopted: 2013

	DE.HS- PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:

BENCHMARK HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

2.

ST ANDARD / ST RAND	DE.HS- LS.	LIFE SCIENCE
------------------------	---------------	--------------

STRAND / INDICATOR	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
BENCHMARK	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
BENCHMARK	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
BENCHMARK	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STANDARD / STRAND	DE.HS- LS.	
STRAND / INDICATOR	HS-LS4.	Biological Evolution: Unity and Diversity
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:

IMARK HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. 6.

STANDARD / STRAND	DE.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS2.	Earth's Systems
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
BENCHMARK	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
ST ANDARD / ST RAND	DE.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS3.	Earth and Human Activity
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS-	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural

ESS3-1. hazards, and changes in climate have influenced human activity.

BENCHMARK

BENCHMARK	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
BENCHMARK	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
BENCHMARK	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STANDARD / STRAND	DE.HS- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	HS- ET S1.	Engineering Design
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
BENCHMARK	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
BENCHMARK	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 9 - Adopted: 2010
STANDARD / STRAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Key Ideas and Details
ENDURING UNDERSTANDI NG	CC9- 10RS/TS2	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
ENDURING UNDERSTANDI NG	CC9- 10RS/TS3	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.

STANDARD / STRAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Craft and Structure
ENDURING UNDERSTANDI NG	CC9- 10RS/TS 4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
ENDURING UNDERSTANDI NG	CC9- 10RS/TS 5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

ST ANDARD / ST RAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Integration of Knowledge and Ideas
ENDURING UNDERSTANDI NG	CC9- 10RS/TS 9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STANDARD / STRAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
ENDURING UNDERSTANDI NG	CC9- 10RS/TS1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STANDARD / STRAND	DE.CC9- 10WH/S/T S.	Writing Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Text Types and Purposes
ENDURING UNDERSTAND ING	CC9- 10WH/S/ TS2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
BENCHMARK	CC9- 10WH/S/T S2d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
ST ANDARD / ST RAND	DE.CC9- 10WH/S/T S.	Writing Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Production and Distribution of Writing
ENDURING UNDERSTANDI NG	CC9- 10WH/S/T S4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ENDURING UNDERSTANDI NG	CC9- 10WH/S/T S6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Delaware Standards and Instruction

Science

Grade 10 - Adopted: 2013

ST ANDARD / ST RAND	DE.HS- PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:

BENCHMARK

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

2.

ST ANDARD / ST RAND	DE.HS- LS.	LIFE SCIENCE
STRAND / INDICATOR	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
BENCHMARK	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
BENCHMARK	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
BENCHMARK	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

STANDARD / STRAND	DE.HS- LS.	LIFE SCIENCE
STRAND / INDICATOR	HS-LS4.	Biological Evolution: Unity and Diversity
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:

BENCHMARK HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. 6.

ST ANDARD / ST RAND	DE.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS2.	Earth's Systems
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
BENCHMARK	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STANDARD / STRAND	DE.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS3.	Earth and Human Activity

ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
BENCHMARK	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
BENCHMARK	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
BENCHMARK	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STANDARD / STRAND	DE.HS- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	HS- ET S1.	Engineering Design
ENDURING UNDERSTAND ING		Students who demonstrate understanding can:
BENCHMARK	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
BENCHMARK	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
BENCHMARK	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 10 - Adopted: 2010
STANDARD / STRAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Key Ideas and Details
ENDURING UNDERSTANDI NG	CC9- 10RS/TS2	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
ENDURING UNDERSTANDI NG	CC9- 10RS/TS3	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STANDARD / STRAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Craft and Structure

ENDURING UNDERSTANDI NG	CC9- 10RS/TS 4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
ENDURING UNDERSTANDI NG	CC9- 10RS/TS 5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STANDARD / STRAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Integration of Knowledge and Ideas
ENDURING UNDERSTANDI NG	CC9- 10RS/TS 9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STANDARD / STRAND	DE.CC9- 10RS/TS.	Reading Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
ENDURING UNDERSTANDI NG	CC9- 10RS/TS1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STANDARD / STRAND	DE.CC9- 10WH/S/T S.	Writing Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Text Types and Purposes
ENDURING UNDERSTAND ING	CC9- 10WH/S/ TS2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
BENCHMARK	CC9- 10WH/S/T S2d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STANDARD / STRAND	DE.CC9- 10WH/S/T S.	Writing Standards for Literacy in Science and Technical Subjects 6-12
STRAND / INDICATOR		Production and Distribution of Writing
ENDURING UNDERSTANDI NG	CC9- 10WH/S/T S4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ENDURING UNDERSTANDI NG	CC9- 10WH/S/T S6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Delaware Standards and Instruction

Delaware Standards and Instruction Technology Education Grade 9 - Adopted: 2018

ST ANDARD / ST RAND		Computer Science Content Standards
STRAND / INDICATOR	CSTA.3 A.	Level 3A (Ages 14-16)
ENDURING UNDERSTAND ING	3A-AP.	Algorithms & Programming
BENCHMARK		Algorithms

EXPECTATION 3A-AP- Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and 13. personal interests. (P5.2)

STANDARD / STRAND		Computer Science Content Standards
STRAND / INDICATOR	CSTA.3 A.	Level 3A (Ages 14-16)
ENDURING UNDERSTAND ING	3A-IC.	Impacts of Computing
BENCHMARK		Culture

EXPECTATION 3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)

Delaware Standards and Instruction

Technology Education

Grade 10 - Adopted: 2018

STANDARD / STRAND		Computer Science Content Standards
STRAND / INDICATOR	CSTA.3 A.	Level 3A (Ages 14-16)
ENDURING UNDERSTAND ING	3A-AP.	Algorithms & Programming
BENCHMARK		Algorithms

EXPECTATION 3A-AP-13. Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. (P5.2)

STANDARD / STRAND		Computer Science Content Standards
STRAND / INDICATOR	CSTA.3 A.	Level 3A (Ages 14-16)
ENDURING UNDERSTAND ING	3A-IC.	Impacts of Computing
BENCHMARK		Culture

EXPECTATION 3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)

Florida Standards Mathematics Grade 9 - Adopted: 2020

BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 1: Actively participate in effortful learning both individually and collectively.
BENCHMARK	MA.K12. MTR.1.1	Mathematicians who participate in effortful learning both individually and with others:
INDICATOR	MA.K12. MTR.1.1a	Analyze the problem in a way that makes sense given the task.
INDICATOR	MA.K12. MTR.1.1b	Ask questions that will help with solving the task.
INDICATOR	MA.K12. MTR.1.1c	Build perseverance by modifying methods as needed while solving a challenging task.
INDICATOR	MA.K12. MTR.1.1d	Stay engaged and maintain a positive mindset when working to solve tasks.
INDICATOR	MA.K12. MTR.1.1e	Help and support each other when attempting a new method or approach.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 2: Demonstrate understanding by representing problems in multiple ways.
BENCHMARK	MA.K12. MTR.2.1	Demonstrate understanding by representing problems in multiple ways. Mathematicians who demonstrate understanding by representing problems in multiple ways:
INDICATOR	MA.K12.	Build understanding through modeling and using manipulatives.
	MTR.2.1a	
INDICATOR	MTR.2.1a MA.K12. MTR.2.1b	Represent solutions to problems in multiple ways using objects, drawings, tables, graphs and equations.
INDICATOR	MA.K12.	Represent solutions to problems in multiple ways using objects, drawings, tables, graphs and equations. Express connections between concepts and representations.
	MA.K12. MTR.2.1b MA.K12.	
INDICATOR	MA.K12. MTR.2.1b MA.K12. MTR.2.1d MA.K12.	Express connections between concepts and representations.
INDICATOR INDICATOR	MA.K12. MTR.2.1b MA.K12. MTR.2.1d MA.K12.	Express connections between concepts and representations. Choose a representation based on the given context or purpose.
	MA.K12. MTR.2.1b MA.K12. MTR.2.1d MA.K12.	Express connections between concepts and representations. Choose a representation based on the given context or purpose. Mathematical Thinking and Reasoning
INDICATOR INDICATOR BODY OF KNOWLEDGE BIG IDEA	MA.K12. MTR.2.1b MA.K12. MTR.2.1d MA.K12. MTR.2.1e	Express connections between concepts and representations. Choose a representation based on the given context or purpose. Mathematical Thinking and Reasoning Standard 3: Complete tasks with mathematical fluency. Complete tasks with mathematical fluency.Mathematicians who complete tasks with mathematical

INDICATOR	MA.K12. MTR.3.1c	Complete tasks accurately and with confidence.
INDICATOR	MA.K12. MTR.3.1e	Use feedback to improve efficiency when performing calculations.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 4: Engage in discussions that reflect on the mathematical thinking of self and others.
BENCHMARK	MA.K12. MTR.4.1	Engage in discussions that reflect on the mathematical thinking of self and others. Mathematicians who engage in discussions that reflect on the mathematical thinking of self and others:
INDICATOR	MA.K12. MTR.4.1a	Communicate mathematical ideas, vocabulary and methods effectively.
INDICATOR	MA.K12. MTR.4.1b	Analyze the mathematical thinking of others.
INDICATOR	MA.K12. MTR.4.1c	Compare the efficiency of a method to those expressed by others.
INDICATOR	MA.K12. MTR.4.1d	Recognize errors and suggest how to correctly solve the task.
INDICATOR	MA.K12. MTR.4.1e	Justify results by explaining methods and processes.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 5: Use patterns and structure to help understand and connect mathematical concepts.
BIG IDEA BENCHMARK	MA.K12. MTR.5.1	Standard 5: Use patterns and structure to help understand and connect mathematical concepts.Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts:
		Use patterns and structure to help understand and connect mathematical concepts. Mathematicians
BENCHMARK	MT R.5.1 MA.K12.	Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts:
BENCHMARK	MT R.5.1 MA.K12. MTR.5.1a MA.K12.	Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts: Focus on relevant details within a problem.
BENCHMARK	MT R.5.1 MA.K12. MTR.5.1a MA.K12. MTR.5.1b MA.K12.	Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts: Focus on relevant details within a problem. Create plans and procedures to logically order events, steps or ideas to solve problems.
BENCHMARK INDICATOR INDICATOR INDICATOR	MT R.5.1 MA.K12. MTR.5.1a MA.K12. MTR.5.1b MA.K12.	Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts: Focus on relevant details within a problem. Create plans and procedures to logically order events, steps or ideas to solve problems. Decompose a complex problem into manageable parts.
BENCHMARK INDICATOR INDICATOR INDICATOR BODY OF KNOWLEDGE	MT R.5.1 MA.K12. MTR.5.1a MA.K12. MTR.5.1b MA.K12.	Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts: Focus on relevant details within a problem. Create plans and procedures to logically order events, steps or ideas to solve problems. Decompose a complex problem into manageable parts. Mathematical Thinking and Reasoning

INDICATOR	MA.K12. MTR.6.1d	Verify possible solutions by explaining the methods used.
INDICATOR	MA.K12. MTR.6.1e	Evaluate results based on the given context.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 7: Apply mathematics to real-world contexts.
BENCHMARK	MA.K12. MTR.7.1	Apply mathematics to real-world contexts. Mathematicians who apply mathematics to real-world contexts:
INDICATOR	MA.K12. MTR.7.1a	Connect mathematical concepts to everyday experiences.
INDICATOR	MA.K12. MTR.7.1b	Use models and methods to understand, represent and solve problems.
INDICATOR	MA.K12. MTR.7.1c	Perform investigations to gather data or determine if a method is appropriate. • Redesign models and methods to improve accuracy or efficiency.
BODY OF KNOWLEDGE		Financial Literacy
BIG IDEA		Standard 1: Build mathematical foundations for financial literacy.
BENCHMARK	MA.912.F L.1.2	Extend previous knowledge of ratios and proportional relationships to solve real-world problems involving money and business.
BODY OF KNOWLEDGE		Data Analysis and Probability
BIG IDEA		Standard 2: Solve problems involving univariate and bivariate numerical data.
BENCHMARK	MA.912. DP.2.1	For two or more sets of numerical univariate data, calculate and compare the appropriate measures of center and measures of variability, accounting for possible effects of outliers. Interpret any notable features of the shape of the data distribution.
BENCHMARK	MA.912. DP.2.2	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate.
BODY OF KNOWLEDGE		Logic and Discrete Theory
BIG IDEA		Standard 4: Develop an understanding of the fundamentals of propositional logic, arguments and methods of proof.
BENCHMARK	MA.912.L T.4.7	Identify and give examples of undefined terms; axioms; theorems; proofs, including proofs using mathematical induction; and inductive and deductive reasoning.
		Florida Standards Mathematics

Grade 10 - Adopted: 2020

Mathematical Thinking and Reasoning

BIG IDEA		Standard 1: Actively participate in effortful learning both individually and collectively.
BENCHMARK	MA.K12. MTR.1.1	Mathematicians who participate in effortful learning both individually and with others:
INDICATOR	MA.K12. MTR.1.1a	Analyze the problem in a way that makes sense given the task.
INDICATOR	MA.K12. MTR.1.1b	Ask questions that will help with solving the task.
INDICATOR	MA.K12. MTR.1.1c	Build perseverance by modifying methods as needed while solving a challenging task.
INDICATOR	MA.K12. MTR.1.1d	Stay engaged and maintain a positive mindset when working to solve tasks.
INDICATOR	MA.K12. MTR.1.1e	Help and support each other when attempting a new method or approach.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 2: Demonstrate understanding by representing problems in multiple ways.
BENCHMARK	MA.K12. MTR.2.1	Demonstrate understanding by representing problems in multiple ways. Mathematicians who demonstrate understanding by representing problems in multiple ways:
INDICATOR	MA.K12. MTR.2.1a	Build understanding through modeling and using manipulatives.
INDICATOR	MA.K12. MTR.2.1b	Represent solutions to problems in multiple ways using objects, drawings, tables, graphs and equations.
INDICATOR	MA.K12. MTR.2.1d	Express connections between concepts and representations.
INDICATOR	MA.K12. MTR.2.1e	Choose a representation based on the given context or purpose.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 3: Complete tasks with mathematical fluency.
BENCHMARK	MA.K12. MTR.3.1	Complete tasks with mathematical fluency.Mathematicians who complete tasks with mathematical fluency:
INDICATOR	MA.K12. MTR.3.1a	Select efficient and appropriate methods for solving problems within the given context.
INDICATOR	MA.K12. MTR.3.1b	Maintain flexibility and accuracy while performing procedures and mental calculations.
INDICATOR	MA.K12. MTR.3.1c	Complete tasks accurately and with confidence.

INDICATOR MA.K12. Use 1 MTR.3.1e

MA.K12. Use feedback to improve efficiency when performing calculations.

BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 4: Engage in discussions that reflect on the mathematical thinking of self and others.
BENCHMARK	MA.K12. MTR.4.1	Engage in discussions that reflect on the mathematical thinking of self and others. Mathematicians who engage in discussions that reflect on the mathematical thinking of self and others:
INDICATOR	MA.K12. MTR.4.1a	Communicate mathematical ideas, vocabulary and methods effectively.
INDICATOR	MA.K12. MTR.4.1b	Analyze the mathematical thinking of others.
INDICATOR	MA.K12. MTR.4.1c	Compare the efficiency of a method to those expressed by others.
INDICATOR	MA.K12. MTR.4.1d	Recognize errors and suggest how to correctly solve the task.
INDICATOR	MA.K12. MTR.4.1e	Justify results by explaining methods and processes.
SODY OF (NOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 5: Use patterns and structure to help understand and connect mathematical concepts.
BENCHMARK	MA.K12. MTR.5.1	Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts:
INDICATOR	MA.K12. MTR.5.1a	Focus on relevant details within a problem.
INDICATOR	MA.K12. MTR.5.1b	Create plans and procedures to logically order events, steps or ideas to solve problems.
INDICATOR	MA.K12. MTR.5.1c	Decompose a complex problem into manageable parts.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
BIG IDEA		Standard 6: Assess the reasonableness of solutions.
BENCHMARK	MA.K12. MTR.6.1	Assess the reasonableness of solutions. Mathematicians who assess the reasonableness of solutions:
INDICATOR	MA.K12. MTR.6.1c	Check calculations when solving problems.
	MA.K12.	Verify possible solutions by explaining the methods used.

BODY OF KNOWLEDGE	FL.SC.91 2.N.	Nature of Science
		Florida Standards Science Grade 9 - Adopted: 2008
BENCHMARK	MA.912.L T.4.7	Identify and give examples of undefined terms; axioms; theorems; proofs, including proofs using mathematical induction; and inductive and deductive reasoning.
BIG IDEA		Standard 4: Develop an understanding of the fundamentals of propositional logic, arguments and methods of proof.
BODY OF KNOWLEDGE		Logic and Discrete Theory
BENCHMARK	MA.912. DP.2.2	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate.
BENCHMARK	MA.912. DP.2.1	For two or more sets of numerical univariate data, calculate and compare the appropriate measures of center and measures of variability, accounting for possible effects of outliers. Interpret any notable features of the shape of the data distribution.
BIG IDEA		Standard 2: Solve problems involving univariate and bivariate numerical data.
BODY OF KNOWLEDGE		Data Analysis and Probability
BENCHMARK	MA.912.F L.1.2	Extend previous knowledge of ratios and proportional relationships to solve real-world problems involving money and business.
BIG IDEA		Standard 1: Build mathematical foundations for financial literacy.
BODY OF KNOWLEDGE		Financial Literacy
INDICATOR	MA.K12. MTR.7.1c	Perform investigations to gather data or determine if a method is appropriate. • Redesign models and methods to improve accuracy or efficiency.
INDICATOR	MA.K12. MTR.7.1b	Use models and methods to understand, represent and solve problems.
INDICATOR	MA.K12. MTR.7.1a	Connect mathematical concepts to everyday experiences.
BENCHMARK	MA.K12. MTR.7.1	Apply mathematics to real-world contexts. Mathematicians who apply mathematics to real-world contexts:
BIG IDEA		Standard 7: Apply mathematics to real-world contexts.
BODY OF KNOWLEDGE		Mathematical Thinking and Reasoning
INDICATOR	MA.K12. MTR.6.1e	Evaluate results based on the given context.

BIG IDEA	SC.912. N.1.	The Practice of Science - A: Scientific inquiry is a multifaceted activity; The processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation. B: The processes of science frequently do not correspond to the traditional portrayal of "the scientific method." C: Scientific argumentation is a necessary part of scientific inquiry and plays an important role in the generation and validation of scientific knowledge. D: Scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Not only does science require creativity in its methods and processes, but also in its questions and explanations.
BENCHMARK	SC.912. N.1.1.	Define a problem based on a specific body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following:
INDICATOR	SC.912.N .1.1.6.	Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs)
INDICATOR	SC.912.N .1.1.7.	Pose answers, explanations, or descriptions of events
BODY OF KNOWLEDGE	FL.SC.91 2.N.	Nature of Science
BIG IDEA	SC.912. N.1.	The Practice of Science - A: Scientific inquiry is a multifaceted activity; The processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation. B: The processes of science frequently do not correspond to the traditional portrayal of "the scientific method." C: Scientific argumentation is a necessary part of scientific inquiry and plays an important role in the generation and validation of scientific knowledge. D: Scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Not only does science require creativity in its methods and processes, but also in its guestions.

BENCHMARK .1.3. the data presented.

SC.912.N Recognize that the strength or usefulness of a scientific claim is evaluated through scientific argumentation, which depends on critical and logical thinking, and the active consideration of alternative scientific explanations to explain

BENCHMARK SC.912.N Recognize the role of creativity in constructing scientific questions, methods and explanations. .1.7.

	FL.SC.91 2.N.	Nature of Science
BIG IDEA	SC.912. N.4.	Science and Society - As tomorrows citizens, students should be able to identify issues about which society could provide input, formulate scientifically investigable questions about those issues, construct investigations of their questions, collect and evaluate data from their investigations, and develop scientific recommendations based upon their findings.

BENCHMARK SC.912.N Weigh the merits of alternative strategies for solving a specific societal problem by comparing a number of different .4.2. costs and benefits, such as human, economic, and environmental.

BODY OF KNOWLEDGE	FL.SC.91 2.E.	Earth and Space Science
BIG IDEA	SC.912. E.7.	Earth Systems and Patterns - The scientific theory of the evolution of Earth states that changes in our planet are driven by the flow of energy and the cycling of matter through dynamic interactions among the atmosphere, hydrosphere, cryosphere, geosphere, and biosphere, and the resources used to sustain human civilization on Earth.
BENCHMARK	SC.912.E .7.7.	Identify, analyze, and relate the internal (Earth system) and external (astronomical) conditions that contribute to global climate change.

BIG IDEA	SC.912. L.15.	Diversity and Evolution of Living Organisms - A. The scientific theory of evolution is the fundamental concept underlying all of biology. B. The scientific theory of evolution is supported by multiple forms of scientific evidence. C. Organisms are classified based on their evolutionary history. D. Natural selection is a primary mechanism leading to evolutionary change.
BENCHMARK	SC.912.L .15.3.	Describe how biological diversity is increased by the origin of new species and how it is decreased by the natural process of extinction.
BODY OF KNOWLEDGE	FL.SC.91 2.L.	Life Science
BIG IDEA	SC.912. L.17.	Interdependence - A. The distribution and abundance of organisms is determined by the interactions between organisms, and between organisms and the non-living environment. B. Energy and nutrients move within and between biotic and abiotic components of ecosystems via physical, chemical and biological processes. C. Human activities and natural events can have profound effects on populations, biodiversity and ecosystem processes.
BENCHMARK	SC.912.L .17.4.	Describe changes in ecosystems resulting from seasonal variations, climate change and succession.
BENCHMARK	SC.912.L .17.8.	Recognize the consequences of the losses of biodiversity due to catastrophic events, climate changes, human activity, and the introduction of invasive, non-native species.
BENCHMARK	SC.912.L .17.10.	Diagram and explain the biogeochemical cycles of an ecosystem, including water, carbon, and nitrogen cycle.
BENCHMARK	SC.912.L .17.11.	Evaluate the costs and benefits of renewable and nonrenewable resources, such as water, energy, fossil fuels, wildlife, and forests.
BENCHMARK	SC.912.L .17.12.	Discuss the political, social, and environmental consequences of sustainable use of land.
BENCHMARK	SC.912.L .17.15.	Discuss the effects of technology on environmental quality.
BENCHMARK	SC.912.L .17.16.	Discuss the large-scale environmental impacts resulting from human activity, including waste spills, oil spills, runoff, greenhouse gases, ozone depletion, and surface and groundwater pollution.
BENCHMARK	SC.912.L .17.17.	Assess the effectiveness of innovative methods of protecting the environment.
BENCHMARK	SC.912.L .17.19.	Describe how different natural resources are produced and how their rates of use and renewal limit availability.
BENCHMARK	SC.912.L .17.20.	Predict the impact of individuals on environmental systems and examine how human lifestyles affect sustainability.
		Florida Standards Science Grade 10 - Adopted: 2008
BODY OF KNOWLEDGE	FL.SC.91 2.N.	Nature of Science

BIG IDEA	SC.912. N.1.	The Practice of Science - A: Scientific inquiry is a multifaceted activity; The processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation. B: The processes of science frequently do not correspond to the traditional portrayal of "the scientific method." C: Scientific argumentation is a necessary part of scientific inquiry and plays an important role in the generation and validation of scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Not only does science require creativity in its methods and processes, but also in its questions and explanations.
BENCHMARK	SC.912. N.1.1.	Define a problem based on a specific body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following:
INDICATOR	SC.912.N .1.1.6.	Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs)
INDICATOR	SC.912.N .1.1.7.	Pose answers, explanations, or descriptions of events
BODY OF KNOWLEDGE	FL.SC.91 2.N.	Nature of Science
BIG IDEA	SC.912. N.1.	The Practice of Science - A: Scientific inquiry is a multifaceted activity; The processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation. B: The processes of science frequently do not correspond to the traditional portrayal of "the scientific method." C: Scientific argumentation is a necessary part of scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Not only does science require creativity in its methods and processes, but also in its questions and explanations.
BENCHMARK	SC.912.N .1.3.	Recognize that the strength or usefulness of a scientific claim is evaluated through scientific argumentation, which depends on critical and logical thinking, and the active consideration of alternative scientific explanations to explain the data presented.
BENCHMARK	SC.912.N .1.7.	Recognize the role of creativity in constructing scientific questions, methods and explanations.
BODY OF KNOWLEDGE	FL.SC.91 2.N.	Nature of Science
BIG IDEA	SC.912. N.4.	Science and Society - As tomorrows citizens, students should be able to identify issues about which society could provide input, formulate scientifically investigable questions about those issues, construct investigations of their questions, collect and evaluate data from their investigations, and develop scientific recommendations based upon their findings.
BENCHMARK	SC.912.N .4.2.	Weigh the merits of alternative strategies for solving a specific societal problem by comparing a number of different costs and benefits, such as human, economic, and environmental.
BODY OF KNOWLEDGE	FL.SC.91 2.E.	Earth and Space Science
BIG IDEA	SC.912. E.7.	Earth Systems and Patterns - The scientific theory of the evolution of Earth states that changes in our planet are driven by the flow of energy and the cycling of matter through dynamic interactions among the atmosphere, hydrosphere, cryosphere, geosphere, and biosphere, and the resources used to sustain human civilization on Earth.
BENCHMARK	SC.912.E .7.7.	Identify, analyze, and relate the internal (Earth system) and external (astronomical) conditions that contribute to global climate change.

BIG IDEA	SC.912. L.15.	Diversity and Evolution of Living Organisms - A. The scientific theory of evolution is the fundamental concept underlying all of biology. B. The scientific theory of evolution is supported by multiple forms of scientific evidence. C. Organisms are classified based on their evolutionary history. D. Natural selection is a primary mechanism leading to evolutionary change.
BENCHMARK	SC.912.L .15.3.	Describe how biological diversity is increased by the origin of new species and how it is decreased by the natural process of extinction.
BODY OF KNOWLEDGE	FL.SC.91 2.L.	Life Science
BIG IDEA	SC.912. L.17.	Interdependence - A. The distribution and abundance of organisms is determined by the interactions between organisms, and between organisms and the non-living environment. B. Energy and nutrients move within and between biotic and abiotic components of ecosystems via physical, chemical and biological processes. C. Human activities and natural events can have profound effects on populations, biodiversity and ecosystem processes.
BENCHMARK	SC.912.L .17.4.	Describe changes in ecosystems resulting from seasonal variations, climate change and succession.
BENCHMARK	SC.912.L .17.8.	Recognize the consequences of the losses of biodiversity due to catastrophic events, climate changes, human activity, and the introduction of invasive, non-native species.
BENCHMARK	SC.912.L .17.10.	Diagram and explain the biogeochemical cycles of an ecosystem, including water, carbon, and nitrogen cycle.
BENCHMARK	SC.912.L .17.11.	Evaluate the costs and benefits of renewable and nonrenewable resources, such as water, energy, fossil fuels, wildlife, and forests.
BENCHMARK	SC.912.L .17.12.	Discuss the political, social, and environmental consequences of sustainable use of land.
BENCHMARK	SC.912.L .17.15.	Discuss the effects of technology on environmental quality.
BENCHMARK	SC.912.L .17.16.	Discuss the large-scale environmental impacts resulting from human activity, including waste spills, oil spills, runoff, greenhouse gases, ozone depletion, and surface and groundwater pollution.
BENCHMARK	SC.912.L .17.17.	Assess the effectiveness of innovative methods of protecting the environment.
BENCHMARK	SC.912.L .17.19.	Describe how different natural resources are produced and how their rates of use and renewal limit availability.
BENCHMARK	SC.912.L .17.20.	Predict the impact of individuals on environmental systems and examine how human lifestyles affect sustainability.
		Florida Standards Technology Education Grade 9 - Adopted: 2016
BODY OF KNOWLEDGE	FL.SC.91 2.CS-CS.	COMPUTER SCIENCE - COMMUNICATION SYSTEMS AND COMPUTING

BODY OF KNOWLEDGE		COMPUTER SCIENCE - COMMUNICATION SYSTEMS AND COMPUTING
BIG IDEA	SC.912. CS-CS.2.	Problem solving and algorithms

BENCHMARK	SC.912. CS- CS.2.5	Evaluate a classical algorithm and implement an original algorithm.
BENCHMARK	SC.912. CS- CS.2.7	Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.
BODY OF KNOWLEDGE	FL.SC.91 2.CS-CP.	COMPUTER SCIENCE - COMPUTER PRACTICES AND PROGRAMMING
BIG IDEA	SC.912. CS-CP.1.	Data analysis
BENCHMARK	SC.912. CS- CP.1.4	Collect real-time data from sources such as simulations, scientific and robotic sensors, and device emulators, using this data to formulate strategies or algorithms to solve advanced problems.

Florida Standards Technology Education

Grade 10 - Adopted: 2016

BODY OF KNOWLEDGE	FL.SC.91 2.CS-CS.	COMPUTER SCIENCE - COMMUNICATION SYSTEMS AND COMPUTING
BIG IDEA	SC.912. CS-CS.2.	Problem solving and algorithms
BENCHMARK	SC.912. CS- CS.2.5	Evaluate a classical algorithm and implement an original algorithm.
BENCHMARK	SC.912. CS- CS.2.7	Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.
BODY OF KNOWLEDGE	FL.SC.91 2.CS-CP.	COMPUTER SCIENCE - COMPUTER PRACTICES AND PROGRAMMING
BIG IDEA	SC.912. CS-CP.1.	Data analysis
BENCHMARK	SC.912. CS- CP.1.4	Collect real-time data from sources such as simulations, scientific and robotic sensors, and device emulators, using this data to formulate strategies or algorithms to solve advanced problems.

Georgia Standards of Excellence Mathematics

Grade 9 - Adopted: 2021

STRAND/TOPIC		Algebra: Concepts & Connections
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	A.MM.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	A.MM.1.1.	Explain applicable, mathematical problems using a mathematical model.

ELEMENT/GLE A.MM.1.4. Use various mathematical representations and structures with this information to represent and solve real-life problems.

STRAND/TOPIC		Algebra: Concepts & Connections
STANDARD / DESCRIPTION		DATA & STATISTICAL REASONING – univariate data and single quantitative variables; bivariate data
ELEMENT	A.DSR.1 0:	Collect, analyze, and interpret univariate quantitative data to answer statistical investigative questions that compare groups to solve real-life problems; Represent bivariate data on a scatter plot and fit a function to the data to answer statistical questions and solve real-life problems.

ELEMENT/GLEA.DSR.10Use statistics appropriate to the shape of the data distribution to compare and represent center (median and mean).1.and variability (interquartile range, standard deviation) of two or more distributions by hand and using technology.

STRAND/TOPIC		Advanced Algebra (Algebra II): Concepts and Connections
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	AA.MM.1 :	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	AA.MM.1. 1.	Explain applicable, mathematical problems using a mathematical model.
ELEMENT/GLE	AA.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a mathematical, applicable situation.
ELEMENT/GLE	AA.MM.1. 4.	Use various mathematical representations and structures to represent and solve real-life problems.
STRAND/TOPIC		Advanced Financial Algebra
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	AFA.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	AFA.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	AFA.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	AFA.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	AFA.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Advanced Financial Algebra
STANDARD / DESCRIPTION		NUMERICAL (QUANTITATIVE) REASONING – Fractions, Decimals, Percents, and Ratios
ELEMENT	AFA.NR. 2:	Utilize fractions, decimals, percents, and ratios to write and solve a variety of financial problems.

ELEMENT/GLE

.1.

.4.

AFA.NR.2 Use fractions, decimals, percents, and ratios to solve problems related to budgets, income tax rates, payroll deductions, pie charts, percent yield, sales tax, percent populations, rent increase, cost savings, debt-to-income ratios, stock splits, floor plans and scale models, trigonometric calculations, banking services, and other business and financial applications.

ELEMENT/GLE

AFA.NR.2 Construct, solve, and interpret algebraic ratios and proportions.

<u></u>		
STRAND/TOPIC		Advanced Financial Algebra
STANDARD / DESCRIPTION		DATA & STATISTICAL REASONING – Data Displays
ELEMENT	AFA.DS R.7:	Collect, analyze, interpret, summarize, and construct displays of data to make predictions within real- world applications.
ELEMENT/GLE	AFA.DSR .7.1.	Interpret measures of central tendency (mean, median, mode) and spread (range, interquartile range, variance, standard deviation) to analyze contextualized data sets.
ELEMENT/GLE	AFA.DSR .7.8.	Apply the Arithmetic Average Formula to calculate and interpret a d-day simple moving average given a set of n data points, $p(1)$, $p(2)$, $p(3)$,, $p(n-1)$, $p(n)$.
STRAND/TOPIC		Linear Algebra with Computer Science Applications
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	LACS.M M.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	LACS.M M.1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	LACS.M M.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	LACS.M M.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	LACS.M M.1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Geometry: Concepts & Connections
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	G.MM.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	G.MM.1.1.	Explain mathematically applicable problems using a mathematical model.
ELEMENT/GLE	G.MM.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	G.MM.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a mathematically applicable situation.

.

ELEMENT/GLE G.MM.1.4 Use various mathematical representations and structures with this information to represent and solve real-life problems.

STRAND/TOPIC		Advanced Finite Mathematics
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	AFM.MM .1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	AFM.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	AFM.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	AFM.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	AFM.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Advanced Mathematical Decision Making
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	AMDM.M M.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	AMDM.M M.1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	AMDM.M M.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	AMDM.M M.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	AMDM.M M.1.4.	Use relevant information to create various mathematical representations and structures to solve real-life problems.
STRAND/TOPIC		Advanced Mathematical Decision Making
STANDARD / DESCRIPTION		QUANTITATIVE & PROPORTIONAL REASONING – Ratios, Rates, & Percents
ELEMENT	AMDM.Q PR.2:	Make decisions and solve problems using ratios, rates, and percents in a variety of real-world applications.
ELEMENT/GLE	AMDM.Q PR.2.1.	Apply proportions, ratios, rates, and percentages to various settings, including business, media, and consumerism.
ELEMENT/GLE	AMDM.Q PR.2.2.	Solve problems involving ratios in mechanical and agricultural contexts.

STRAND/TOPIC		Precalculus
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	PC.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	PC.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	PC.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	PC.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	PC.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Calculus
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	C.MM.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	C.MM.1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	C.MM.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	C.MM.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	C.MM.1.4	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Multivariable Calculus
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	MVC.MM .1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	MVC.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	MVC.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	MVC.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	MVC.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.

STRAND/TOPIC		Differential Equations
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	DE.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	DE.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	DE.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	DE.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	DE.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Engineering Calculus
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	EC.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	EC.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	EC.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	EC.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	EC.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Engineering Calculus
STANDARD / DESCRIPTION		ABSTRACT REASONING – Impact of Engineering in Mathematics
ELEMENT	EC.AR.2 :	Using the engineering design process, apply mathematical concepts and procedures to solve problems in engineering contexts and research the impact of engineering and technological advancement on mathematics and society.
ELEMENT/GLE		Solve and explain engineering-based calculus problems; use mathematical and engineering models to explain real-life phenomena, using appropriate terminology and technology.
EXPECTATION	EC.AR.2. 3.	Apply and adapt a variety of appropriate strategies to solve problems.
EXPECTATION	EC.AR.2.	Use visual and written communication to organize, record, and articulate coherent, mathematical thinking and to

EXPECTATIONEC.AR.2.Use visual and written communication to organize, record, and articulate coherent, mathematical thinking and to
express basic design elements.

EXPECTATION	EC.AR.2. 5.	Monitor and reflect on the process of mathematical problem solving and interpret solutions that arise in engineering contexts.
EXPECTATION	EC.AR.2. 6.	Produce multiple representations for mathematics presented in engineering contexts.
EXPECTATION	EC.AR.2. 8.	Use mathematical representations to model and interpret physical and engineering phenomena.
		College Deadinger Methamatics

STRAND/TOPIC		College Readiness Mathematics
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	CRM.M M.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	CRM.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	CRM.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	CRM.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	CRMMM	Use various mathematical representations and structures with this information to represent and solve real-life

CRM.MM. Use various mathematical representations and structures with this information to represent and solve real-life ELEMENT/GLE 1.4. problems.

STRAND/TOPIC		College Readiness Mathematics
ST ANDARD / DESCRIPTION		NUMERICAL & QUANTITATIVE REASONING – Real Number System
ELEMENT	CRM.NR .2:	Utilize exact and approximate calculations to quantify real-world phenomena and solve problems.

R.6.2. possible effects of extreme data points.

STRAND/TOPIC		College Readiness Mathematics
STANDARD / DESCRIPTION		DATA & STATISTICAL REASONING – Interpreting Data & Calculating Probabilities of Compound Events
ELEMENT	CRM.DS R.6:	Make sense of and reason about variation in data using graphs, tables and probability models to solve problems and draw appropriate conclusions from solutions.
ELEMENT/GLE	CRM.DS	Calculate, compare, and interpret shape, center, and spread of two or more univariate data sets, accounting for

STRAND/TOPIC		Mathematics of Industry and Government
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	MIG.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.

ELEMENT/GLE	MIG.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	MIG.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	MIG.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	MIG.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Statistical Reasoning
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	SR.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	SR.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	SR.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or the humanities.
ELEMENT/GLE	SR.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a real-life situation.
ELEMENT/GLE	SR.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		History of Mathematics
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	HM.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	HM.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	HM.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	HM.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	HM.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		History of Mathematics
STANDARD / DESCRIPTION		LOGICAL, MATHEMATICAL & INVESTIGATIVE REASONING – Ancient Greek Mathematics

ELEMENT	HM.LMI R.3:	Engage in the mathematical and cultural accomplishments of the ancient Greeks in order to grasp the foundational aspects of modern mathematics.
ELEMENT/GLE		Greek geometry
EXPECTATION	HM.LMIR. 3.1.	Prove statements in a deductive system by using its definitions, postulates, and axioms

Georgia Standards of Excellence

Mathematics

Grade 10 - Adopted: 2021

STRAND/TOPIC		Algebra: Concepts & Connections
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	A.MM.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	A.MM.1.1.	Explain applicable, mathematical problems using a mathematical model.
ELEMENT/GLE	A MM 1 4	Use various mathematical representations and structures with this information to represent and solve real-life

A.MM.1.4. Use various mathematical representations and structures with this information to represent and solve real-life ELEMENT/GLE problems.

STANDARD / DESCRIPTIONDATA & STATISTICAL REASONING - univariate data and single quantitative variables; bivariate dataELEMENTA.DSR.1 0:Collect, analyze, and interpret univariate quantitative data to answer statistical investigative questions that compare groups to solve real-life problems; Represent bivariate data on a scatter plot and fit a function to the data to answer statistical questions and solve real-life problems.	STRAND/TOPIC		Algebra: Concepts & Connections
0: questions that compare groups to solve real-life problems; Represent bivariate data on a scatter plot			DATA & STATISTICAL REASONING – univariate data and single quantitative variables; bivariate data
	ELEMENT	A.DSR.1 0:	questions that compare groups to solve real-life problems; Represent bivariate data on a scatter plot

ELEMENT/GLE

.1.

A.DSR.10 Use statistics appropriate to the shape of the data distribution to compare and represent center (median and mean) and variability (interquartile range, standard deviation) of two or more distributions by hand and using technology.

STRAND/TOPIC		Advanced Algebra (Algebra II): Concepts and Connections
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	AA.MM.1 :	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	AA.MM.1. 1.	Explain applicable, mathematical problems using a mathematical model.
ELEMENT/GLE	AA.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a mathematical, applicable situation.
ELEMENT/GLE	AA.MM.1. 4.	Use various mathematical representations and structures to represent and solve real-life problems.
STRAND/TOPIC		Advanced Financial Algebra
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	AFA.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.

ELEMENT/GLE	AFA.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	AFA.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	AFA.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	AFA.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Advanced Financial Algebra
STANDARD / DESCRIPTION		NUMERICAL (QUANTITATIVE) REASONING – Fractions, Decimals, Percents, and Ratios
ELEMENT	AFA.NR. 2:	Utilize fractions, decimals, percents, and ratios to write and solve a variety of financial problems.
ELEMENT/GLE	AFA.NR.2 .1.	Use fractions, decimals, percents, and ratios to solve problems related to budgets, income tax rates, payroll deductions, pie charts, percent yield, sales tax, percent populations, rent increase, cost savings, debt-to-income ratios, stock splits, floor plans and scale models, trigonometric calculations, banking services, and other business and financial applications.
ELEMENT/GLE	AFA.NR.2 .4.	Construct, solve, and interpret algebraic ratios and proportions.
STRAND/TOPIC		Advanced Financial Algebra
STANDARD / DESCRIPTION		DATA & STATISTICAL REASONING – Data Displays
ELEMENT	AFA.DS R.7:	Collect, analyze, interpret, summarize, and construct displays of data to make predictions within real- world applications.
ELEMENT/GLE	AFA.DSR .7.1.	Interpret measures of central tendency (mean, median, mode) and spread (range, interquartile range, variance, standard deviation) to analyze contextualized data sets.
ELEMENT/GLE	AFA.DSR .7.8.	Apply the Arithmetic Average Formula to calculate and interpret a d-day simple moving average given a set of n data points, $p(1)$, $p(2)$, $p(3)$,, $p(n-1)$, $p(n)$.
STRAND/TOPIC		Linear Algebra with Computer Science Applications
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	LACS.M M.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	LACS.M M.1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	LACS.M M.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	LACS.M M.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.

ELEMENT/GLE

LACS.M Use various mathematical representations and structures with this information to represent and solve real-life M.1.4. problems.

STRAND/TOPIC		Geometry: Concepts & Connections
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	G.MM.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	G.MM.1.1.	Explain mathematically applicable problems using a mathematical model.
ELEMENT/GLE	G.MM.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	G.MM.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a mathematically applicable situation.
ELEMENT/GLE	G.MM.1.4	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Advanced Finite Mathematics
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	AFM.MM .1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	AFM.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	AFM.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	AFM.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	AFM.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Advanced Mathematical Decision Making
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	AMDM.M M.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	AMDM.M M.1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	AMDM.M M.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	AMDM.M M.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.

ELEMENT/GLE AMDM.M Use relevant information to create various mathematical representations and structures to solve real-life problems. M.1.4.

STRAND/TOPIC		Advanced Mathematical Decision Making
STANDARD / DESCRIPTION		QUANTITATIVE & PROPORTIONAL REASONING – Ratios, Rates, & Percents
ELEMENT	AMDM.Q PR.2:	Make decisions and solve problems using ratios, rates, and percents in a variety of real-world applications.
ELEMENT/GLE	AMDM.Q PR.2.1.	Apply proportions, ratios, rates, and percentages to various settings, including business, media, and consumerism.
ELEMENT/GLE	AMDM.Q PR.2.2.	Solve problems involving ratios in mechanical and agricultural contexts.
STRAND/TOPIC		Precalculus
ST ANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	PC.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	PC.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	PC.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	PC.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	PC.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Calculus
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	C.MM.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	C.MM.1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	C.MM.1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	C.MM.1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	C.MM.1.4	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Multivariable Calculus

STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	MVC.MM .1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	MVC.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	MVC.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	MVC.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	MVC.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Differential Equations
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	DE.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	DE.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	DE.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	DE.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	DE.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Engineering Calculus
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	EC.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	EC.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	EC.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	EC.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	EC.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.

STRAND/TOPIC		Engineering Calculus
STANDARD / DESCRIPTION		ABSTRACT REASONING – Impact of Engineering in Mathematics
ELEMENT	EC.AR.2 :	Using the engineering design process, apply mathematical concepts and procedures to solve problems in engineering contexts and research the impact of engineering and technological advancement on mathematics and society.
ELEMENT/GLE		Solve and explain engineering-based calculus problems; use mathematical and engineering models to explain real-life phenomena, using appropriate terminology and technology.
EXPECTATION	EC.AR.2. 3.	Apply and adapt a variety of appropriate strategies to solve problems.
EXPECTATION	EC.AR.2. 4.	Use visual and written communication to organize, record, and articulate coherent, mathematical thinking and to express basic design elements.
EXPECTATION	EC.AR.2. 5.	Monitor and reflect on the process of mathematical problem solving and interpret solutions that arise in engineering contexts.
EXPECTATION	EC.AR.2. 6.	Produce multiple representations for mathematics presented in engineering contexts.
EXPECTATION	EC.AR.2. 8.	Use mathematical representations to model and interpret physical and engineering phenomena.
STRAND/TOPIC		College Readiness Mathematics
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	CRM.M M.1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	CRM.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	CRM.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	1.2.	
	1.2. CRM.MM. 1.3.	fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	1.2. CRM.MM. 1.3. CRM.MM.	fine and performing arts, and/or humanities contexts. Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation. Use various mathematical representations and structures with this information to represent and solve real-life
ELEMENT/GLE ELEMENT/GLE	1.2. CRM.MM. 1.3. CRM.MM.	fine and performing arts, and/or humanities contexts. Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation. Use various mathematical representations and structures with this information to represent and solve real-life problems.
ELEMENT/GLE ELEMENT/GLE ST RAND/T OPIC ST ANDARD /	1.2. CRM.MM. 1.3. CRM.MM.	fine and performing arts, and/or humanities contexts. Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation. Use various mathematical representations and structures with this information to represent and solve real-life problems. College Readiness Mathematics
ELEMENT/GLE ELEMENT/GLE ST RAND/T OPIC ST ANDARD / DESCRIPTION	1.2. CRM.MM. 1.3. CRM.MM. 1.4. CRM.NR	fine and performing arts, and/or humanities contexts. Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation. Use various mathematical representations and structures with this information to represent and solve real-life problems. College Readiness Mathematics NUMERICAL & QUANTITATIVE REASONING – Real Number System Utilize exact and approximate calculations to quantify real-world phenomena and solve problems.

STRAND/TOPIC

College Readiness Mathematics

STANDARD / DESCRIPTION		DATA & STATISTICAL REASONING – Interpreting Data & Calculating Probabilities of Compound Events
ELEMENT	CRM.DS R.6:	Make sense of and reason about variation in data using graphs, tables and probability models to solve problems and draw appropriate conclusions from solutions.

ELEMENT/GLE

CRM.DS Calculate, compare, and interpret shape, center, and spread of two or more univariate data sets, accounting for R.6.2. possible effects of extreme data points.

STRAND/TOPIC		Mathematics of Industry and Government
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	MIG.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	MIG.MM. 1.1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	MIG.MM. 1.2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	MIG.MM. 1.3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	MIG.MM. 1.4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		Statistical Reasoning
STANDARD / DESCRIPTION		MATHEMATICAL MODELING
ELEMENT	SR.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.
ELEMENT/GLE	SR.MM.1. 1.	Explain contextual, mathematical problems using a mathematical model.
ELEMENT/GLE	SR.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or the humanities.
ELEMENT/GLE	SR.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a real-life situation.
ELEMENT/GLE	SR.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
STRAND/TOPIC		History of Mathematics
STANDARD / DESCRIPTION		MAT HEMATICAL MODELING
ELEMENT	HM.MM. 1:	Apply mathematics to real-life situations; model real-life phenomena using mathematics.

1.

ELEMENT/GLE	HM.MM.1. 2.	Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.
ELEMENT/GLE	HM.MM.1. 3.	Using abstract and quantitative reasoning, make decisions about information and data from a contextual situation.
ELEMENT/GLE	HM.MM.1. 4.	Use various mathematical representations and structures with this information to represent and solve real-life problems.
		History of Mathematics

STRAND/TOPIC		nistory of mathematics
STANDARD / DESCRIPTION		LOGICAL, MATHEMATICAL & INVESTIGATIVE REASONING – Ancient Greek Mathematics
ELEMENT	HM.LMI R.3:	Engage in the mathematical and cultural accomplishments of the ancient Greeks in order to grasp the foundational aspects of modern mathematics.
ELEMENT/GLE		Greek geometry
EXPECTATION	HM.LMIR. 3.1.	Prove statements in a deductive system by using its definitions, postulates, and axioms

Georgia Standards of Excellence

Science

Grade 9 - Adopted: 2016

STRAND/TOPIC	26.01200.	Biology
STANDARD / DESCRIPTION	SB5.	Obtain, evaluate, and communicate information to assess the interdependence of all organisms on one another and their environment.
ELEMENT	SB5.a.	Plan and carry out investigations and analyze data to support explanations about factors affecting biodiversity and populations in ecosystems.

STRAND/T	OPIC 26	6.01200.	Biology
ST AND ARI DESCRIPT			Obtain, evaluate, and communicate information to assess the interdependence of all organisms on one another and their environment.
ELEMENT	s		Develop and use models to analyze the cycling of matter and flow of energy within ecosystems through the processes of photosynthesis and respiration.

ELEMENT/GLE SB5.b.3. Explaining the need for cycling of major biochemical elements (C, O, N, P, and H).

STRAND/TOPIC	26.01200.	Biology
STANDARD / DESCRIPTION	SB5.	Obtain, evaluate, and communicate information to assess the interdependence of all organisms on one another and their environment.

ELEMENT

IT SB5.d. Design a solution to reduce the impact of a human activity on the environment.

STRAND/TOPIC	40.06400	Earth Systems
ST ANDARD / DESCRIPTION	SES5.	Obtain, evaluate, and communicate information to investigate the interaction of solar energy and Earth's systems to produce weather and climate.
ELEMENT	SES5.f.	Construct an argument relating changes in global climate to variation to Earth/sun relationships and atmospheric composition.

STRAND/TOPIC	40.06400	Earth Systems
STANDARD / DESCRIPTION	SES6.	Obtain, evaluate, and communicate information about how life on Earth responds to and shapes Earth's systems.
ELEMENT	SES6.d.	Analyze and interpret data that relates changes in global climate to natural and anthropogenic modification of Earth's atmosphere and oceans.
STRAND/TOPIC	26.06110.	Environmental Science
STANDARD / DESCRIPTION	SEV1.	Obtain, evaluate, and communicate information to investigate the flow of energy and cycling of matter within an ecosystem.
ELEMENT	SEV1.c.	Analyze and interpret data to construct an argument of the necessity of biogeochemical cycles (hydrologic, nitrogen, phosphorus, oxygen, and carbon) to support a sustainable ecosystem.
STRAND/TOPIC	26.06110.	Environmental Science
STANDARD / DESCRIPTION	SEV2.	Obtain, evaluate, and communicate information to construct explanations of stability and change in Earth's ecosystems.
ELEMENT	SEV2.b.	Analyze and interpret data to determine how changes in atmospheric chemistry (carbon dioxide and methane) impact the greenhouse effect.
ELEMENT	SEV2.d.	Construct an argument to support a claim about the value of biodiversity in ecosystem resilience including keystone, invasive, native, endemic, indicator, and endangered species.
STRAND/TOPIC	26.06110.	Environmental Science
STANDARD / DESCRIPTION	SEV4.	Obtain, evaluate, and communicate information to analyze human impact on natural resources.
ELEMENT	SEV4.a.	Construct and revise a claim based on evidence on the effects of human activities on natural resources.
ELEMENT	SEV4.b.	Design, evaluate, and refine solutions to reduce human impact on the environment including, but not limited to, smog, ozone depletion, urbanization, and ocean acidification.
STRAND/TOPIC	26.06110.	Environmental Science
STANDARD / DESCRIPTION	SEV5.	Obtain, evaluate, and communicate information about the effects of human population growth on global ecosystems.
ELEMENT	SEV5.c.	Construct an argument from evidence regarding the ecological effects of human innovations (Agricultural, Industrial, Medical, and Technological Revolutions) on global ecosystems.
ELEMENT	SEV5.d.	Design and defend a sustainability plan to reduce your individual contribution to environmental impacts, taking into account how market forces and societal demands (including political, legal, social, and economic) influence personal choices.
		Grade 9 - Adopted: 2019
STRAND/TOPIC	26.03100.	Botany (2019)
STANDARD / DESCRIPTION	SBO3.	Obtain, evaluate, and communicate information to describe Georgia's major physiographic ecoregions, their representative natural plant communities, and their conservation.
ELEMENT	SBO3.d.	Design a solution to create sustainable plant communities within Georgia's ecoregions and reduce negative human impact.

STRAND/TOPIC	26.03100.	Botany (2019)
STANDARD / DESCRIPTION	SBO5.	Obtain, evaluate, and communicate information to analyze the diversity of plant adaptations and responses to changing environmental conditions.
ELEMENT	SBO5.c.	Develop and use models to analyze how change and disruptions in major nutrient cycles (i.e., C, H, O, N, P) might affect plant responses.
STRAND/TOPIC	26.06100.	Ecology (2019)
STANDARD / DESCRIPTION	SEC3.	Obtain, evaluate, and communicate information to construct explanations of community interactions.
ELEMENT	SEC3.c.	Construct an explanation based on evidence that describes the impact of keystone, invasive, native, indicator, and rare species in Georgia ecosystems.
ELEMENT	SEC3.d.	Construct an explanation about species diversity and how it relates to the stability of ecosystems and communities.
STRAND/TOPIC	26.06100.	Ecology (2019)
STANDARD / DESCRIPTION	SEC4.	Obtain, evaluate, and communicate information about biogeochemical cycles and how the flow of energy influences ecosystems.
ELEMENT	SEC4.b.	Construct an explanation of the movement of carbon through an ecosystem.
STRAND/TOPIC	26.06100.	Ecology (2019)
STANDARD / DESCRIPTION	SEC5.	Obtain, evaluate, and communicate information on the impact of natural and anthropogenic activities on ecological systems.
ELEMENT	SEC5.a.	Analyze and interpret data on the ecological impacts of sustainable and non-sustainable use of natural resources and predict the cause and effect of unsustainable use of natural resources on ecosystems.
ELEMENT	SEC5.b.	Construct an argument based on evidence to predict the impact of climate change on an ecosystem.
ELEMENT	SEC5.d.	Obtain, evaluate, and communicate mitigation strategies to reduce the impacts of non-sustainable activities on Georgia ecosystems.
STRAND/TOPIC	40.06300	Geology (2019)
STANDARD / DESCRIPTION	SG6.	Obtain, evaluate, and communicate information to investigate the distribution, extraction, and use of resources on the Earth and other bodies in the Solar System.
ELEMENT	SG6.a.	Ask questions to investigate the origin, distribution, and economic importance of geologic resources, including those mined in Georgia.
STRAND/TOPIC	40.04100	Meteorology (2019)
STANDARD /	SM2	Obtain evaluate and communicate information about energy transfer and its role in precipitation

STANDARD /
DESCRIPTIONSM2.Obtain, evaluate, and communicate information about energy transfer and its role in precipitation,
cloud formation, and air mass formation.

ELEMENT SM2.d. Develop and use models to construct an explanation of the role that pressure differences have on energy transfer and the development of wind systems (e.g., sea breeze, land breeze, Hadley cells, Ferrel cells, prevailing winds, jet stream, ENSO, global scale winds).

STANDARD / SM5. Obtain, evaluate, and communicate information about climate and climate change.	STRAND/TOPIC	40.04100	Meteorology (2019)
		SM5.	Obtain, evaluate, and communicate information about climate and climate change.

SM5.b.

Ask questions and communicate information about factors impacting global climate change (e.g., Milankovitch and ENSO cycles, greenhouse gases, changes in physical geography).

STRAND/TOPIC	26.07100.	Zoology (2019)
STANDARD / DESCRIPTION	SZ5.	Obtain, evaluate, and communicate information to analyze the relationship between humans and animals within various phyla.
ELEMENT	SZ5.a.	Ask questions and define problems identifying the cause and effect of human activities on the biodiversity of organisms (including habitat destruction, overharvesting, water consumption, and pollution).
ELEMENT	SZ5.b.	Design a solution to preserve species diversity in natural and captive environments with regard to conservation, habitat restoration, breeding programs and management of genetic diversity at local and global levels.
ELEMENT	SZ5.c.	Construct an argument based on evidence of the short-term and long-term impacts of legal, societal, political, ethical, and economic decisions on animal diversity.

Georgia Standards of Excellence Science

Grade 10 - Adopted: 2016

STRAND/TOPIC	26.01200.	Biology
STANDARD / DESCRIPTION	SB5.	Obtain, evaluate, and communicate information to assess the interdependence of all organisms on one another and their environment.

ELEMENT SB5.a. Plan and carry out investigations and analyze data to support explanations about factors affecting biodiversity and populations in ecosystems.

STRAND/TOPIC	26.01200.	Biology
STANDARD / DESCRIPTION	SB5.	Obtain, evaluate, and communicate information to assess the interdependence of all organisms on one another and their environment.
ELEMENT	SB5.b.	Develop and use models to analyze the cycling of matter and flow of energy within ecosystems through the processes of photosynthesis and respiration.

ELEMENT/GLE SB5.b.3. Explaining the need for cycling of major biochemical elements (C, O, N, P, and H).

STRAND/TOPIC	26.01200.	Biology
STANDARD / DESCRIPTION	SB5.	Obtain, evaluate, and communicate information to assess the interdependence of all organisms on one another and their environment.
ELEMENT	SB5.d.	Design a solution to reduce the impact of a human activity on the environment.
STRAND/TOPIC	40.06400	Earth Systems
STANDARD / DESCRIPTION	SES5.	Obtain, evaluate, and communicate information to investigate the interaction of solar energy and Earth's systems to produce weather and climate.

SES5.f. Construct an argument relating changes in global climate to variation to Earth/sun relationships and atmospheric composition.

STRAND/TOPIC	40.06400	Earth Systems
STANDARD / DESCRIPTION	SES6.	Obtain, evaluate, and communicate information about how life on Earth responds to and shapes Earth's systems.
ELEMENT	SES6.d.	Analyze and interpret data that relates changes in global climate to natural and anthropogenic modification of Earth's

STRAND/TOPIC	26.06110.	Environmental Science
STANDARD / DESCRIPTION	SEV1.	Obtain, evaluate, and communicate information to investigate the flow of energy and cycling of matter within an ecosystem.

atmosphere and oceans.

ELEMENT SEV1.c. Analyze and interpret data to construct an argument of the necessity of biogeochemical cycles (hydrologic, nitrogen, phosphorus, oxygen, and carbon) to support a sustainable ecosystem.

STRAND/TOPIC	26.06110.	Environmental Science
ST ANDARD / DESCRIPTION	SEV2.	Obtain, evaluate, and communicate information to construct explanations of stability and change in Earth's ecosystems.
ELEMENT	SEV2.b.	Analyze and interpret data to determine how changes in atmospheric chemistry (carbon dioxide and methane) impact the greenhouse effect.

ELEMENT SEV2.d. Construct an argument to support a claim about the value of biodiversity in ecosystem resilience including keystone, invasive, native, endemic, indicator, and endangered species.

STRAND/TOPIC	26.06110.	Environmental Science
STANDARD / DESCRIPTION	SEV4.	Obtain, evaluate, and communicate information to analyze human impact on natural resources.
ELEMENT	SEV4.a.	Construct and revise a claim based on evidence on the effects of human activities on natural resources.
ELEMENT	SEV4.b.	Design, evaluate, and refine solutions to reduce human impact on the environment including, but not limited to, smog,

ozone depletion, urbanization, and ocean acidification.

STRAND/TOPIC	26.06110.	Environmental Science
STANDARD / DESCRIPTION	SEV5.	Obtain, evaluate, and communicate information about the effects of human population growth on global ecosystems.
ELEMENT	SEV5.c.	Construct an argument from evidence regarding the ecological effects of human innovations (Agricultural, Industrial, Medical, and Technological Revolutions) on global ecosystems.
ELEMENT	SEV5.d.	Design and defend a sustainability plan to reduce your individual contribution to environmental impacts, taking into account how market forces and societal demands (including political, legal, social, and economic) influence personal choices.
		Grade 10 - Adopted: 2019

STRAND/TOPIC26.03100.Botany (2019)STANDARD /
DESCRIPTIONSBO3.Obtain, evaluate, and communicate information to describe Georgia's major physiographic
ecoregions, their representative natural plant communities, and their conservation.

SBO3.d. Design a solution to create sustainable plant communities within Georgia's ecoregions and reduce negative human impact.

STRAND/TOPIC	26.03100.	Botany (2019)
STANDARD / DESCRIPTION	SBO5.	Obtain, evaluate, and communicate information to analyze the diversity of plant adaptations and responses to changing environmental conditions.
ELEMENT	SBO5.c.	Develop and use models to analyze how change and disruptions in major nutrient cycles (i.e., C, H, O, N, P) might affect plant responses.
STRAND/TOPIC	26.06100.	Ecology (2019)
STANDARD / DESCRIPTION	SEC3.	Obtain, evaluate, and communicate information to construct explanations of community interactions.
ELEMENT	SEC3.c.	Construct an explanation based on evidence that describes the impact of keystone, invasive, native, indicator, and rare species in Georgia ecosystems.
ELEMENT	SEC3.d.	Construct an explanation about species diversity and how it relates to the stability of ecosystems and communities.
STRAND/TOPIC	26.06100.	Ecology (2019)
STANDARD / DESCRIPTION	SEC4.	Obtain, evaluate, and communicate information about biogeochemical cycles and how the flow of energy influences ecosystems.
ELEMENT	SEC4.b.	Construct an explanation of the movement of carbon through an ecosystem.
STRAND/TOPIC	26.06100.	Ecology (2019)
STANDARD / DESCRIPTION	SEC5.	Obtain, evaluate, and communicate information on the impact of natural and anthropogenic activities on ecological systems.
ELEMENT	SEC5.a.	Analyze and interpret data on the ecological impacts of sustainable and non-sustainable use of natural resources and predict the cause and effect of unsustainable use of natural resources on ecosystems.
ELEMENT	SEC5.b.	Construct an argument based on evidence to predict the impact of climate change on an ecosystem.
ELEMENT	SEC5.d.	Obtain, evaluate, and communicate mitigation strategies to reduce the impacts of non-sustainable activities on Georgia ecosystems.
STRAND/TOPIC	40.06300	Geology (2019)
STANDARD / DESCRIPTION	SG6.	Obtain, evaluate, and communicate information to investigate the distribution, extraction, and use of resources on the Earth and other bodies in the Solar System.
ELEMENT	SG6.a.	Ask questions to investigate the origin, distribution, and economic importance of geologic resources, including those mined in Georgia.

STRAND/TOPIC	40.04100	Meteorology (2019)
STANDARD / DESCRIPTION	SM2.	Obtain, evaluate, and communicate information about energy transfer and its role in precipitation, cloud formation, and air mass formation.

SM2.d. Develop and use models to construct an explanation of the role that pressure differences have on energy transfer and the development of wind systems (e.g., sea breeze, land breeze, Hadley cells, Ferrel cells, prevailing winds, jet stream, ENSO, global scale winds).

STRAND/TOPIC	40.04100	Meteorology (2019)
STANDARD / DESCRIPTION	SM5.	Obtain, evaluate, and communicate information about climate and climate change.
ELEMENT	SM5.b.	Ask questions and communicate information about factors impacting global climate change (e.g., Milankovitch and ENSO cycles, greenhouse gases, changes in physical geography).

STRAND/TOPIC	26.07100.	Zoology (2019)
STANDARD / DESCRIPTION	SZ5.	Obtain, evaluate, and communicate information to analyze the relationship between humans and animals within various phyla.
ELEMENT	SZ5.a.	Ask questions and define problems identifying the cause and effect of human activities on the biodiversity of organisms (including habitat destruction, overharvesting, water consumption, and pollution).
ELEMENT	SZ5.b.	Design a solution to preserve species diversity in natural and captive environments with regard to conservation, habitat restoration, breeding programs and management of genetic diversity at local and global levels.
ELEMENT	SZ5.c.	Construct an argument based on evidence of the short-term and long-term impacts of legal, societal, political, ethical, and economic decisions on animal diversity.

Georgia Standards of Excellence Technology Education Grade 9 - Adopted: 2013

STRAND/TOPIC		Information Technology Career Cluster - Introduction to Digital Technology (Course Number 11.41500)
STANDARD / DESCRIPTION	IT-IDT- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-IDT- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Introduction to Cybersecurity (Course Number: 11.48100)
STANDARD / DESCRIPTION	IT-ICS- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ICS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Advanced Cybersecurity (Course Number: 11.48200)
STANDARD / DESCRIPTION	IT-ACS- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ACS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Computer Science Principles (Course Number: 11.47100)
STANDARD / DESCRIPTION	IT-CSP- 1.	Demonstrate employability skills required by business and industry.

ELEMENT	IT-CSP- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Computer Science Principles (Course Number: 11.47100)
STANDARD / DESCRIPTION	IT-CSP- 5.	Develop, express, implement, and analyze algorithms analytically and empirically.
ELEMENT	IT-CSP- 5.1.	Develop an algorithm designed to be implemented to run on a computer.
ELEMENT	IT-CSP- 5.2.	Explain the building blocks of algorithms: sequencing, selection, iteration, and recursion.
ELEMENT	IT-CSP- 5.3.	Express an algorithm in a language.
ELEMENT	IT-CSP- 5.5.	Connect problems to potential algorithmic solutions and explain an example of problems that cannot be solved using algorithms.
STRAND/TOPIC		Information Technology Career Cluster - Computer Science Principles (Course Number: 11.47100)
STANDARD / DESCRIPTION	IT-CSP- 6.	Create programs that translate human intention into computational artifacts including music, images, visualizations, and more while exploring the concepts, techniques and development used in writing programs.
ELEMENT	IT-CSP- 6.1.	Explain how programs implement algorithms.
STRAND/TOPIC		Information Technology Career Cluster - Game Design: Animation and Simulation Course Number: 11.42900
STANDARD / DESCRIPTION	IT- GDAS-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT- GDAS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Embedded Computing (Course Number: 11.42700)
STANDARD / DESCRIPTION	IT-EP-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-EP- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Embedded Computing (Course Number: 11.42700)
STANDARD / DESCRIPTION	IT-EP- 10.	Design an embedded computing application that solves a current problem (e.g., robotics, artbotics, visual, and kinetic art).
ELEMENT	IT-EP- 10.1.	Design, develop, and debug an embedded computing application interfacing to an external sensor, switch, LED, or other device.
STRAND/TOPIC		Information Technology Career Cluster - Programming, Games, Apps, and Society (Course Number: 11.47200)

STANDARD / DESCRIPTION	IT - PGAS-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT- PGAS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Web Development (Course Number: 11.42500)
STANDARD / DESCRIPTION	IT- WDEV-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT- WDEV- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Information Technology Essentials (Course Number: 11.41400)
STANDARD / DESCRIPTION	IT-ITE- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ITE- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Information Technology Support (Course Number: 11.42000)
STANDARD / DESCRIPTION	IT-IT S- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ITS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Networking Fundamentals (Course Number: 11.46100)
STANDARD / DESCRIPTION	IT-NF-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-NF- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Networking Systems and Support (Course Number: 11.46200)
STANDARD / DESCRIPTION	IT-NSS- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-NSS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Web Design (Course Number: 11.45200)
STANDARD / DESCRIPTION	IT-WD- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-WD- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Digital Design (Course Number 11.45100)
STANDARD / DESCRIPTION	IT-DD-1.	Demonstrate employability skills required by business and industry.

1.3.

IT-DD- Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and1.3. employment situations.

Georgia Standards of Excellence Technology Education Grade 10 - Adopted: 2013

		Grade 10 - Adopted: 2013
STRAND/TOPIC		Information Technology Career Cluster - Introduction to Digital Technology (Course Number 11.41500)
STANDARD / DESCRIPTION	IT-IDT- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-IDT- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Introduction to Cybersecurity (Course Number: 11.48100)
STANDARD / DESCRIPTION	IT-ICS- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ICS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Advanced Cybersecurity (Course Number: 11.48200)
STANDARD / DESCRIPTION	IT-ACS- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ACS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Computer Science Principles (Course Number: 11.47100)
STANDARD / DESCRIPTION	IT-CSP- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-CSP- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Computer Science Principles (Course Number: 11.47100)
STANDARD / DESCRIPTION	IT-CSP- 5.	Develop, express, implement, and analyze algorithms analytically and empirically.
ELEMENT	IT-CSP- 5.1.	Develop an algorithm designed to be implemented to run on a computer.
ELEMENT	IT-CSP- 5.2.	Explain the building blocks of algorithms: sequencing, selection, iteration, and recursion.
ELEMENT	IT-CSP- 5.3.	Express an algorithm in a language.
ELEMENT	IT-CSP- 5.5.	Connect problems to potential algorithmic solutions and explain an example of problems that cannot be solved using algorithms.
STRAND/TOPIC		Information Technology Career Cluster - Computer Science Principles (Course Number: 11.47100)

STANDARD / DESCRIPTION	IT-CSP- 6.	Create programs that translate human intention into computational artifacts including music, images, visualizations, and more while exploring the concepts, techniques and development used in writing programs.
ELEMENT	IT-CSP- 6.1.	Explain how programs implement algorithms.
STRAND/TOPIC		Information Technology Career Cluster - Game Design: Animation and Simulation Course Number: 11.42900
STANDARD / DESCRIPTION	IT- GDAS-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT- GDAS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Embedded Computing (Course Number: 11.42700)
STANDARD / DESCRIPTION	IT-EP-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-EP- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Embedded Computing (Course Number: 11.42700)
STANDARD / DESCRIPTION	IT-EP- 10.	Design an embedded computing application that solves a current problem (e.g., robotics, artbotics, visual, and kinetic art).
ELEMENT	IT-EP- 10.1.	Design, develop, and debug an embedded computing application interfacing to an external sensor, switch, LED, or other device.
STRAND/TOPIC		Information Technology Career Cluster - Programming, Games, Apps, and Society (Course Number: 11.47200)
STANDARD / DESCRIPTION	IT- PGAS-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT- PGAS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Web Development (Course Number: 11.42500)
STANDARD / DESCRIPTION	IT- WDEV-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT- WDEV- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Information Technology Essentials (Course Number: 11.41400)
STANDARD / DESCRIPTION	IT-ITE- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ITE- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.

STRAND/TOPIC		Information Technology Career Cluster - Information Technology Support (Course Number: 11.42000)
STANDARD / DESCRIPTION	IT-ITS- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-ITS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Networking Fundamentals (Course Number: 11.46100)
STANDARD / DESCRIPTION	IT-NF-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-NF- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Networking Systems and Support (Course Number: 11.46200)
STANDARD / DESCRIPTION	IT-NSS- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-NSS- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Web Design (Course Number: 11.45200)
STANDARD / DESCRIPTION	IT-WD- 1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-WD- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
STRAND/TOPIC		Information Technology Career Cluster - Digital Design (Course Number 11.45100)
STANDARD / DESCRIPTION	IT-DD-1.	Demonstrate employability skills required by business and industry.
ELEMENT	IT-DD- 1.3.	Exhibit critical thinking and problem solving skills to locate, analyze and apply information in career planning and employment situations.
		Hawaii Content and Performance Standards

awaii Content and Performance Standard

Mathematics

Grade 9 - Adopted: 2010		
CONTENT STANDARD / COURSE	HI.CC.MP	Mathematical Practices
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-1.	Make sense of problems and persevere in solving them.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-2.	Reason abstractly and quantitatively.

STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-4.	Model with mathematics.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-6.	Attend to precision.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-7.	Look for and make use of structure.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-8.	Look for and express regularity in repeated reasoning.
CONTENT	HI.CC.F.	Functions

CONTENT STANDARD / COURSE	HI.CC.F.	Functions
ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	F-IF.	Interpreting Functions
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Interpret functions that arise in applications in terms of the context.
EXPECTATION /	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

EXPECTATION /F-IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) overTOPICspecified interval. Estimate the rate of change from a graph.

Hawaii Content and Performance Standards

Mathematics

Grade 10 - Adopted: 2010

Glade 10 - Adopted. 2010			
CONTENT STANDARD / COURSE	HI.CC.MP	Mathematical Practices	
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-1.	Make sense of problems and persevere in solving them.	
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-2.	Reason abstractly and quantitatively.	

STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-4.	Model with mathematics.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-6.	Attend to precision.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-7.	Look for and make use of structure.
STANDARD / PERFORMANC E INDICATOR / DOMAIN	MP-8.	Look for and express regularity in repeated reasoning.

CONTENT STANDARD / COURSE	HI.CC.F.	Functions
ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	F-IF.	Interpreting Functions
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Interpret functions that arise in applications in terms of the context.
EXPECTATION / TOPIC	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Hawaii Content and Performance Standards

Science

Grade 9 - Adopted: 2016

CONTENT STANDARD / COURSE	NGSS.HS -PS.	PHYSICAL SCIENCE
ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:

EXPECTATION / HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. TOPIC 2.

CONTENT STANDARD / COURSE	NGSS.HS -LS.	LIFE SCIENCE
ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
EXPECTATION / TOPIC	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
EXPECTATION / TOPIC	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
EXPECTATION / TOPIC	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT STANDARD / COURSE	NGSS.HS -LS.	LIFE SCIENCE
STANDARD / PERFORMANC E INDICATOR / DOMAIN	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
CONTENT STANDARD / COURSE	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE

ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	HS- ESS2.	Earth's Systems
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

EXPECTATION /HS-Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,TOPICESS2-6.and biosphere.

CONTENT STANDARD / COURSE	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / PERFORMANC E INDICAT OR / DOMAIN	HS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
EXPECTATION / TOPIC	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
EXPECTATION / TOPIC	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
EXPECTATION / TOPIC	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CONTENT STANDARD / COURSE	NGSS.HS -ETS.	ENGINEERING DESIGN
STANDARD / PERFORMANC E INDICATOR / DOMAIN	HS- ETS1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
EXPECTATION / TOPIC	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
EXPECTATION / TOPIC	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Hawaii Content and Performance Standards

Science

Grade 10 - Adopted: 2016

CONTENT STANDARD / COURSE	NGSS.HS -PS.	PHYSICAL SCIENCE
ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer

INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
--	--	---

EXPECTATION /HS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.TOPIC2.

CONTENT STANDARD / COURSE	NGSS.HS -LS.	LIFE SCIENCE
STANDARD / PERFORMANC E INDICATOR / DOMAIN	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
EXPECTATION / TOPIC	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
EXPECTATION / TOPIC	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
EXPECTATION / TOPIC	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT STANDARD / COURSE	NGSS.HS -LS.	LIFE SCIENCE
ST ANDARD / PERFORMANC E INDICAT OR / DOMAIN	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:

EXPECTATION /HS-LS4-Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.TOPIC6.

CONTENT STANDARD / COURSE	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / PERFORMANC E INDICAT OR / DOMAIN	HS- ESS2.	Earth's Systems
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:

EXPECTATION /	HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in
TOPIC	ESS2-4.	climate.

EXPECTATION /HS-Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,TOPICESS2-6.and biosphere.

CONTENT STANDARD / COURSE	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	HS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
EXPECTATION / TOPIC	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
EXPECTATION / TOPIC	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
EXPECTATION / TOPIC	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CONTENT STANDARD / COURSE	NGSS.HS -ETS.	ENGINEERING DESIGN
ST ANDARD / PERFORMANC E INDICATOR / DOMAIN	HS- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION / BENCHMARK		Students who demonstrate understanding can:
EXPECTATION / TOPIC	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
EXPECTATION / TOPIC	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
EXPECTATION / TOPIC	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.