Main Criteria: Forward Education

Secondary Criteria: Idaho Content Standards, Illinois Learning Standards, Indiana Academic Standards, Iowa Student Standards, Kansas Academic Standards, Kentucky Academic Standards, Louisiana Academic Standards, Maine Learning Results, Maryland College and Career-Ready Standards, Massachusetts Curriculum Frameworks, Michigan Academic Standards, Minnesota Academic Standards, Mississippi College & Career Readiness Standards, Missouri Learning Standards, Montana Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 9, 10, Key Stage 3, Key Stage 4

Forward Education

Replanting our Forests with Automated Tree Seeders

Idaho Content Standards

Mathematics

Grade 9 - Adopted: 2022

ST ANDARD / COURSE		Grades 9 – 12 Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.6.	Attend to precision.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.7.	Look for and make use of structure.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.8.	Look for and express regularity in repeated reasoning.
STANDARD / COURSE	F.	Grades 9 – 12 Functions (F)
CONTENT KNOWLEDGE AND SKILLS / GOAL	F.IF.	Interpreting Functions – F.IF

GLE / BIG IDEA	F.IF.B.	Interpret functions that arise in applications in terms of the context. Include linear, quadratic, exponential, rational, polynomial, square root and cube root, trigonometric, and logarithmic functions.
OBJECTIVE	F.IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

specified interval. Estimate the rate of change from a graph.

ST ANDARD / COURSE	S.	Grades 9 – 12 Statistics and Probability (S)
CONTENT KNOWLEDGE AND SKILLS / GOAL	S.ID.	Interpreting Categorical and Quantitative Data – S.ID
GLE / BIG IDEA	S.ID.A.	Summarize, represent, and interpret data on a single count or measurement variable. Use calculators, spreadsheets, and other technology as appropriate.
OBJECTIVE	S.ID.A.3.	Compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different

Idaho Content Standards

variables, using statistics appropriate to the shape of the distribution for each measurement variable.

Mathematics

Grade 10 - Adopted: 2022

ST ANDARD / COURSE		Grades 9 – 12 Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.6.	Attend to precision.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.7.	Look for and make use of structure.

CONTENT	MP.8.
KNOWLEDGE	
AND SKILLS /	
GOAL	

ST ANDARD / COURSE	F.	Grades 9 – 12 Functions (F)
CONTENT KNOWLEDGE AND SKILLS / GOAL	F.IF.	Interpreting Functions – F.IF
GLE / BIG IDEA	F.IF.B.	Interpret functions that arise in applications in terms of the context. Include linear, quadratic, exponential, rational, polynomial, square root and cube root, trigonometric, and logarithmic functions.

Look for and express regularity in repeated reasoning.

OBJECTIVE

F.IF.B.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

STANDARD / S. COURSE		Grades 9 – 12 Statistics and Probability (S)
CONTENT S KNOWLEDGE AND SKILLS / GOAL	5.ID.	Interpreting Categorical and Quantitative Data – S.ID
GLE / BIG S IDEA S	S.ID.A.	Summarize, represent, and interpret data on a single count or measurement variable. Use calculators, spreadsheets, and other technology as appropriate.

OBJECTIVE S.ID.A.3. Compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different variables, using statistics appropriate to the shape of the distribution for each measurement variable.

Idaho Content Standards

Science

Grade 9 - Adopted: 2022

ST ANDARD / COURSE	HS-LS.	Life Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-LS- 2.	Ecosystems: Interactions, Energy, and Dynamics
GLE / BIG IDEA	HS-LS- 2.2.	Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity at different scales within an ecosystem.
GLE / BIG IDEA	HS-LS- 2.3.	Construct an explanation using mathematical representations to support claims for the flow of energy through trophic levels and the cycling of matter in an ecosystem.
GLE / BIG IDEA	HS-LS- 2.4.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GLE / BIG IDEA	HS-LS- 2.6.	Design, evaluate, and/or refine practices used to manage a natural resource based on direct and indirect influences of human activities on biodiversity and ecosystem health.
ST ANDARD / COURSE	HS-PSP.	Physical Science – Physics

CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-PSP- 3.	Waves		
GLE / BIG IDEA	HS-PSP- 3.2.	Evaluate questions about the advantages of using digital transmission and storage of information.		
ST ANDARD / COURSE	HS-ESS.	Earth and Space Science		
CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-ESS- 2.	Earth's Systems		
GLE / BIG IDEA	HS-ESS- 2.4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in variations in climate.		
GLE / BIG IDEA	HS-ESS- 2.6.	Develop a model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.		
ST ANDARD / COURSE	HS-ESS.	Earth and Space Science		
CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-ESS- 3.	Earth and Human Activity		
GLE / BIG IDEA	HS-ESS- 3.1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.		
GLE / BIG IDEA	HS-ESS- 3.2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.		
GLE / BIG IDEA	HS-ESS- 3.3.	Illustrate relationships among management of natural resources, the sustainability of human populations, and biodiversity.		
GLE / BIG IDEA	HS-ESS- 3.6.	Communicate how relationships among Earth systems are being influenced by human activity.		
	Idaho Content Standards			
		Science Grade 10 - Adopted: 2022		

ST ANDARD / COURSE	HS-LS.	Life Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-LS- 2.	Ecosystems: Interactions, Energy, and Dynamics
GLE / BIG IDEA	HS-LS- 2.2.	Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity at different scales within an ecosystem.
GLE / BIG IDEA	HS-LS- 2.3.	Construct an explanation using mathematical representations to support claims for the flow of energy through trophic levels and the cycling of matter in an ecosystem.

GLE / BIG IDEA	HS-LS- 2.4.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GLE / BIG IDEA	HS-LS- 2.6.	Design, evaluate, and/or refine practices used to manage a natural resource based on direct and indirect influences of human activities on biodiversity and ecosystem health.
STANDARD / COURSE	HS-PSP.	Physical Science – Physics
CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-PSP- 3.	Waves
GLE / BIG IDEA	HS-PSP- 3.2.	Evaluate questions about the advantages of using digital transmission and storage of information.
STANDARD / COURSE	HS-ESS.	Earth and Space Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-ESS- 2.	Earth's Systems
GLE / BIG IDEA	HS-ESS- 2.4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in variations in climate.
GLE / BIG IDEA	HS-ESS- 2.6.	Develop a model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STANDARD / COURSE	HS-ESS.	Earth and Space Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	HS-ESS- 3.	Earth and Human Activity
GLE / BIG IDEA	HS-ESS- 3.1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GLE / BIG IDEA	HS-ESS- 3.2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GLE / BIG IDEA	HS-ESS- 3.3.	Illustrate relationships among management of natural resources, the sustainability of human populations, and biodiversity.
GLE / BIG IDEA	HS-ESS- 3.6.	Communicate how relationships among Earth systems are being influenced by human activity.
		Idaho Content Standards
		Technology Education Grade 9 - Adopted: 2017
ST ANDARD / COURSE	ID.ICT.9- 12.3.	STANDARD 3: KNOWLEDGE CONSTRUCTOR

CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GLE / BIG IDEA	ICT.9- 12.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
ST ANDARD / COURSE	ID.ICT.9- 12.4.	STANDARD 4: INNOVATIVE DESIGNER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GLE / BIG IDEA	ICT.9- 12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ST ANDARD / COURSE	ID.ICT.9- 12.5.	STANDARD 5: COMPUTATIONAL THINKER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GLE / BIG IDEA	ICT.9- 12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GLE / BIG IDEA	ICT.9- 12.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GLE / BIG IDEA	ICT.9- 12.5.c.	Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
GLE / BIG IDEA	ICT.9- 12.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
ST ANDARD / COURSE	ID.CS.9- 10.	
CONTENT KNOWLEDGE AND SKILLS / GOAL	9-10.DA.	Data and Analysis (DA)
GLE / BIG IDEA		Recognizing and Defining Computational Problems
OBJECTIVE	9- 10.DA.05.	Apply basic techniques for locating, collecting, and understanding the quality of small and large-scale data sets (e.g. public data sets). (Grades 9-10)

STANDARD / COURSE	ID.CS.9- 10.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	9-10.IC.	Impacts of Computing (IC)
GLE / BIG IDEA		Communicating About Computing

9-

Understand and explain the impact of artificial intelligence and robotics. (Grades 9-10) 10.IC.03.

ST ANDARD / COURSE	ID.CS.9- 10.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	9-10.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Collaborating around Computing

OBJECTIVE 9-Compare a variety of programming languages available to solve problems and develop systems. (Grades 9-10) 10.AP.03.

ST ANDARD / COURSE	ID.CS.9- 10.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	9-10.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Recognizing and Defining Computational Problems
OBJECTIVE	9-	Design algorithms using sequence, selection, iteration and recursion. (Grades 9-10)

10.AP.12.

Design algorithms using sequence, selection, iteration and recursion. (Grades 9-10)

Idaho Content Standards

Technology Education

Grade 10 - Adopted: 2017

STANDARD / COURSE	ID.ICT.9- 12.3.	STANDARD 3: KNOWLEDGE CONSTRUCTOR
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

GLE / BIG IDEA ICT.9- Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and 12.3.d. pursuing answers and solutions.

ST ANDARD / COURSE	ID.ICT.9- 12.4.	STANDARD 4: INNOVATIVE DESIGNER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GLE / BIG IDEA	ICT.9- 12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STANDARD / COURSE	ID.ICT.9- 12.5.	STANDARD 5: COMPUTATIONAL THINKER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

GLE / BIG IDEA	ICT.9- 12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GLE / BIG IDEA	ICT.9- 12.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GLE / BIG IDEA	ICT.9- 12.5.c.	Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
GLE / BIG IDEA	ICT.9- 12.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
ST ANDARD / COURSE	ID.CS.9- 10.	COMPUTER SCIENCE
CONTENT KNOWLEDGE	9-10.DA.	Data and Analysis (DA)

GOAL	
GLE / BIG IDEA	Recognizing and Defining Computational Problems

OBJECTIVE 9- Apply basic techniques for locating, collecting, and understanding the quality of small and large-scale data sets (e.g. 10.DA.05. public data sets). (Grades 9-10)

ST ANDARD / COURSE	ID.CS.9- 10.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	9-10.IC.	Impacts of Computing (IC)
GLE / BIG IDEA		Communicating About Computing

OBJECTIVE

Understand and explain the impact of artificial intelligence and robotics. (Grades 9-10)

10.IC.03.

9-

ST ANDARD /
COURSEID.CS.9-
10.COMPUTER SCIENCECONTENT
KNOWLEDGE
AND SKILLS /
GOAL9-10.AP.Algorithms and Programming (AP)GLE / BIG
IDEACollaborating around Computing

OBJECTIVE

9- C 10.AP.03.

Compare a variety of programming languages available to solve problems and develop systems. (Grades 9-10)

ST ANDARD / COURSE	ID.CS.9- 10.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	9-10.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Recognizing and Defining Computational Problems

OBJECTIVE

10.AP.12.

9-

Illinois Learning Standards Mathematics Grade 9 - Adopted: 2010

STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.6.	Attend to precision.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.7.	Look for and make use of structure.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.8.	Look for and express regularity in repeated reasoning.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9-12.F.	Functions
LEARNING STANDARD / DISCIPLINE	CC.9- 12.F.IF.	Interpreting Functions
DESCRIPTOR / CONTENT DISCIPLINE		Interpret functions that arise in applications in terms of the context.

STANDARD

CC.9- Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a12.F.IF.6. specified interval. Estimate the rate of change from a graph.

Illinois Learning Standards Mathematics Grade 10 - Adopted: 2010

STATE GOAL / DISCIPLINARY CONCEPT	IL.9-12.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	CC.9- 12.CC.K.1 2.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	CC.9- 12.CC.K.1 2.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	CC.9- 12.CC.K.1 2.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	CC.9- 12.CC.K.1 2.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	CC.9- 12.CC.K.1 2.MP.6.	Attend to precision.
LEARNING STANDARD / DISCIPLINE	CC.9- 12.CC.K.1 2.MP.7.	Look for and make use of structure.
LEARNING STANDARD / DISCIPLINE	CC.9- 12.CC.K.1 2.MP.8.	Look for and express regularity in repeated reasoning.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9-12.F.	Functions
LEARNING ST ANDARD / DISCIPLINE	CC.9- 12.F.IF.	Interpreting Functions
DESCRIPTOR / CONTENT DISCIPLINE		Interpret functions that arise in applications in terms of the context.

STANDARDCC.9-
L2.F.IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
graph.12.F.IF.6.specified interval. Estimate the rate of change from a graph.

Illino is Learning Standards Science Grade 9 - Adopted: 2014

STATE GOAL / DISCIPLINARY CONCEPT	IL.HS-PS.	PHYSICAL SCIENCE
LEARNING STANDARD / DISCIPLINE	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:

STANDARD

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

2.

STATE GOAL / DISCIPLINARY CONCEPT	IL.HS-LS.	
LEARNING STANDARD / DISCIPLINE	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STANDARD	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STANDARD	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
STANDARD	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STATE GOAL / DISCIPLINARY CONCEPT	IL.HS-LS.	
LEARNING STANDARD / DISCIPLINE	HS-LS4.	Biological Evolution: Unity and Diversity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STATE GOAL / DISCIPLINARY CONCEPT	IL.HS- ESS.	EARTH AND SPACE SCIENCE
LEARNING ST ANDARD / DISCIPLINE	HS- ESS2.	Earth's Systems
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STANDARD	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STATE GOAL / DISCIPLINARY CONCEPT	IL.HS- ESS.	EARTH AND SPACE SCIENCE

LEARNING ST ANDARD / DISCIPLINE	HS- ESS3.	Earth and Human Activity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STANDARD	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
STANDARD	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
STANDARD	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STATE GOAL / DISCIPLINARY CONCEPT	IL.HS- ETS.	ENGINEERING DESIGN
LEARNING STANDARD / DISCIPLINE	HS- ETS1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
STANDARD	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
STANDARD	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 9 - Adopted: 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Key Ideas and Details
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects

LEARNING ST ANDARD / DISCIPLINE		Craft and Structure
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Integration of Knowledge and Ideas
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Range of Reading and Level of Text Complexity
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Text Types and Purposes
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
STANDARD	CC.9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Production and Distribution of Writing
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

DESCRIPTOR / CC.9-CONTENT 10.WHS DISCIPLINE 6.

CC.9- Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking
 10.WHST. advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Illinois Learning Standards Science

Grade 10 - Adopted: 2014

STATE GOAL / DISCIPLINARY CONCEPT	IL.HS-PS.	PHYSICAL SCIENCE
LEARNING STANDARD / DISCIPLINE	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:

STANDARD

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. 2.

STATE GOAL / DISCIPLINARY CONCEPT	IL.HS-LS.	LIFE SCIENCE
LEARNING STANDARD / DISCIPLINE	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STANDARD	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STANDARD	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
STANDARD	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STATE GOAL / DISCIPLINARY CONCEPT	IL.HS-LS.	LIFE SCIENCE
LEARNING STANDARD / DISCIPLINE	HS-LS4.	Biological Evolution: Unity and Diversity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD		Create or revise a simulation to test a colution to mitigate educree impacts of human pativity on highly grait.

STANDARD HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. 6.

STATE GOAL / DISCIPLINARY CONCEPT	IL.HS- ESS.	EARTH AND SPACE SCIENCE
LEARNING STANDARD / DISCIPLINE	HS- ESS2.	Earth's Systems
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STANDARD	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STATE GOAL / DISCIPLINARY CONCEPT	IL.HS- ESS.	EARTH AND SPACE SCIENCE
LEARNING STANDARD / DISCIPLINE	HS- ESS3.	Earth and Human Activity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STANDARD	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
STANDARD	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
STANDARD	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STATE GOAL / DISCIPLINARY CONCEPT	IL.HS- ETS.	
LEARNING ST ANDARD / DISCIPLINE	HS- ETS1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
STANDARD	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

STANDARD	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 10 - Adopted: 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Key Ideas and Details
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Craft and Structure
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Integration of Knowledge and Ideas
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.RST.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Range of Reading and Level of Text Complexity
DESCRIPTOR / CONTENT	CC.9- 10.RST.1	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

DISCIPLINE 0.

STATE GOAL / DISCIPLINARY CONCEPT	IL.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Text Types and Purposes
DESCRIPTOR / CONTENT DISCIPLINE	CC.9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
STANDARD	CC.9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STATE GOAL /		Writing Standards for Literacy in Colones and Taskylash Sykiasts
DISCIPLINARY CONCEPT	10.WHST.	writing Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE	10.WHST.	Production and Distribution of Writing
DISCIPLINARY CONCEPT	CC.9- 10.WHST. 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Illinois Learning Standards Technology Education Grade 9 - Adopted: 2022

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
DESCRIPTOR / CONTENT DISCIPLINE	6	Testing and refining computational artifacts.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards

DESCRIPT OR / CONTENT DISCIPLINE	9-10.AP.	Algorithms and Programming
STANDARD		Algorithms
EXPECTATION	9-	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and

10.AP.13. personal interests.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	9-10.AP.	Algorithms and Programming
STANDARD		Program Development

EXPECTATION 9-

10.AP.22.

Design and develop computational artifacts working in team roles using collaborative tools.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	9-10.IC.	Impacts of Computing
STANDARD		Culture

EXPECTATION 9-

Demonstrate ways a given algorithm applies to problems across disciplines. 10.IC.27.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	9-10.ET.	Emerging and Future Technologies

STANDARD

9-10.ET.E. Create new or original work by applying emerging technologies.

Grade 9 - Adopted: 2016

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

DESCRIPTOR /	ISTE-	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing
CONTENT	S.3.d.	answers and solutions.
DISCIPLINE		

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Illinois Learning Standards

Technology Education

Grade	10	_	Ado	pted:	2022
oraac			7 100	picu.	

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.

DESCRIPTOR /	6
CONTENT	
DISCIPLINE	

Testing and refining computational artifacts.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	9-10.AP.	Algorithms and Programming
STANDARD		Algorithms

EXPECTATION 9

9- Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and 10.AP.13. personal interests.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	9-10.AP.	Algorithms and Programming
STANDARD		Program Development

EXPECTATION 9-

9- Design and develop computational artifacts working in team roles using collaborative tools.10.AP.22.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	9-10.IC.	Impacts of Computing
STANDARD		Culture

EXPECTATION 9-10.IC.27. Demonstrate ways a given algorithm applies to problems across disciplines.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	9-10.ET.	Emerging and Future Technologies

STANDARD

10.ET.E.

9-

Create new or original work by applying emerging technologies.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Indiana Academic Standards

Indiana Academic Standards

Mathematics

Grade 9 - Adopted: 2023

Mathematics Process Standards

PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.6:	Attend to precision.
PROFICIENCY STATEMENT / SUBSTRAND	PS.7:	Look for and make use of structure.
PROFICIENCY STATEMENT / SUBSTRAND	PS.8:	Look for and express regularity in repeated reasoning.

ST ANDARD / ST RAND		Calculus
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.

INDICATOR / PS.8 STANDARD Look for and express regularity in repeated reasoning.

ST ANDARD / ST RAND		Finite Mathematics
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
ST ANDARD / ST RAND		Precalculus: Algebra
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.

INDICATOR / STANDARD PS.8

Look for and express regularity in repeated reasoning.

STANDARD / STRAND		Precalculus: Trigonometry
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
ST ANDARD / ST RAND		Probability and Statistics
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.

INDICATOR / PS.8 STANDARD Look for and express regularity in repeated reasoning.

ST ANDARD / ST RAND		Probability and Statistics
PROFICIENCY STATEMENT / SUBSTRAND		Data Analysis
INDICATOR / STANDARD	PS.DA.2	Compute and use mean, median, mode, weighted mean, geometric mean, harmonic mean, range, quartiles, variance, and standard deviation. Use tables and technology to estimate areas under the normal curve. Fit a data set

variance, and standard deviation. Use tables and technology to estimate areas under the normal curve. Fit a data set to a normal distribution and estimate population percentages. Recognize that there are data sets not normally distributed for which such procedures are inappropriate.

STANDARD / STRAND		Quantitative Reasoning
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
STANDARD / STRAND		Quantitative Reasoning
PROFICIENCY STATEMENT / SUBSTRAND		Ratio and Proportional Reasoning
INDICATOR / STANDARD	QR.P.3	Solve real-life problems requiring interpretation and comparison of various representations of ratios, (i.e. fractions, decimals, rate, and percentages), such as problems that involve non-standard ratios (e.g., media and risk reporting) or part-to-part versus part-to-whole ratios taken from meaningful context.
STANDARD /		Quantitative Reasoning

PROFICIENCY STATEMENT / SUBSTRAND		Statistics
INDICATOR / STANDARD	QR.S.9	Recognize when data are normally distributed and use the mean and standard deviation of the data to fit it to a normal distribution.
		Indiana Academic Standards Mathematics Grade 10 - Adopted: 2023
ST ANDARD / ST RAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.6:	Attend to precision.
PROFICIENCY STATEMENT / SUBSTRAND	PS.7:	Look for and make use of structure.
PROFICIENCY STATEMENT / SUBSTRAND	PS.8:	Look for and express regularity in repeated reasoning.

Grade 10 - Adopted: 2020

STANDARD / STRAND		Calculus
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.

INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
STANDARD / STRAND		Finite Mathematics
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
ST ANDARD / ST RAND		Precalculus: Algebra
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.

INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
ST ANDARD / ST RAND		Precalculus: Trigonometry
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.
INDICATOR / STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
ST ANDARD / ST RAND		Probability and Statistics
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR / STANDARD	PS.1	Make sense of problems and persevere in solving them.
INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
INDICATOR / STANDARD	PS.3	Construct viable arguments and critique the reasoning of others.

STANDARD	PS.4	Model with mathematics.
INDICATOR / STANDARD	PS.6	Attend to precision.
INDICATOR / STANDARD	PS.7	Look for and make use of structure.
INDICATOR / STANDARD	PS.8	Look for and express regularity in repeated reasoning.
STANDARD / STRAND		Probability and Statistics
PROFICIENCY STATEMENT / SUBSTRAND		Data Analysis
INDICATOR / STANDARD	PS.DA.2	Compute and use mean, median, mode, weighted mean, geometric mean, harmonic mean, range, quartiles, variance, and standard deviation. Use tables and technology to estimate areas under the normal curve. Fit a data set to a normal distribution and estimate population percentages. Recognize that there are data sets not normally distributed for which such procedures are inappropriate.
STANDARD / STRAND		Quantitative Reasoning
PROFICIENCY STATEMENT / SUBSTRAND		Process Standards for Mathematics
INDICATOR /	PS.1	Make sense of problems and persevere in solving them.
STANDARD		
STANDARD INDICATOR / STANDARD	PS.2	Reason abstractly and quantitatively.
STANDARD INDICATOR / STANDARD INDICATOR / STANDARD	PS.2 PS.3	Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others.
STANDARD INDICATOR / STANDARD INDICATOR / STANDARD	PS.2 PS.3 PS.4	Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics.
STANDARD INDICATOR / STANDARD INDICATOR / STANDARD INDICATOR / STANDARD INDICATOR / STANDARD	PS.2 PS.3 PS.4 PS.6	Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Attend to precision.
STANDARD INDICATOR / STANDARD	PS.2 PS.3 PS.4 PS.6 PS.7	Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Attend to precision. Look for and make use of structure.
STANDARD INDICATOR / STANDARD	PS.2 PS.3 PS.4 PS.6 PS.7 PS.8	Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning.

PROFICIENCY STATEMENT / SUBSTRAND		Ratio and Proportional Reasoning
INDICATOR / STANDARD	QR.P.3	Solve real-life problems requiring interpretation and comparison of various representations of ratios, (i.e. fractions, decimals, rate, and percentages), such as problems that involve non-standard ratios (e.g., media and risk reporting) or part-to-part versus part-to-whole ratios taken from meaningful context.
STANDARD / STRAND		Quantitative Reasoning
PROFICIENCY STATEMENT / SUBSTRAND		Statistics
INDICATOR / STANDARD	QR.S.9	Recognize when data are normally distributed and use the mean and standard deviation of the data to fit it to a normal distribution.
		Indiana Academic Standards Science
		Grade 9 - Adopted: 2023
STANDARD / STRAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)
PROFICIENCY STATEMENT / SUBSTRAND	SEP.8.	Obtaining, evaluating, and communicating information
STANDARD / STRAND		Biology
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 2.	Ecosystems: Interactions, Energy and Dynamics
INDICATOR / STANDARD	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STANDARD / STRAND		Biology
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 4.	Ecosystems: Interactions, Energy and Dynamics

INDICATOR /HS-LS2-Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in
an ecosystem.STANDARD4.

STANDARD / STRAND		Biology				
----------------------	--	---------	--	--	--	--

PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 5.	Ecosystems: Interactions, Energy and Dynamics	
INDICATOR / STANDARD	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	
STANDARD / STRAND		Biology	
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 7.	Ecosystems: Interactions, Energy and Dynamics	
INDICATOR / STANDARD	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.	
STANDARD / STRAND		Biology	
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS4- 6.	Biological Evolution: Unity and Diversity	
INDICATOR / STANDARD	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	
STANDARD / STRAND		Earth and Space Science	
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS2-4.	Earth's Systems	
INDICATOR / STANDARD	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.	
STANDARD / STRAND		Earth and Space Science	
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS2-6.	Earth's Systems	
INDICATOR / STANDARD	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.	
STANDARD / STRAND		Earth and Space Science	
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-1.	Human Interaction with Earth's Systems	
INDICATOR / STANDARD	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	
ST ANDARD / ST RAND		Earth and Space Science	
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-2.	Human Interaction with Earth's Systems	

INDICATOR /HS-Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based onSTANDARDESS3-2.cost-benefit ratios.

ST ANDARD / ST RAND		Earth and Space Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-3.	Human Interaction with Earth's Systems
INDICATOR / STANDARD	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

STANDARD / STRAND		Earth and Space Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-6.	Human Interaction with Earth's Systems
INDICATOR /	HS-	Use a computational representation to illustrate the relationships among Earth systems and how those relationships

STANDARD ESS3-6. are being modified due to human activity.

Grade 9 - Adopted: 2022				
STANDARD / STRAND		Environmental Science		
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV1-2.	Environmental Systems		
INDICATOR / STANDARD	HS- ENV1-2.	Use a computational representation to illustrate that humans are part of Earth's ecosystems and how human activities can, deliberately or inadvertently, alter ecosystems.		

STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV1-3.	Environmental Systems
INDICATOR / STANDARD	HS- ENV1-3.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

ST ANDARD / ST RAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-1.	Flow of Matter and Energy
INDICATOR / STANDARD	HS- ENV2-1.	Construct and revise an explanation based on evidence for the cycling of matter through sources and sinks and how energy is transferred.

ST ANDARD / ST RAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-3.	Flow of Matter and Energy

INDICATOR / STANDARD	HS- ENV2-3.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.			
STANDARD / STRAND		Environmental Science			
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-6.	low of Matter and Energy			
INDICATOR / STANDARD	HS- ENV2-6.	valuate competing design solutions for developing, managing, and utilizing energy and mineral resources based on ost-benefit ratios.			
STANDARD / STRAND		Environmental Science			
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-7.	Flow of Matter and Energy			
INDICATOR / STANDARD	HS- ENV2-7.	Analyze computational tools and other technologies that allow for the management of natural resources. Evaluate the trade-offs of these tools regarding human physical and cultural needs versus sustainability and biodiversity.			
STANDARD / STRAND		Environmental Science			
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV4-1.	odiversity			
INDICATOR / STANDARD	HS- ENV4-1.	se a model or simulation to support and revise explanations based on evidence about factors affecting biodiversity nd populations in ecosystems of different scales.			
STANDARD / STRAND		Environmental Science			
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV4-2.	Biodiversity			
INDICATOR / STANDARD	HS- ENV4-2.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and piodiversity.			
STANDARD / STRAND		Environmental Science			
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV5-2.	The Effect of Human Population and Activities on the Environment			
INDICATOR / STANDARD	HS- ENV5-2.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.			
STANDARD / STRAND		Environmental Science			
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV5-4.	The Effect of Human Population and Activities on the Environment			
INDICATOR / STANDARD	HS- ENV5-4.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.			

ST ANDARD / ST RAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV6-2.	Environmental Policy
INDICATOR / STANDARD	HS- ENV6-2.	Construct an argument to explain that environmental policies/decisions have negative and positive impacts on people, societies, and the environment.

Indiana Academic Standards

Science

Grade 10 - Adopted: 2023

STANDARD / STRAND		cience and Engineering Practices	
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models	
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)	
PROFICIENCY STATEMENT / SUBSTRAND	SEP.8.	Obtaining, evaluating, and communicating information	

STANDARD / STRAND		ology	
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 2.	Ecosystems: Interactions, Energy and Dynamics	
INDICATOR / STANDARD	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	

STANDARD / STRAND		Biology
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 4.	Ecosystems: Interactions, Energy and Dynamics
	HS-I S2-	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in

INDICATOR /	HS-LS2-	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in
STANDARD	4.	an ecosystem.

ST ANDARD / ST RAND		Biology	
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 5.	Ecosystems: Interactions, Energy and Dynamics	
INDICATOR / STANDARD	HS-LS2- 5.	evelop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the osphere, atmosphere, hydrosphere, and geosphere.	
STANDARD /		Biology	

STRAND

PROFICIENCY STATEMENT / SUBSTRAND	HS-LS2- 7.	Ecosystems: Interactions, Energy and Dynamics		
INDICATOR / STANDARD	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.		
STANDARD / STRAND		Biology		
PROFICIENCY STATEMENT / SUBSTRAND	HS-LS4- 6.	Biological Evolution: Unity and Diversity		
INDICATOR / STANDARD	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.		
STANDARD / STRAND		Earth and Space Science		
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS2-4.	Earth's Systems		
INDICATOR / STANDARD	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.		
STANDARD / STRAND		arth and Space Science		
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS2-6.	Earth's Systems		
INDICATOR / STANDARD	HS- ESS2-6.	evelop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.		
STANDARD / STRAND		arth and Space Science		
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-1.	Human Interaction with Earth's Systems		
INDICATOR / STANDARD	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.		
STANDARD / STRAND		Earth and Space Science		
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-2.	Human Interaction with Earth's Systems		
INDICATOR / STANDARD	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.		
STANDARD / STRAND		Earth and Space Science		
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-3.	Human Interaction with Earth's Systems		

INDICATOR /HS-Create a computational simulation to illustrate the relationships among management of natural resources, theSTANDARDESS3-3.sustainability of human populations, and biodiversity.

ST ANDARD / ST RAND		Earth and Space Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ESS3-6.	Human Interaction with Earth's Systems
INDICATOR /	HS-	Use a computational representation to illustrate the relationships among Earth systems and how those relationships

STANDARD ESS3-6. are being modified due to human activity.

Grade	10	- Adopted: 2022
orauc	T O	Auopicu. LOLL

ST ANDARD / ST RAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV1-2.	Environmental Systems

INDICATOR /	HS-	Use a computational representation to illustrate that humans are part of Earth's ecosystems and how human activities
STANDARD	ENV1-2.	can, deliberately or inadvertently, alter ecosystems.

STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV1-3.	Environmental Systems
INDICATOR / STANDARD	HS- ENV1-3.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

ST ANDARD / ST RAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-1.	Flow of Matter and Energy
	HS-	Construct and revise an explanation based on evidence for the cycling of matter through sources and sinks and how

INDICATOR /HS-Construct and revise an explanation based on evidence for the cycling of matter through sources and sinks and howSTANDARDENV2-1.energy is transferred.

STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-3.	Flow of Matter and Energy
INDICATOR / STANDARD	HS- ENV2-3.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

ST ANDARD / ST RAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-6.	Flow of Matter and Energy
INDICATOR / STANDARD	HS- ENV2-6.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
---	----------------	---
STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV2-7.	Flow of Matter and Energy
INDICATOR / STANDARD	HS- ENV2-7.	Analyze computational tools and other technologies that allow for the management of natural resources. Evaluate the trade-offs of these tools regarding human physical and cultural needs versus sustainability and biodiversity.
STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV4-1.	Biodiversity
INDICATOR / STANDARD	HS- ENV4-1.	Use a model or simulation to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV4-2.	Biodiversity
INDICATOR / STANDARD	HS- ENV4-2.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV5-2.	The Effect of Human Population and Activities on the Environment
INDICATOR / STANDARD	HS- ENV5-2.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
ST ANDARD / ST RAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV5-4.	The Effect of Human Population and Activities on the Environment
INDICATOR / STANDARD	HS- ENV5-4.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STANDARD / STRAND		Environmental Science
PROFICIENCY STATEMENT / SUBSTRAND	HS- ENV6-2.	Environmental Policy
INDICATOR / STANDARD	HS- ENV6-2.	Construct an argument to explain that environmental policies/decisions have negative and positive impacts on people, societies, and the environment.

Indiana Academic Standards Technology Education

Grade 9 - Adopted: 2018

Grade 9 - Adopted: 2018			
STANDARD / STRAND		Computer Science I	
PROFICIENCY STATEMENT / SUBSTRAND		Programs and Algorithms (PA)	
INDICATOR / STANDARD	CSI-1.2.	Outline the problem assigned and describe the solution.	
INDICATOR / STANDARD	CSI-1.3.	Use puzzles and games to enhance problem solving skills.	
INDICATOR / STANDARD	CSI-3.1.	Develop algorithms to determine a solution.	
INDICATOR / STANDARD	CSI-3.2.	Assess the use of algorithms to provide a solution.	
INDICATOR / STANDARD	CSI-3.3.	Use pseudocode to describe a solution.	
INDICATOR / STANDARD	CSI-3.5.	Explain how the algorithm can be used to solve a problem.	
INDICATOR / STANDARD	CSI-4.2.	Create a computer program that corresponds to an algorithm or proposed solution.	
ST ANDARD / ST RAND		Computer Science I	
PROFICIENCY STATEMENT / SUBSTRAND		Networking and Communication (NC)	
INDICATOR / STANDARD	CSI-2.3.	Utilize a problem solving approach to develop a solution using technology.	
INDICATOR / STANDARD	CSI-2.5.	Program a solution to a problem using pair programming or other methods.	
STANDARD / STRAND		Computer Science II	

STANDARD / STRAND		Computer Science II
PROFICIENCY STATEMENT / SUBSTRAND		Programs and Algorithms (PA)
INDICATOR / STANDARD	CSII-3.1.	Develop algorithms to determine a solution.
INDICATOR / STANDARD	CSII-3.5.	Explain how the algorithm can be used to solve a problem.

ST ANDARD / ST RAND		Computer Science II
PROFICIENCY STATEMENT / SUBSTRAND		Networking and Communication (NC)
INDICATOR / STANDARD	CSII-2.1.	Design a solution to a problem by working in a team.

INDICATOR / $\label{eq:csl-2.3.} CSII-2.3. \quad Utilize a problem solving approach to develop a solution using technology.$

STANDARD

ST ANDARD / ST RAND		Introduction to Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Data and Information (DI)
INDICATOR / STANDARD	ICS-2.5.	Formulate algorithms using programming structures to decompose a complex problem.
INDICATOR /	ICS-5.3.	Utilize a problem solving approach to develop a solution using technology.

STANDARD

ig app ng ogy р

STANDARD / STRAND		Introduction to Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Computing Devices and Systems (CD)
INDICATOR /	ICS-4.6.	Investigate innovations in computing, including robotics.

STANDARD

Indiana Academic Standards Technology Education Grade 10 - Adopted: 2018

STANDARD / STRAND		Computer Science I
PROFICIENCY STATEMENT / SUBSTRAND		Programs and Algorithms (PA)
INDICATOR / STANDARD	CSI-1.2.	Outline the problem assigned and describe the solution.
INDICATOR / STANDARD	CSI-1.3.	Use puzzles and games to enhance problem solving skills.
INDICATOR / STANDARD	CSI-3.1.	Develop algorithms to determine a solution.
INDICATOR / STANDARD	CSI-3.2.	Assess the use of algorithms to provide a solution.

INDICATOR / STANDARD	CSI-3.3.	Use pseudocode to describe a solution.
INDICATOR / STANDARD	CSI-3.5.	Explain how the algorithm can be used to solve a problem.
INDICATOR / STANDARD	CSI-4.2.	Create a computer program that corresponds to an algorithm or proposed solution.
ST ANDARD / ST RAND		Computer Science I
PROFICIENCY STATEMENT / SUBSTRAND		Networking and Communication (NC)
INDICATOR / STANDARD	CSI-2.3.	Utilize a problem solving approach to develop a solution using technology.
INDICATOR / STANDARD	CSI-2.5.	Program a solution to a problem using pair programming or other methods.
ST ANDARD / ST RAND		Computer Science II
PROFICIENCY STATEMENT / SUBSTRAND		Programs and Algorithms (PA)
INDICATOR / STANDARD	CSII-3.1.	Develop algorithms to determine a solution.
INDICATOR / STANDARD	CSII-3.5.	Explain how the algorithm can be used to solve a problem.
ST ANDARD / ST RAND		Computer Science II
PROFICIENCY STATEMENT / SUBSTRAND		Networking and Communication (NC)
INDICATOR / STANDARD	CSII-2.1.	Design a solution to a problem by working in a team.
INDICATOR / STANDARD	CSII-2.3.	Utilize a problem solving approach to develop a solution using technology.
ST ANDARD / ST RAND		Introduction to Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Data and Information (DI)

INDICATOR / ICS-2.5. Formulate algorithms using programming structures to decompose a complex problem.

STANDARD

INDICATOR / STANDARD

ICS-5.3. Utilize a problem solving approach to develop a solution using technology.

ST ANDARD / ST RAND		Introduction to Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Computing Devices and Systems (CD)
INDICATOR /	ICS-4.6.	Investigate innovations in computing, including robotics.

STANDARD

ICS-4.6. Investigate innovations in computing, including robotics.

Iowa Student Standards Mathematics Grade 9 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	6	Attend to precision.
ESSENTIAL CONCEPT AND/OR SKILL	7	Look for and make use of structure.
ESSENTIAL CONCEPT AND/OR SKILL	8	Look for and express regularity in repeated reasoning.

STRAND / COURSE	HS.F.	High School—Functions
ESSENTIAL CONCEPT AND/OR SKILL	F-IF.	Interpreting Functions F-IF
DET AILED DESCRIPTOR	F-IF.B.	Interpret functions that arise in applications in terms of the context (F-IF.B)

F-IF.B.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (F-IF.B.6)

Iowa Student Standards Mathematics Grade 10 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	6	Attend to precision.
ESSENTIAL CONCEPT AND/OR SKILL	7	Look for and make use of structure.
ESSENTIAL CONCEPT AND/OR SKILL	8	Look for and express regularity in repeated reasoning.
STRAND / COURSE	HS.F.	High School—Functions
ESSENTIAL	F-IF.	Interpreting Functions F-IF

CONCEPT AND/OR SKILL	F-IF.	Interpreting Functions F-IF
DET AILED DESCRIPTOR	F-IF.B.	Interpret functions that arise in applications in terms of the context (F-IF.B)
GRADE LEVEL	F-IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

EXPECTATION

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over specified interval. Estimate the rate of change from a graph. (F-IF.B.6)

Iowa Student Standards Science

Grade 9 - Adopted: 2015

STRAND / COURSE	IA.HS- PS4.	Waves and Their Applications in Technologies for Information Transfer

ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			
DETAILED DESCRIPTOR	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.			
STRAND / COURSE	IA.HS- LS2.	cosystems: Interactions, Energy, and Dynamics			
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			
DETAILED DESCRIPTOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.			
DETAILED DESCRIPTOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.			
DETAILED DESCRIPTOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.			
DETAILED DESCRIPTOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and piodiversity.			
STRAND / COURSE	IA.HS- LS4.	Biological Evolution: Unity and Diversity			
ESSENTIAL		Students who demonstrate understanding can:			
CONCEPT AND/OR SKILL					
DETAILED DESCRIPTOR	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.			
DETAILED DETAILED DESCRIPTOR	HS-LS4- 6. IA.HS- ESS2.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.			
CONCEPT AND/OR SKILL DETAILED DESCRIPTOR STRAND / COURSE ESSENTIAL CONCEPT AND/OR SKILL	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. Earth's Systems Students who demonstrate understanding can:			
CONCEPT AND/OR SKILL DETAILED DESCRIPTOR STRAND / COURSE ESSENT IAL CONCEPT AND/OR SKILL DETAILED DESCRIPTOR	HS-LS4- 6. IA.HS- ESS2. HS- ESS2-4.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. Earth's Systems Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.			
CONCEPT AND/OR SKILL DETAILED DESCRIPTOR ST RAND / COURSE ESSENT IAL CONCEPT AND/OR SKILL DETAILED DESCRIPTOR DETAILED DESCRIPTOR	HS-LS4- 6. IA.HS- ESS2. HS- ESS2-4. HS- ESS2-6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. Earth's Systems Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.			
CONCEPT AND/OR SKILL DETAILED DESCRIPTOR ST RAND / COURSE ESSENT IAL CONCEPT AND/OR SKILL DETAILED DESCRIPTOR DETAILED DESCRIPTOR ST RAND / COURSE	HS-LS4- 6. IA.HS- ESS2. HS- ESS2-4. HS- ESS2-6. IA.HS- ESS3.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. Earth's Systems Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. Earth and Human Activity			
CONCEPT AND/OR SKILL DETAILED DESCRIPTOR COURSE ESSENT IAL CONCEPT AND/OR SKILL DETAILED DESCRIPTOR DETAILED DESCRIPTOR ST RAND / COURSE ESSENT IAL CONCEPT AND/OR SKILL	HS-LS4- 6. IA.HS- ESS2. HS- ESS2-4. HS- ESS2-6. IA.HS- ESS3.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. Earth's Systems Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. Earth and Human Activity Students who demonstrate understanding can:			

DETAILED DESCRIPTOR	HS- ESS3-2.	valuate competing design solutions for developing, managing, and utilizing energy and mineral resources based on ost-benefit ratios.			
DETAILED DESCRIPTOR	HS- ESS3-3.	ite a computational simulation to illustrate the relationships among management of natural resources, the ainability of human populations, and biodiversity.			
DETAILED DESCRIPTOR	HS- ESS3-6.	a computational representation to illustrate the relationships among Earth systems and how those relationships being modified due to human activity.			
STRAND / COURSE	IA.HS- ET S1.	gineering Design			
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			
DETAILED DESCRIPTOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.			
DETAILED DESCRIPTOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems hat can be solved through engineering.			
DETAILED DESCRIPTOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and			

Grade 9 - Adopted: 2016

environmental impacts.

STRAND / COURSE	IA.CC.RS T.9-10.	eading Standards for Literacy in Science and Technical Subjects		
ESSENTIAL CONCEPT AND/OR SKILL		Key Ideas and Details		
DETAILED DESCRIPTOR	RST.9- 10.2.	etermine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, nenomenon, or concept; provide an accurate summary of the text. (RST.9-10.2.)		
DETAILED DESCRIPTOR	RST.9- 10.3.	llow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing chnical tasks, attending to special cases or exceptions defined in the text. (RST.9-10.3)		
STRAND / COURSE	IA.CC.RS T.9-10.	eading Standards for Literacy in Science and Technical Subjects		
ESSENTIAL CONCEPT AND/OR SKILL		Craft and Structure		
DETAILED DESCRIPTOR	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics. (RST.9-10.4.)		
DETAILED DESCRIPTOR	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., prce, friction, reaction force, energy). (RST.9-10.5.)		
STRAND / COURSE	IA.CC.RS T.9-10.	Reading Standards for Literacy in Science and Technical Subjects		
ESSENTIAL CONCEPT AND/OR SKILL		Integration of Knowledge and Ideas		

DETAILED DESCRIPTOR	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts. (RST.9-10.9.)			
STRAND / COURSE	IA.CC.RS T.9-10.	Reading Standards for Literacy in Science and Technical Subjects			
ESSENTIAL CONCEPT AND/OR SKILL		Range of Reading and Level of Text Complexity			
DETAILED DESCRIPTOR	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently. (RST.9-10.10.)			
STRAND / COURSE	IA.CC.WH ST.9-10.	Writing Standards for Literacy Science, and Technical Subjects			
ESSENTIAL CONCEPT AND/OR SKILL		Text Types and Purposes			
DET AILED DESCRIPT OR	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.			
GRADE LEVEL EXPECTATION	WHST.9- 10.2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers. (WHST.9-10.2.)			
STRAND / COURSE	IA.CC.WH ST.9-10.	Writing Standards for Literacy Science, and Technical Subjects			
ESSENTIAL CONCEPT AND/OR SKILL		Production and Distribution of Writing			
DETAILED DESCRIPTOR	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (WHST.9-10.4.)			
DETAILED DESCRIPTOR	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically. (WHST.9-10.6.)			
		lowa Student Standards Science Grade 10 - Adopted: 2015			
STRAND / COURSE	IA.HS- PS4.	Waves and Their Applications in Technologies for Information Transfer			
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			
DETAILED DESCRIPTOR	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.			
STRAND / COURSE	IA.HS- LS2.	Ecosystems: Interactions, Energy, and Dynamics			
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			

DETAILED DESCRIPTOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.			
DETAILED DESCRIPTOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.			
DETAILED DESCRIPTOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.			
DETAILED DESCRIPTOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.			
STRAND / COURSE	IA.HS- LS4.	Biological Evolution: Unity and Diversity			
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			
DETAILED DESCRIPTOR	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.			
STRAND / COURSE	IA.HS- ESS2.	Earth's Systems			
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			
DETAILED DESCRIPTOR	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.			
DETAILED DESCRIPTOR	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.			
STRAND / COURSE	IA.HS- ESS3.	Earth and Human Activity			
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:			
DETAILED DESCRIPTOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.			
DETAILED DESCRIPTOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.			
DETAILED DESCRIPTOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.			
DETAILED DESCRIPTOR	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.			
STRAND / COURSE	IA.HS- ETS1.	Engineering Design			

ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
DETAILED DESCRIPTOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
DETAILED DESCRIPTOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Grade 10 - Adopted: 2016

STRAND / COURSE	IA.CC.RS T.9-10.	eading Standards for Literacy in Science and Technical Subjects	
ESSENTIAL CONCEPT AND/OR SKILL		Key Ideas and Details	
DETAILED DESCRIPTOR	RST.9- 10.2.	rmine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, omenon, or concept; provide an accurate summary of the text. (RST.9-10.2.)	
DETAILED DESCRIPTOR	RST.9- 10.3.	llow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing hnical tasks, attending to special cases or exceptions defined in the text. (RST.9-10.3)	
STRAND / COURSE	IA.CC.RS T.9-10.	Reading Standards for Literacy in Science and Technical Subjects	
ESSENTIAL CONCEPT AND/OR SKILL		Craft and Structure	
DETAILED DESCRIPTOR	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics. (RST.9-10.4.)	

DETAILED	RST.9-	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
DESCRIPTOR	10.5.	force, friction, reaction force, energy). (RST.9-10.5.)

STRAND / COURSE	IA.CC.RS T.9-10.	ading Standards for Literacy in Science and Technical Subjects			
ESSENTIAL CONCEPT AND/OR SKILL		Integration of Knowledge and Ideas			
DETAILED DESCRIPTOR	RST.9- 10.9.	mpare and contrast findings presented in a text to those from other sources (including their own experiments), ting when the findings support or contradict previous explanations or accounts. (RST.9-10.9.)			
STRAND / COURSE	IA.CC.RS T.9-10.	Reading Standards for Literacy in Science and Technical Subjects			
ESSENTIAL CONCEPT AND/OR SKILL		Range of Reading and Level of Text Complexity			
DETAILED	RST.9-	By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band			

DESCRIPTOR	10.10.	independently and proficiently. (RST.9-10.10.)

STRAND / COURSE	IA.CC.WH ST.9-10.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Text Types and Purposes
DET AILED DESCRIPT OR	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.9- 10.2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers. (WHST.9-10.2.)
STRAND / COURSE	IA.CC.WH ST.9-10.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Production and Distribution of Writing
DETAILED DESCRIPTOR	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (WHST.9-10.4.)
DETAILED DESCRIPTOR	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically. (WHST.9-10.6.)

lowa Student Standards Technology Education Grade 9 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CST A.3 A.	Level 3A (Ages 14-16)
DET AILED DESCRIPTOR	3A-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Algorithms
EXAMPLE	3A-AP-	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CST A.3 A.	Level 3A (Ages 14-16)
DET AILED DESCRIPT OR	3A-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Culture

EXAMPLE 3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)

personal interests. (P5.2)

13.

lowa Student Standards Technology Education Grade 10 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.3 A.	Level 3A (Ages 14-16)
DET AILED DESCRIPTOR	3A-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Algorithms
EXAMPLE	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. (P5.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CST A.3 A.	Level 3A (Ages 14-16)
DET AILED DESCRIPT OR	3A-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Culture
EXAMPLE	3A-IC-25.	Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)
		Kansas Academic Standards Mathematics Grade 9 - Adopted: 2017
STANDARD	MP.	Standards for Mathematical Practice

BENCHMARK	MP.1.	Make sense of problems and persevere in solving them

BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.6.	Attend to precision.
BENCHMARK	MP.7.	Look for and make use of structure.
BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.

STANDARD		Functions
BENCHMARK	F.IF.	Interpreting Functions
INDICATOR / PROFICIENCY LEVEL		Interpret functions that arise in applications in terms of the context.

INDICATOR

F.IF.6.

(9/10/11) Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (9/10) limited to linear functions.

Kansas Academic Standards Mathematics Grade 10 - Adopted: 2017

STANDARD	MP.	Standards for Mathematical Practice
BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.6.	Attend to precision.
BENCHMARK	MP.7.	Look for and make use of structure.
BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.

STANDARD		Functions
BENCHMARK	F.IF.	Interpreting Functions
INDICATOR / PROFICIENCY LEVEL		Interpret functions that arise in applications in terms of the context.

INDICATORF.IF.6.(9/10/11) Calculate and interpret the average rate of change of a function (presented symbolically or as a table)
over a specified interval. Estimate the rate of change from a graph. (9/10) limited to linear functions.

Kansas Academic Standards

Science

Grade 9 - Adopted: 2013

STANDARD	KS.HS- PS.	PHYSICAL SCIENCE
BENCHMARK	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

INDICATOR

2.

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

STANDARD	KS.HS- LS.	LIFE SCIENCE
BENCHMARK	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

INDICATOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STANDARD	KS.HS- LS.	LIFE SCIENCE
BENCHMARK	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STANDARD	KS.HS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	HS- ESS2.	Earth's Systems
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
INDICATOR	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STANDARD	KS.HS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	HS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

INDICATOR

HS- Use a computational representation to illustrate the relationships among Earth systems and how those relationships ESS3-6, are being modified due to human activity.

	ESS3-6.	
STANDARD	KS.HS- ETS.	ENGINEERING DESIGN
BENCHMARK	HS- ETS1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 9 - Adopted: 2010
STANDARD	KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD BENCHMARK	KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details
ST ANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL	KS.RST.9 -10. RST.9- 10.2.	Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
ST ANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL INDICATOR / PROFICIENCY LEVEL	KS.RST.9 -10. RST.9- 10.2. RST.9- 10.3.	Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
ST ANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL INDICATOR / PROFICIENCY LEVEL ST ANDARD	KS.RST.9 -10. RST.9- 10.2. RST.9- 10.3. KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text. Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL INDICATOR / PROFICIENCY LEVEL ST ANDARD BENCHMARK	KS.RST.9 -10. RST.9- 10.2. RST.9- 10.3. KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text. Reading Standards for Literacy in Science and Technical Subjects Craft and Structure

INDICATOR /RST.9-Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,PROFICIENCY10.5.force, friction, reaction force, energy).LEVEL

STANDARD	KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas
INDICATOR / PROFICIENCY LEVEL	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

STANDARD	KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Range of Reading and Level of Text Complexity
INDICATOR / PROFICIENCY	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

PROFICIENCY LEVEL

independently and proficiently.

STANDARD	KS.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Text Types and Purposes
INDICATOR / PROFICIENCY LEVEL	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

INDICATOR

WHST.9- Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers. 10.2(d)

STANDARD	KS.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Production and Distribution of Writing
INDICATOR / PROFICIENCY LEVEL	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

INDICATOR /	WHST.9-	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking
PROFICIENCY	10.6.	advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
LEVEL		

Kansas Academic Standards

Science

Grade 10 - Adopted: 2013

STANDARD	KS.HS- PS.	PHYSICAL SCIENCE
BENCHMARK	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

INDICATOR

2.

2.

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

STANDARD	KS.HS- LS.	LIFE SCIENCE
BENCHMARK	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

INDICATOR

HS-LS2- Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

STANDARD	KS.HS- LS.	
BENCHMARK	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

INDICATOR

HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. 6.

ST ANDARD	KS.HS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	HS- ESS2.	Earth's Systems
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

INDICATORHS-Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
eSS2-6.ESS2-6.and biosphere.

STANDARD	KS.HS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	HS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
INDICATOR	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STANDARD	KS.HS- ETS.	ENGINEERING DESIGN	
BENCHMARK	HS- ETS1.	Engineering Design	
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:	
INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	
INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	
INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	
		Grade 10 - Adopted: 2010	
STANDARD	KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Key Ideas and Details	
INDICATOR / PROFICIENCY LEVEL	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.	
INDICATOR / PROFICIENCY LEVEL	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.	
STANDARD	KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Craft and Structure	
INDICATOR / PROFICIENCY LEVEL	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.	
INDICATOR / PROFICIENCY LEVEL	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).	
STANDARD	KS.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Integration of Knowledge and Ideas	
INDICATOR / PROFICIENCY LEVEL	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.	
STANDARD	KS.RST.9	Reading Standards for Literacy in Science and Technical Subjects	

BENCHMARK		Range of Reading and Level of Text Complexity	
INDICATOR / PROFICIENCY LEVEL	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.	

STANDARD	KS.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Text Types and Purposes	
INDICATOR / PROFICIENCY LEVEL	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.	

INDICATORWHST.9-
10.2(d)Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style
appropriate to the discipline and context as well as to the expertise of likely readers.

STANDARD	KS.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Production and Distribution of Writing	
INDICATOR / PROFICIENCY LEVEL	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.	
INDICATOR / PROFICIENCY LEVEL	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.	

Kansas Academic Standards Technology Education Grade 9 - Adopted: 2019

STANDARD	omputer Science Standards - Secondary Grades L1 (All Students)	
BENCHMARK	Algorithms and Programing	
INDICATOR / PROFICIENCY LEVEL	Algorithms	

INDICATOR L1.AP.A.0 Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and 1. personal interests.

STANDARD	Computer Science Standards - Secondary Grades L1 (All Students)	
BENCHMARK	Algorithms and Programing	
INDICATOR / PROFICIENCY LEVEL	Variables	

INDICATOR

L1.AP.V.0 Use lists to simplify solutions, generalizing computational problems instead of repeatedly using simple variables. 1.

STANDARD	Computer Science Standards - Secondary Grades L1 (All Students)
BENCHMARK	Impacts of Computing

INDICATOR / PROFICIENCY LEVEL		Culture
INDICATOR	L1.IC.C.0 2.	Test and refine computational artifacts to reduce bias and equity deficits.
INDICATOR	L1.IC.C.0 3.	Demonstrate how a given algorithm applies to problems across disciplines.
STANDARD		Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students)
BENCHMARK		Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL		Algorithms
INDICATOR	L2.AP.A.0 1.	Describe how artificial intelligence algorithms drive many software and physical systems (e.g., digital advertising, autonomous robots, computer vision, pattern recognition, text analysis).
INDICATOR	L2.AP.A.0 5.	Use and adapt classic algorithms to solve computational problems.
INDICATOR	L2.AP.A.0 6.	Evaluate algorithms in terms of their efficiency, correctness, and clarity.
STANDARD		Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students)
ST AND ARD BENCHMARK		Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing
ST ANDARD BENCHMARK INDICAT OR / PROFICIENCY LEVEL		Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Modularity
STANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL	L2.AP.M. 01.	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Modularity Construct solutions to problems using student-created components, such as procedures, modules and/or objects.
ST AND ARD BENCHMARK INDICAT OR / PROFICIENCY LEVEL INDICATOR	L2.AP.M. 01. L2.AP.M. 02.	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Modularity Construct solutions to problems using student-created components, such as procedures, modules and/or objects. Analyze a large-scale computational problem and identify generalizable patterns that can be applied to a solution.
ST AND ARD BENCHMARK INDICAT OR / PROFICIENCY LEVEL INDICATOR INDICATOR ST AND ARD	L2.AP.M. 01. L2.AP.M. 02.	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Modularity Construct solutions to problems using student-created components, such as procedures, modules and/or objects. Analyze a large-scale computational problem and identify generalizable patterns that can be applied to a solution. Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students)
ST AND ARD BENCHMARK INDICAT OR / PROFICIENCY LEVEL INDICATOR ST AND ARD BENCHMARK	L2.AP.M. 01. L2.AP.M. 02.	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Modularity Construct solutions to problems using student-created components, such as procedures, modules and/or objects. Analyze a large-scale computational problem and identify generalizable patterns that can be applied to a solution. Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing
STANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL INDICATOR STANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL	L2.AP.M. 01. L2.AP.M. 02.	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Modularity Construct solutions to problems using student-created components, such as procedures, modules and/or objects. Analyze a large-scale computational problem and identify generalizable patterns that can be applied to a solution. Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Program Development
STANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL INDICATOR STANDARD BENCHMARK INDICATOR / PROFICIENCY LEVEL	L2.AP.M. 01. L2.AP.M. 02. L2.AP.M. 02.	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Modularity Construct solutions to problems using student-created components, such as procedures, modules and/or objects. Analyze a large-scale computational problem and identify generalizable patterns that can be applied to a solution. Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students) Algorithms and Programing Program Development Compare multiple programming languages and discuss how their features make them suitable for solving different types of problems.

Technology Education

Grade 10 - Adopted: 2019

STANDARD	Computer Science Standards - Secondary Grades L1 (All Students)
BENCHMARK	Algorithms and Programing

INDICATOR / PROFICIENCY LEVEL		Algorithms
INDICATOR	L1.AP.A.0 1.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.
STANDARD		Computer Science Standards - Secondary Grades L1 (All Students)
BENCHMARK		Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL		Variables
INDICATOR	L1.AP.V.0 1.	Use lists to simplify solutions, generalizing computational problems instead of repeatedly using simple variables.

STANDARD		mputer Science Standards - Secondary Grades L1 (All Students)		
BENCHMARK		Impacts of Computing		
INDICATOR / PROFICIENCY LEVEL		Culture		
INDICATOR	L1.IC.C.0 2.	Test and refine computational artifacts to reduce bias and equity deficits.		

INDICATOR	L1.IC.C.0	Demonstrate how a given algorithm applies to problems across disciplines.
	3.	

STANDARD		Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students)
BENCHMARK		Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL		Algorithms
INDICATOR	L2.AP.A.0 1.	Describe how artificial intelligence algorithms drive many software and physical systems (e.g., digital advertising, autonomous robots, computer vision, pattern recognition, text analysis).
INDICATOR	L2.AP.A.0 5.	Use and adapt classic algorithms to solve computational problems.
INDICATOR	L2.AP.A.0 6.	Evaluate algorithms in terms of their efficiency, correctness, and clarity.

STANDARD	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students)
BENCHMARK	Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL	Modularity

INDICATOR

L2.AP.M. Construct solutions to problems using student-created components, such as procedures, modules and/or objects. 01.

INDICATOR

02.

L2.AP.M. Analyze a large-scale computational problem and identify generalizable patterns that can be applied to a solution.

STANDARD	Computer Science Standards - Secondary Grades L2 (Students who wish to pursue computer science beyond what is expected of all students)
BENCHMARK	Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL	Program Development

INDICATOR

L2.AP.PD Compare multiple programming languages and discuss how their features make them suitable for solving different types of problems. .08.

Kentucky Academic Standards Mathematics Grade 9 - Adopted: 2019

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.6.	Attend to precision.
CATEGORY / GOAL	MP.7.	Look for and make use of structure.
CATEGORY / GOAL	MP.8.	Look for and express regularity in repeated reasoning.
STRAND		Conceptual Category Functions
CATEGORY <i>I</i> GOAL		Functions—Interpreting Functions
ST ANDARD / ORGANIZER		Cluster: Interpret functions that arise in applications in terms of the context.
EXPECTATION	KY.HS.F. 3.	Understand average rate of change of a function over an interval. (MP.2, MP.4)
INDICATOR	KY.HS.F. 3.a.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval.
INDICATOR	KY.HS.F. 3.b.	Estimate the rate of change from a graph.

Kentucky Academic Standards

Mathematics

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.6.	Attend to precision.
CATEGORY / GOAL	MP.7.	Look for and make use of structure.
CATEGORY / GOAL	MP.8.	Look for and express regularity in repeated reasoning.
STRAND		Conceptual Category Functions
CATEGORY / GOAL		Functions—Interpreting Functions

GOAL		
ST ANDARD / ORGANIZER		Cluster: Interpret functions that arise in applications in terms of the context.
EXPECTATION	KY.HS.F. 3.	Understand average rate of change of a function over an interval. (MP.2, MP.4)
INDICATOR	KY.HS.F. 3.a.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval.
INDICATOR	KY.HS.F. 3.b.	Estimate the rate of change from a graph.

Kentucky Academic Standards Science

Grade 9 - Adopted: 2022

STRAND		High School
CATEGORY / GOAL	HS-PS4- 2.	Evaluate questions about the advantages of using digital transmission and storage of information.
CATEGORY / GOAL	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

CATEGORY / GOAL	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
CATEGORY / GOAL	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CATEGORY / GOAL	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CATEGORY / GOAL	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
CATEGORY / GOAL	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CATEGORY / GOAL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
CATEGORY / GOAL	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost[1]benefit ratios.
CATEGORY / GOAL	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
CATEGORY / GOAL	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CATEGORY / GOAL	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CATEGORY / GOAL	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
CATEGORY / GOAL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Kentucky Academic Standards

Science

Grade 10 - Adopted: 2022

STRAND		High School
CATEGORY / GOAL	HS-PS4- 2.	Evaluate questions about the advantages of using digital transmission and storage of information.
CATEGORY / GOAL	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
CATEGORY / GOAL	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

CATEGORY / GOAL	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CATEGORY / GOAL	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CATEGORY / GOAL	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
CATEGORY / GOAL	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CATEGORY / GOAL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
CATEGORY / GOAL	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost[1]benefit ratios.
CATEGORY / GOAL	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.
CATEGORY / GOAL	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CATEGORY / GOAL	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CATEGORY / GOAL	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
CATEGORY / GOAL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Kentucky Academic Standards Technology Education Grade 9 - Adopted: 2018

STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL		Algorithms & Programming
ST ANDARD / ORGANIZER		Algorithms
EXPECTATION	H-AP-07.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. A prototype is a computational artifact that demonstrates the core functionality of a product or process. Prototypes are useful for getting early feedback in the design process, and can yield insight into the

feasibility of a product. The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Students should develop artifacts in response to a task or a computational problem that demonstrate the performance, re-usability, and ease of implementation of an algorithm.

CATEGORY/ GOAL		Algorithms & Programming
ST ANDARD / ORGANIZER		Program Development
EXPECTATION	H-AP-08.	Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Modules allow for better management of complex

tasks. The focus at this level is understanding a program as a system with relationships between modules. The choice of implementation, such as programming language or paradigm, may vary. Students could incorporate computer vision libraries to increase the capabilities of a robot or leverage open-source JavaScript libraries to expand the functionality of a web application.

solving a given problem, and compare/contrast algorithms for clarity and the number of executed operations.

STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY / GOAL		Algorithms & Programming
ST ANDARD / ORGANIZER		Algorithms
EXPECTATION	H-AP-13.	Use and adapt classic algorithms to solve computational problems. Students should be able to identify and use well-known algorithms in sorting (e.g., bubble sort, quicksort, merge sort, insertion sort), searching (e.g., linear search, binary search), and shortest-path (e.g., Dijkstra's algorithm) problems. Students will also be able to adapt and combine such well-known algorithms to add features that address more complex computational tasks.
EXPECTATION	H-AP-14.	Evaluate algorithms in terms of their efficiency, correctness, and clarity. Students should be able to calculate the total number times a loop will be executed given a code snippet, will be able to state whether an algorithm is correct for

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL	Algorithms & Programming
ST ANDARD / ORGANIZER	Program Development

EXPECTATION H-AP-24. Compare multiple programming languages and discuss how their features make them suitable for solving different types of problems. Students should be able to explain the difference between a compiled and scripted programming language, defend a choice of a programming language for a certain computing device and defend a choice of a language (3rd generation versus 4th generation) for solving different types of problems.

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL	Impacts of Computing
STANDARD / ORGANIZER	Culture

EXPECTATION H-IC-07. Demonstrate ways computational design (i.e. algorithms, abstractions and analysis) can apply to problems across disciplines. Computational design can share features across disciplines (i.e. art, music etc.) by translating human intention into an artifact through algorithmic development and the need to solve a problem. Students should be able to demonstrate how these features are shared across disciplines and how real-world problems can be solved using computational methods.

	Grade 9 - Adopted: 2015
STRAND	Technology – High

CATEGORY <i> </i> GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
ST ANDARD / ORGANIZER	Academic Expectations

EXPECTATION

6.1.

H.BI1.AE. Students connect knowledge and experiences from different subject areas.

STRAND		Technology – High
CATEGORY <i>I</i> GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		Academic Expectations
EXPECTATION	H.BI3.AE.	Students use problem-solving processes to develop solutions to relatively complex problems.

EXPECTATION

6.1.

5.5.

EXPECTATION

H.BI3.AE. Students connect knowledge and experiences from different subject areas.

STRAND Technology – High CATEGORY/ Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for GOAL solving problems in the real world. Students will use technology for original creation and innovation. STANDARD / High Enduring Knowledge – Understandings ORGANIZER

EXPECTATION H.BI3.EK. Technology supports critical thinking skills used in inquiry/problem solving to make informed decisions for 1. independent learning.

STRAND		Technology – High
CATEGORY/ GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		High Skills and Concepts – Research
EXPECTATION	H.BI3.SC	Express and synthesize digital information collected in research effectively and accurately to produce original work

1.6.

H.BI3.SC Express and synthesize digital information collected in research effectively and accurately to produce original work (e.g., desktop-published or word-processed report, multimedia presentation, engineering design).

STRAND		Technology – High
CATEGORY <i>I</i> GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		High Skills and Concepts – Inquiry/Problem-solving
EXPECTATION	H.BI3.SC 2.3.	Explain how technology can be used for problem solving and creativity (e.g., simulation software, environmental probes, computer-aided design, geographic information systems, dynamic geometric software, graphing calculators,

art and music composition software).

Technology Education

Grade 10 - Adopted: 2018

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY / GOAL	Algorithms & Programming
STANDARD / ORGANIZER	Algorithms

EXPECTATION H-AP-07. Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. A prototype is a computational artifact that demonstrates the core functionality of a product or process. Prototypes are useful for getting early feedback in the design process, and can yield insight into the feasibility of a product. The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Students should develop artifacts in response to a task or a computational problem that demonstrate the performance, re-usability, and ease of implementation of an algorithm.

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL	Algorithms & Programming
STANDARD / ORGANIZER	Program Development

EXPECTATION H-AP-08. Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Modules allow for better management of complex tasks. The focus at this level is understanding a program as a system with relationships between modules. The choice of implementation, such as programming language or paradigm, may vary. Students could incorporate computer vision libraries to increase the capabilities of a robot or leverage open-source JavaScript libraries to expand the functionality of a web application.

STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL		Algorithms & Programming
STANDARD / ORGANIZER		Algorithms
EXPECTATION	H-AP-13.	Use and adapt classic algorithms to solve computational problems. Students should be able to identify and use well-known algorithms in sorting (e.g., bubble sort, quicksort, merge sort, insertion sort), searching (e.g., linear search, binary search), and shortest-path (e.g., Dijkstra's algorithm) problems. Students will also be able to adapt and combine such well-known algorithms to add features that address more complex computational tasks.
EXPECTATION	H-AP-14.	Evaluate algorithms in terms of their efficiency, correctness, and clarity. Students should be able to calculate the total number times a loop will be executed given a code snippet, will be able to state whether an algorithm is correct for solving a given problem, and compare/contrast algorithms for clarity and the number of executed operations.
STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL		Algorithms & Programming
STANDARD / ORGANIZER		Program Development

EXPECTATION H-AP-24. Compare multiple programming languages and discuss how their features make them suitable for solving different types of problems. Students should be able to explain the difference between a compiled and scripted programming language, defend a choice of a programming language for a certain computing device and defend a choice of a language (3rd generation versus 4th generation) for solving different types of problems.

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL	Impacts of Computing
ST ANDARD / ORGANIZER	Culture

EXPECTATION

H-IC-07. Demonstrate ways computational design (i.e. algorithms, abstractions and analysis) can apply to problems across disciplines. Computational design can share features across disciplines (i.e. art, music etc.) by translating human intention into an artifact through algorithmic development and the need to solve a problem. Students should be able to demonstrate how these features are shared across disciplines and how real-world problems can be solved using computational methods.

Grade	10	_	Ado	pted:	20	115
0.000			,	proui		

STRAND	Technology – High
CATEGORY/ GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
ST ANDARD / ORGANIZER	Academic Expectations

EXPECTATION

6.1.

H.BI1.AE. Students connect knowledge and experiences from different subject areas.

STRAND		Technology – High
CATEGORY/ GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		Academic Expectations
EXPECTATION	H.BI3.AE. 5.5.	Students use problem-solving processes to develop solutions to relatively complex problems.

EXPECTATION	H.BI3.AE.	Students connect knowledge and experiences from different subject areas.
	6.1.	

STRAND		Technology – High
CATEGORY / GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER		High Enduring Knowledge – Understandings
EXPECTATION	H.BI3.EK. 1.	Technology supports critical thinking skills used in inquiry/problem solving to make informed decisions for independent learning.

STRAND Technology - High

CATEGORY/ GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER	High Skills and Concepts – Research

EXPECTATION H.B 1.6.

H.BI3.SC Express and synthesize digital information collected in research effectively and accurately to produce original work1.6. (e.g., desktop-published or word-processed report, multimedia presentation, engineering design).

STRAND	Technology – High
CATEGORY <i>I</i> GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER	High Skills and Concepts – Inquiry/Problem-solving

EXPECTATION H.B 2.3.

H.BI3.SC Explain how technology can be used for problem solving and creativity (e.g., simulation software, environmental
 2.3. probes, computer-aided design, geographic information systems, dynamic geometric software, graphing calculators, art and music composition software).

Louisiana Academic Standards Mathematics

Grade 9 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.6.	Attend to precision.
TITLE	MP.7.	Look for and make use of structure.
TITLE	MP.8.	Look for and express regularity in repeated reasoning.

STRAND	A1.	Algebra I (A1)
TITLE	A1:F-IF.	Interpreting Functions
PERFORMANC E EXPECTATION	A1:F- IF.B.	Interpret functions that arise in applications in terms of the context.
INDICATOR	A1:F- IF.B.6.	Calculate and interpret the average rate of change of a linear, quadratic, piecewise linear (to include absolute value), and exponential function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

STRAND	A2.	Algebra II (A2)
TITLE	A2:F-IF.	Functions - Interpreting Functions

PERFORMANC E EXPECTATION	A2:F- IF.B.	Interpret functions that arise in applications in terms of the context.
INDICATOR	A2:F- IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Louisiana Academic Standards Mathematics

Grade 10 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.6.	Attend to precision.
TITLE	MP.7.	Look for and make use of structure.
TITLE	MP.8.	Look for and express regularity in repeated reasoning.

STRAND	A1.	Algebra I (A1)
TITLE	A1:F-IF.	Interpreting Functions
PERFORMANC E EXPECTATION	A1:F- IF.B.	Interpret functions that arise in applications in terms of the context.
INDICATOR	A1:F- IF.B.6.	Calculate and interpret the average rate of change of a linear, quadratic, piecewise linear (to include absolute value), and exponential function (presented symbolically or as a table) over a specified interval. Estimate the rate of

STRAND	A2.	Algebra II (A2)
TITLE	A2:F-IF.	Functions - Interpreting Functions
PERFORMANC E EXPECTATION	A2:F- IF.B.	Interpret functions that arise in applications in terms of the context.
INDICATOR	A2:F-	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

change from a graph.

INDICATOR A2:F-IF.B.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Louisiana Academic Standards

Science

Grade 9 - Adopted: 2017

STRAND	LA.SC.ES	Earth Science
TITLE	HS- ESS2.	EARTH'S SYSTEMS

PERFORMANC	HS-	Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems result in
E	ESS2-4.	changes in atmosphere and climate.
EXPECTATION		

PERFORMANC	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
E	ESS2-6.	and biosphere.
EXPECTATION		

STRAND	LA.SC.ES	Earth Science
TITLE	HS- ESS3.	HUMAN SUST AINABILITY
PERFORMANC E EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND	LA.SC.EN S.	Environmental Science
TITLE	HS- EVS1.	RESOURCES AND RESOURCE MANAGEMENT
PERFORMANC E EXPECTATION	HS- EVS1-3.	Analyze and interpret data about the consequences of environmental decisions to determine the risk-benefit values of actions and practices implemented for selected issues.

STRAND	LA.SC.EN S.	Environmental Science
TITLE	HS- ESS2.	EARTH'S SYSTEMS
PERFORMANC E EXPECTATION	HS- ESS2-4.	Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems result in changes in atmosphere and climate.
PERFORMANC E	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

 STRAND
 LA.SC.EN
 Environmental Science

 TITLE
 HS-ESS3.
 HUMAN SUSTAINABILITY

EXPECTATION

PERFORMANC E EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	HS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
PERFORMANC E EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND	LA.SC.EN S.	Environmental Science
TITLE	HS-LS2.	ECOSYSTEMS: INTERACTIONS, ENERGY AND DYNAMICS
PERFORMANC E EXPECTATION	HS-LS2- 1.	Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity, biodiversity and populations of ecosystems at different scales.
PERFORMANC E EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

EXPECTATION

STRAND	LA.SC.LS	Life Science
TITLE	HS-LS2.	ECOSYSTEMS: INTERACTIONS, ENERGY AND DYNAMICS
PERFORMANC E EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
		Louisiana Academic Standards

Science

Grade 10 - Adopted: 2017

TITLE	HS- ESS2.	EARTH'S SYSTEMS
PERFORMANC E EXPECTATION	HS- ESS2-4.	Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems result in changes in atmosphere and climate.
PERFORMANC E EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

STRAND	LA.SC.ES	Earth Science
TITLE	HS- ESS3.	HUMAN SUSTAINABILITY
PERFORMANC E EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND	LA.SC.EN S.	Environmental Science
TITLE	HS- EVS1.	RESOURCES AND RESOURCE MANAGEMENT
PERFORMANC E	HS- EVS1-3.	Analyze and interpret data about the consequences of environmental decisions to determine the risk-benefit values of actions and practices implemented for selected issues.

EXPECTATION

STRAND	LA.SC.EN S.	Environmental Science
TITLE	HS- ESS2.	EARTH'S SYSTEMS
PERFORMANC E EXPECTATION	HS- ESS2-4.	Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems result in changes in atmosphere and climate.
PERFORMANC E EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND	LA.SC.EN S.	Environmental Science

TITLE	HS- ESS3.	HUMAN SUSTAINABILITY
PERFORMANC E EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANC E EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANC E EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANC E EXPECTATION	HS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
PERFORMANC E EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STRAND	LA.SC.EN S.	Environmental Science
TITLE	HS-LS2.	ECOSYSTEMS: INTERACTIONS, ENERGY AND DYNAMICS
PERFORMANC E EXPECTATION	HS-LS2- 1.	Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity, biodiversity and populations of ecosystems at different scales.
PERFORMANC E EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND	LA.SC.LS	Life Science
TITLE	HS-LS2.	ECOSYSTEMS: INTERACTIONS, ENERGY AND DYNAMICS
PERFORMANC E EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

Louisiana Academic Standards Technology Education Grade 9 - Adopted: 2008
TITLE		PreK-12 Educational Technology Content Standards			
PERFORMANC E EXPECTATION	ET.4.	Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.			

STRAND	LA.ET.	Educational Technology
TITLE		Performance Indicators for Grades 9-12
PERFORMANC E EXPECTATION	ET.E.	Identify a complex global issue, develop a systematic plan of investigation, and present a viable solution. (1,2,3,4)

Louisiana Academic Standards Technology Education

Grade 10 - Adopted: 2008

STRAND	LA.ET.	Educational Technology
TITLE		PreK-12 Educational Technology Content Standards
PERFORMANC E EXPECTATION	ET.4.	Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.

STRAND	LA.ET.	Educational Technology
TITLE		Performance Indicators for Grades 9-12
PERFORMANC E	ET.E.	Identify a complex global issue, develop a systematic plan of investigation, and present a viable solution. (1,2,3,4)

EXPECTATION

Maine Learning Results Mathematics

	Grade 9 - Adopted: 2020/Implemented 2020				
STRAND / DOMAIN		Standards for Mathematical Practice			
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.			
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical relationships as they solve problems.			
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.			
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.			

CATEGORY / PERFORMANC E INDICATOR	MP6.	Attend to precision: Students will use precise mathematical language and check their work for accuracy.	
CATEGORY / PERFORMANC E INDICATOR	MP7.	Look for and make use of structure: Students will use their current mathematical understandings to identify patterns and structure to make sense of new learning.	
CATEGORY / PERFORMANC E INDICATOR	MP8.	Look for and express regularity in repeated reasoning: Students will look for patterns and rules to help create general methods and shortcuts that can be applied to similar mathematical problems.	

STRAND / DOMAIN		Algebraic Reasoning – Functions: Interpreting Functions	
CATEGORY / PERFORMANC E INDICATOR	AR.A.13	Interpret functions that arise in applications in terms of the context.	
STANDARD	HSF.IF.B. 6:	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	

Maine Learning Results Mathematics

Grade 10 - Adopted: 2020/Implemented 2020

STRAND / DOMAIN		Standards for Mathematical Practice						
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.						
CATEGORY / PERFORMANC E INDICATOR	MP2.	son abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical tionships as they solve problems.						
CATEGORY / PERFORMANC E INDICATOR	MP3.	nstruct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense the thinking of others.						
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.						
CATEGORY / PERFORMANC E INDICATOR	MP6.	Attend to precision: Students will use precise mathematical language and check their work for accuracy.						
CATEGORY / PERFORMANC E INDICATOR	MP7.	Look for and make use of structure: Students will use their current mathematical understandings to identify pattern and structure to make sense of new learning.						
CATEGORY / PERFORMANC E INDICATOR	MP8.	Look for and express regularity in repeated reasoning: Students will look for patterns and rules to help create general methods and shortcuts that can be applied to similar mathematical problems.						

STRAND / DOMAIN		Algebraic Reasoning – Functions: Interpreting Functions
CATEGORY / PERFORMANC E INDICATOR	AR.A.13	Interpret functions that arise in applications in terms of the context.
STANDARD	HSF.IF.B.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

6:

specified interval. Estimate the rate of change from a graph.

Maine Learning Results

Science

Grade 9 - Adopted: 2019

STRAND / DOMAIN	NGSS.HS -PS.	PHYSICAL SCIENCE	
CATEGORY / PERFORMANC E INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer	
STANDARD		Students who demonstrate understanding can:	

EXPECTATION

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.
 2.

STRAND / NGSS.HS LIFE SCIENCE DOMAIN LS. HS-LS2. Ecosystems: Interactions, Energy, and Dynamics CATEGORY/ PERFORMANC E INDICATOR **STANDARD** Students who demonstrate understanding can: **EXPECTATION** HS-LS2-Use mathematical representations to support and revise explanations based on evidence about factors affecting 2. biodiversity and populations in ecosystems of different scales. EXPECTATION HS-LS2- Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in 4. an ecosystem. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the **EXPECTATION** HS-LS2-5. biosphere, atmosphere, hydrosphere, and geosphere. HS-LS2-Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and **EXPECTATION** 7. biodiversity.

STRAND / DOMAIN	NGSS.HS -LS.				
CATEGORY / PERFORMANC E INDICATOR	HS-LS4.	Biological Evolution: Unity and Diversity			
STANDARD		Students who demonstrate understanding can:			
EXPECTATION	HS-LS4-	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.			

	_	
0		
h		
v		

or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodivers

|--|

CATEGORY / PERFORMANC E INDICATOR	HS- ESS2.	Earth's Systems
STANDARD		Students who demonstrate understanding can:
EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / DOMAIN	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
CATEGORY / PERFORMANC E INDICATOR	HS- ESS3.	Earth and Human Activity
STANDARD		Students who demonstrate understanding can:
EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STRAND / DOMAIN	NGSS.HS -ETS.	ENGINEERING DESIGN
CATEGORY / PERFORMANC E INDICATOR	HS- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Maine Learning Results Science Grade 10 - Adopted: 2019
STRAND / DOMAIN	NGSS.HS -PS.	PHYSICAL SCIENCE

PERFORMANC E INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
STANDARD		Students who demonstrate understanding can:
EXPECTATION	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.
STRAND / DOMAIN	NGSS.HS -LS.	LIFE SCIENCE
CATEGORY / PERFORMANC E INDICATOR	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
STANDARD		Students who demonstrate understanding can:
EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND / DOMAIN	NGSS.HS -LS.	
STRAND / DOMAIN CATEGORY / PERFORMANC E INDICATOR	NGSS.HS -LS. HS-LS4.	LIFE SCIENCE Biological Evolution: Unity and Diversity
STRAND / DOMAIN CATEGORY / PERFORMANC E INDICATOR STANDARD	NGSS.HS -LS. HS-LS4.	LIFE SCIENCE Biological Evolution: Unity and Diversity Students who demonstrate understanding can:
STRAND / DOMAIN CATEGORY / PERFORMANC E INDICATOR STANDARD EXPECTATION	NGSS.HS -LS. HS-LS4. HS-LS4- 6.	LIFE SCIENCE Biological Evolution: Unity and Diversity Students who demonstrate understanding can: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STRAND / DOMAIN CATEGORY / PERFORMANC E INDICAT OR ST ANDARD EXPECTATION	NGSS.HS -LS. HS-LS4. HS-LS4- 6. NGSS.HS -ESS.	LIFE SCIENCE Biological Evolution: Unity and Diversity Students who demonstrate understanding can: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. EARTH AND SPACE SCIENCE
STRAND / DOMAIN CATEGORY / PERFORMANC E INDICATOR STANDARD EXPECTATION STRAND / DOMAIN CATEGORY / PERFORMANC E INDICATOR	NGSS.HS -LS. HS-LS4. HS-LS4- 6. NGSS.HS -ESS. HS- ESS2.	LIFE SCIENCE Biological Evolution: Unity and Diversity Students who demonstrate understanding can: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. EARTH AND SPACE SCIENCE Earth's Systems
STRAND / DOMAIN CATEGORY / PERFORMANC E INDICATOR ST ANDARD EXPECTATION STRAND / DOMAIN CATEGORY / PERFORMANC E INDICATOR ST ANDARD	NGSS.HS -LS. HS-LS4. HS-LS4- 6. NGSS.HS -ESS. HS- ESS2.	LIFE SCIENCE Biological Evolution: Unity and Diversity Students who demonstrate understanding can: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. EARTH AND SPACE SCIENCE Earth's Systems Students who demonstrate understanding can:
STRAND / DOMAIN CAT EGORY / PERFORMANC E INDICATOR ST ANDARD EXPECTATION ST RAND / DOMAIN CAT EGORY / PERFORMANC E INDICATOR ST ANDARD EXPECTATION	NGSS.HS -LS. HS-LS4. 6. NGSS.HS -ESS. HS- ESS2. HS- ESS2-4.	LIFE SCIENCE Biological Evolution: Unity and Diversity Students who demonstrate understanding can: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. EARTH AND SPACE SCIENCE Earth's Systems Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STRAND / DOMAINCAT EGORY / PERFORMANC E INDICAT ORST ANDARDEXPECTATIONST RAND / DOMAINCAT EGORY / PERFORMANC E INDICAT ORST ANDARDEXPECTATIONEXPECTATIONEXPECTATION	NGSS.HS -LS. HS-LS4. 6. NGSS.HS -ESS. HS- ESS2. HS- ESS2-4. HS- ESS2-6.	LIFE SCIENCE Biological Evolution: Unity and Diversity Students who demonstrate understanding can: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. EARTH AND SPACE SCIENCE Earth's Systems Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

CATEGORY / PERFORMANC E INDICATOR	HS- ESS3.	Earth and Human Activity
STANDARD		Students who demonstrate understanding can:
EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / DOMAIN	NGSS.HS -ETS.	ENGINEERING DESIGN
CATEGORY / PERFORMANC E INDICATOR	HS- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Maryland College and Career-Ready Standards

Mathematics

		Grade 9 - Adopted: 2010
STRAND / TOPIC / STANDARD		Algebra 1
TOPIC / INDICATOR	HSF.IF.	Interpreting Functions
INDICATOR / PROFICIENCY LEVEL	HSF.IF. B.	Interpret functions that arise in applications in terms of the context

OBJECTIVEHSF.IF.B.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a6.specified interval. Estimate the rate of change from a graph.

STRAND / TOPIC / STANDARD		Algebra 2
TOPIC / INDICATOR	HSF.IF.	Interpreting Functions

INDICATOR / HS PROFICIENCY B. LEVEL	HSF.IF. 3.	Interpret functions that arise in applications in terms of the context
---	---------------	--

OBJECTIVE

6.

HSF.IF.B. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Maryland College and Career-Ready Standards

Mathematics

Grade 10 - Adopted: 2010

STRAND / TOPIC / STANDARD		Algebra 1
TOPIC / INDICATOR	HSF.IF.	Interpreting Functions
INDICATOR / PROFICIENCY LEVEL	HSF.IF. B.	Interpret functions that arise in applications in terms of the context

OBJECTIVE

HSF.IF.B. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. 6.

STRAND / TOPIC / STANDARD		Algebra 2
TOPIC / INDICATOR	HSF.IF.	Interpreting Functions
INDICATOR / PROFICIENCY LEVEL	HSF.IF. B.	Interpret functions that arise in applications in terms of the context
OBJECTIVE	HSF.IF.B.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

6. specified interval. Estimate the rate of change from a graph.

Maryland College and Career-Ready Standards

Science

Grade 9 - Adopted: 2013

STRAND / TOPIC / STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
TOPIC / INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

2.

STRAND / TOPIC / STANDARD	NGSS.HS -LS.	LIFE SCIENCE
TOPIC / INDICATOR	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
OBJECTIVE	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
OBJECTIVE	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
OBJECTIVE	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND / TOPIC / STANDARD	NGSS.HS -LS.	LIFE SCIENCE
TOPIC / INDICATOR	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STRAND / TOPIC / STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	HS- ESS2.	Earth's Systems
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
OBJECTIVE	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / TOPIC / STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	HS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
OBJECTIVE	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

OBJECTIVE	HS-	Create a computational simulation to illustrate the relationships among management of natural resources, the
	ESS3-3.	sustainability of human populations, and biodiversity.

OBJECTIVE

HS-Use a computational representation to illustrate the relationships among Earth systems and how those relationships ESS3-6. are being modified due to human activity.

STRAND / TOPIC / STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	HS- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
OBJECTIVE	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
OBJECTIVE	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Maryland College and Career-Ready Standards

Science

Grade 10 - Adopted: 2013

STRAND / TOPIC / STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
TOPIC / INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. 2.

STRAND / TOPIC / STANDARD	NGSS.HS -LS.	LIFE SCIENCE
TOPIC / INDICATOR	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
OBJECTIVE	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

OBJECTIVE	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
OBJECTIVE	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND / TOPIC / STANDARD	NGSS.HS -LS.	LIFE SCIENCE

TOPIC / INDICATOR	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE

6.

HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

STRAND / TOPIC / STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	HS- ESS2.	Earth's Systems
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

OBJECTIVE	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
	ESS2-6.	and biosphere.

STRAND / TOPIC / STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	HS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
OBJECTIVE	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
OBJECTIVE	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
OBJECTIVE	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / TOPIC / STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	HS- ETS1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
OBJECTIVE	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
OBJECTIVE	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Maryland College and Career-Ready Standards

Technology Education

Grade 9 - Adopted: 2018

STRAND / TOPIC / STANDARD		Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR		Concept: Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL		Subconcept: Algorithms
OBJECTIVE	10.AP.A. 01.	Develop prototypes that use algorithms (e.g., sequencing, selection, iteration, recursion, etc.) to solve computational problems by leveraging prior student knowledge and personal interest.

OBJECTIVE	10
	02.

10.AP.A. Design and implement an algorithm to play a game against a human opponent or solve a problem.

STRAND / TOPIC / STANDARD		Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR		Concept: Impacts of Computing
INDICATOR / PROFICIENCY LEVEL		Subconcept: Culture and Diversity
OBJECTIVE	10.IC.C.0 3.	Demonstrate and explain how an existing algorithm/computational Innovation applies to problems across disciplines.

OBJECTIVE

10.IC.C.0 Demonstrate and explain how an existing algorithm applies to problems in society.

4.

Grade 9 - Adopted: 2016

TOPIC / INDICATOR	Standard One: The Nature of Technology – Students will develop an understanding of the nature of technology.
INDICATOR / PROFICIENCY LEVEL	1. The characteristics and scope of technology. This includes but is not limited to how products and systems are developed to solve problems, how demand is created for a product by marketing and advertising, and how goal-directed research can result in invention and innovation. 2. The core concepts of technology. This includes but is not limited to systems, resources, requirements, optimization, trade-offs, processes, and controls. 3. The connections between technology and other fields of study. This includes understanding how technological systems interact with each other, how technology can be repurposed, how other fields of study can impact technological products, and how technological ideas are protected.
OBJECTIVE	Core Concepts of Technology
EXPECTATION	Employ constraint-based modeling to describe a biological system.
EXPECTATION	Demonstrate how trade-offs can impact a design product.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard One: The Nature of Technology – Students will develop an understanding of the nature of technology.
INDICATOR / PROFICIENCY LEVEL	1. The characteristics and scope of technology. This includes but is not limited to how products and systems are developed to solve problems, how demand is created for a product by marketing and advertising, and how goal-directed research can result in invention and innovation. 2. The core concepts of technology. This includes but is not limited to systems, resources, requirements, optimization, trade-offs, processes, and controls. 3. The connections between technology and other fields of study. This includes understanding how technological systems interact with each other, how technology can be repurposed, how other fields of study can impact technological products, and how technological ideas are protected.
OBJECTIVE	Connections Between Technology and Other Fields of Study
EXPECTATION	Correlate technological advances to progress in other fields of study such as science and mathematics (STL, 3J).
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE	Apply design principles (e.g. flexibility, balance, function, proportion) to evaluate existing designs, to collect data, and to guide the design process (STL, 9I).
OBJECTIVE	Evaluate design solutions using software and other tools to develop conceptual, physical, and mathematical models at various intervals of the design process in order to ensure compliance with design requirements (STL, 11P).
OBJECTIVE	Assess how design requirements such as criteria, constraints, and efficiency can compete with each other (STL, 8K).
OBJECTIVE	Identify the capital and other resources needed to develop solutions to problems.
OBJECTIVE	Apply the research and development problem-solving approach to prepare devices and systems for the marketplace.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12

TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Apply knowledge of core technologies in the development of solutions to problems.
OBJECTIVE	Manufacturing Technologies

EXPECTATION

Create machine code to manufacture a product.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Apply knowledge of core technologies in the development of solutions to problems.
OBJECTIVE	Construction Technologies

EXPECTATION

Design and create models of a variety of structures.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard Five: Computational Thinking and Computer Science Applications – Students will be able to apply computational thinking skills and computer science applications as tools to develop solutions to engineering problems.
INDICATOR / PROFICIENCY LEVEL	Automate solutions through algorithmic thinking.

Maryland College and Career-Ready Standards

Technology Education Grade 10 - Adopted: 2018

STRAND / TOPIC / STANDARD		Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR		Concept: Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL		Subconcept: Algorithms
OBJECTIVE	10.AP.A. 01.	Develop prototypes that use algorithms (e.g., sequencing, selection, iteration, recursion, etc.) to solve computational problems by leveraging prior student knowledge and personal interest.

OBJECTIVE 10.AP.A. Design and implement an algorithm to play a game against a human opponent or solve a problem. 02.

STRAND / TOPIC / STANDARD		Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR		Concept: Impacts of Computing
INDICATOR / PROFICIENCY LEVEL		Subconcept: Culture and Diversity
OBJECTIVE	10.IC.C.0 3.	Demonstrate and explain how an existing algorithm/computational Innovation applies to problems across disciplines.
OBJECTIVE	10.IC.C.0 4.	Demonstrate and explain how an existing algorithm applies to problems in society.
		Grade 10 - Adopted: 2016
STRAND / TOPIC / STANDARD		Maryland Technology Education Standards: Advanced Technology Grades 10-12
TOPIC / INDICATOR		Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL		Apply knowledge of core technologies in the development of solutions to problems.
OBJECTIVE		Agricultural Technologies
EXPECTATION		Explore sustainable farming practices.
STRAND / TOPIC / STANDARD		Maryland Technology Education Standards: Advanced Technology Grades 10-12
TOPIC / INDICATOR		Standard Five: Computational Thinking and Computer Science Applications – Students will be able to apply computational thinking skills and computer science applications as tools to develop solutions to engineering problems.
INDICATOR / PROFICIENCY LEVEL		Analyze and/or design algorithms necessary for developing solutions to problems.
STRAND / TOPIC / STANDARD		Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR		Standard One: The Nature of Technology – Students will develop an understanding of the nature of technology.
INDICATOR / PROFICIENCY LEVEL		1. The characteristics and scope of technology. This includes but is not limited to how products and systems are developed to solve problems, how demand is created for a product by marketing and advertising, and how goal-directed research can result in invention and innovation. 2. The core concepts of technology. This includes but is not limited to systems, resources, requirements, optimization, trade-offs, processes, and controls. 3. The connections between technology and other fields of study. This includes understanding how technological systems interact with each other, how technology can be repurposed, how other fields of study can impact technological products, and how technological ideas are protected.
OBJECTIVE		Core Concepts of Technology

Employ constraint-based modeling to describe a biological system.

EXPECTATION	Demonstrate how trade-offs can impact a design product.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard One: The Nature of Technology – Students will develop an understanding of the nature of technology.
INDICATOR / PROFICIENCY LEVEL	1. The characteristics and scope of technology. This includes but is not limited to how products and systems are developed to solve problems, how demand is created for a product by marketing and advertising, and how goal-directed research can result in invention and innovation. 2. The core concepts of technology. This includes but is not limited to systems, resources, requirements, optimization, trade-offs, processes, and controls. 3. The connections between technology and other fields of study. This includes understanding how technological systems interact with each other, how technology can be repurposed, how other fields of study can impact technological products, and how technological ideas are protected.
OBJECTIVE	Connections Between Technology and Other Fields of Study
EXPECTATION	Correlate technological advances to progress in other fields of study such as science and mathematics (STL, 3J).
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE	Apply design principles (e.g. flexibility, balance, function, proportion) to evaluate existing designs, to collect data, and to guide the design process (STL, 9I).
OBJECTIVE	Evaluate design solutions using software and other tools to develop conceptual, physical, and mathematical models at various intervals of the design process in order to ensure compliance with design requirements (STL, 11P).
OBJECTIVE	Assess how design requirements such as criteria, constraints, and efficiency can compete with each other (STL, 8K).
OBJECTIVE	Identify the capital and other resources needed to develop solutions to problems.
OBJECTIVE	Apply the research and development problem-solving approach to prepare devices and systems for the marketplace.
ST RAND / TOPIC / ST ANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Apply knowledge of core technologies in the development of solutions to problems.
OBJECTIVE	Manufacturing Technologies

EXPECTATION

Create machine code to manufacture a product.

ST RAND / T OPIC / ST ANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Apply knowledge of core technologies in the development of solutions to problems.
OBJECTIVE	Construction Technologies

EXPECTATION

Design and create models of a variety of structures.

Automate solutions through algorithmic thinking.

TOPIC / STANDARD	Maryland Technology Education Standards: Grades 9-12
TOPIC / INDICATOR	Standard Five: Computational Thinking and Computer Science Applications – Students will be able to apply computational thinking skills and computer science applications as tools to develop solutions to engineering problems.

INDICATOR / PROFICIENCY LEVEL

SKILL

Massachusetts Curriculum Frameworks Mathematics

Grade 9 - Adopted: 2017

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.
STRAND	MP.8.	Look for and express regularity in repeated reasoning.
FOCUS / COURSE	MA.CC.	High School Content Standards by Conceptual Categories
STRAND	F-IF.	Functions Overview - Interpreting Functions
STANDARD / CONCEPT /	F-IF.B.	Interpret functions that arise in applications in terms of the context (linear, quadratic, exponential, rational, polynomial, square root, cube root, trigonometric, logarithmic).

INDICATOR

F-IF.B.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

FOCUS / COURSE	MA.CC.	High School Content Standards by Conceptual Categories
STRAND	F-IF.	Functions Overview - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	F-IF.C.	Analyze functions using different representations.

INDICATOR F-IF.C.9. Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one polynomial function (including quadratic functions) and an algebraic expression for another, say which has the larger/smaller relative maximum and/or minimum.

FOCUS / COURSE	MA.AI.	Model Algebra I Content Standards [Al]
STRAND	AI.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	AI.F- IF.B.	Interpret linear, quadratic, and exponential functions with integer exponents that arise in applications in terms of the context.

INDICATOR AI.F-Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a IF.B.6. specified interval. Estimate the rate of change from a graph.

FOCUS / COURSE	MA.AII.	Model Algebra II Content Standards [All]
STRAND	AII.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	AII.F- IF.B.	Interpret functions that arise in applications in terms of the context (polynomial, rational, square root and cube root, trigonometric, and logarithmic functions).

INDICATOR All.F-Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a IF.B.6. specified interval. Estimate the rate of change from a graph.

FOCUS / COURSE	MA.AII.	Model Algebra II Content Standards [All]
STRAND	AII.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	AII.F- IF.C.	Analyze functions using different representations.
INDICATOR	All.F-	Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal

INDICATOR

IF.C.9.

Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one polynomial function and an algebraic expression for another, say which has the larger relative maximum and/or smaller relative minimum.

FOCUS / COURSE	MA.MI.	Model Mathematics I Content Standards [MI]
STRAND	MI.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	MI.F- IF.B.	Interpret linear and exponential functions having integer exponents that arise in applications in terms of the context.

INDICATOR MI.F-Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a IF.B.6. specified interval. Estimate the rate of change from a graph. FOCUS / MA.MI. Model Mathematics I Content Standards [MI] COURSE STRAND MI.F-IF. **Functions - Interpreting Functions**

STANDARD / CONCEPT / SKILL	MI.F- IF.C.	Analyze functions using different representations.

INDICATOR

MI.F-

Translate among different representations of functions: (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph IF.C.9. of one exponential function and an algebraic expression for another, say which has the larger y-intercept.

FOCUS / COURSE	MA.MII.	Model Mathematics II Content Standards [MII]
STRAND	MII.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	MII.F- IF.B.	Interpret quadratic and exponential functions with integer exponents that arise in applications in terms of the context.
INDICATOR	MII.F- IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
FOCUS / COURSE	MA.MII.	Model Mathematics II Content Standards [MII]
STRAND	MII.F-IF.	Functions - Interpreting Functions
STANDARD / CONCEPT / SKILL	MII.F- IF.C.9.	Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
FOCUS / COURSE	MA.MIII.	Model Mathematics III Content Standards [MIII]
STRAND	MIII.F-IF.	Functions - Interpreting Functions
STANDARD / CONCEPT / SKILL	MIII.F- IF.B.	Interpret functions that arise in applications in terms of the context (rational, polynomial, square root, cube root, trigonometric, logarithmic).
INDICATOR	MIII.F- IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
FOCUS / COURSE	MA.MIII.	Model Mathematics III Content Standards [MIII]
STRAND	MIII.F-IF.	Functions - Interpreting Functions
STANDARD / CONCEPT /	MIII.F- IF.C.	Analyze functions using different representations.

INDICATOR

MIII.F-

IF.C.9.

SKILL

Translate among different representations of functions: (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one polynomial function and an algebraic expression for another, say which has the larger relative maximum and/or smaller relative minimum.

Massachusetts Curriculum Frameworks

Mathematics

Grade 10 - Adopted: 2017

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.
STRAND	MP.8.	Look for and express regularity in repeated reasoning.
FOCUS / COURSE	MA.CC.	High School Content Standards by Conceptual Categories
STRAND	F-IF.	Functions Overview - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	F-IF.B.	Interpret functions that arise in applications in terms of the context (linear, quadratic, exponential, rational, polynomial, square root, cube root, trigonometric, logarithmic).
INDICATOR	F-IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
FOCUS / COURSE	MA.CC.	High School Content Standards by Conceptual Categories
STRAND	F-IF.	Functions Overview - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	F-IF.C.	Analyze functions using different representations.
INDICATOR	F-IF.C.9.	Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one polynomial function (including quadratic functions) and an algebraic expression for another, say which has the larger/smaller relative maximum and/or minimum.
FOCUS / COURSE	MA.AI.	Model Algebra I Content Standards [Al]
STRAND	AI.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	AI.F- IF.B.	Interpret linear, quadratic, and exponential functions with integer exponents that arise in applications in terms of the context.
INDICATOR	AI.F- IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

FOCUS / COURSE	MA.AII.	Model Algebra II Content Standards [All]
STRAND	AII.F-IF.	Functions - Interpreting Functions
STANDARD / CONCEPT / SKILL	AII.F- IF.B.	Interpret functions that arise in applications in terms of the context (polynomial, rational, square root and cube root, trigonometric, and logarithmic functions).

INDICATOR

All.F- Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a IF.B.6. specified interval. Estimate the rate of change from a graph.

FOCUS / COURSE	MA.AII.	Model Algebra II Content Standards [All]
STRAND	AII.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	AII.F- IF.C.	Analyze functions using different representations.

INDICATOR

All.F- Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one polynomial function and an algebraic expression for another, say which has the larger relative maximum and/or smaller relative minimum.

FOCUS / COURSE	MA.MI.	Model Mathematics I Content Standards [MI]
STRAND	MI.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	MI.F- IF.B.	Interpret linear and exponential functions having integer exponents that arise in applications in terms of the context.

INDICATORMI.F-
IF.B.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
specified interval. Estimate the rate of change from a graph.

FOCUS / COURSE	MA.MI.	Model Mathematics I Content Standards [MI]
STRAND	MI.F-IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT / SKILL	MI.F- IF.C.	Analyze functions using different representations.

 INDICATOR
 MI.F Translate among different representations of functions: (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one exponential function and an algebraic expression for another, say which has the larger y-intercept.

FOCUS / COURSE	MA.MII.	Model Mathematics II Content Standards [MII]
STRAND	MII.F-IF.	Functions - Interpreting Functions
STANDARD / CONCEPT / SKILL	MII.F- IF.B.	Interpret quadratic and exponential functions with integer exponents that arise in applications in terms of the context.
INDICATOR	MII.F- IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

FOCUS / COURSE	MA.MII.	Model Mathematics II Content Standards [MII]
STRAND	MII.F-IF.	Functions - Interpreting Functions
STANDARD / CONCEPT /	MII.F- IF.C.9.	Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph

FOCUS /
COURSEMA.MII.Model Mathematics III Content Standards [MIII]ST RANDMIII.F-IF.Functions - Interpreting FunctionsST ANDARD /
CONCEPT /
SKILLMIII.F-
IF.B.Interpret functions that arise in applications in terms of the context (rational, polynomial, square
root, cube root, trigonometric, logarithmic).

INDICATOR

MIII.F-IF.B.6.

SKILL

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

of one quadratic function and an algebraic expression for another, say which has the larger maximum.

FOCUS / COURSE	MA.MIII.	Model Mathematics III Content Standards [MIII]
STRAND	MIII.F-IF.	Functions - Interpreting Functions
STANDARD / CONCEPT / SKILL	MIII.F- IF.C.	Analyze functions using different representations.
INDICATOR	MIII.F-	Translate among different representations of functions: (algebraically, graphically, numerically in tables, or by verbal

INDICATOR MIII.F-IF.C.9.

Translate among different representations of functions: (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way. For example, given a graph of one polynomial function and an algebraic expression for another, say which has the larger relative maximum and/or smaller relative minimum.

Massachusetts Curriculum Frameworks Science

Grade 9 - Adopted: 2016 FOCUSI MA.HS-High School Earth and Space Science COURSE ESS. ESS2. STRAND Earth's Systems HS-Use a model to describe how variations in the flow of energy into and out of Earth's systems over different time STANDARD / scales result in changes in climate. Analyze and interpret data to explain that long-term changes in Earth's tilt and CONCEPT / ESS2-4. SKILL orbit result in cycles of climate change such as Ice Ages. STANDARD / HS-Use a model to describe cycling of carbon through the ocean, atmosphere, soil, and biosphere and how increases in carbon dioxide concentrations due to human activity have resulted in atmospheric and climate changes. CONCEPT / ESS2-6. SKILL

FOCUS / COURSE	MA.HS- ESS.	High School Earth and Space Science
STRAND	ESS3.	Earth and Human Activity
STANDARD / CONCEPT / SKILL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of key natural resources and changes due to variations in climate have influenced human activity.

STANDARD /HS-Illustrate relationships among management of natural resources, the sustainability of human populations, andCONCEPT /ESS3-3.biodiversity.SKILL

FOCUS / COURSE	MA.HS- LS.	High School Biology
STRAND	LS2.	Ecosystems: Interactions, Energy, and Dynamics
STANDARD / CONCEPT / SKILL	HS-LS2- 2.	Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem.
STANDARD / CONCEPT / SKILL	HS-LS2- 5.	Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere.
STANDARD / CONCEPT / SKILL	HS-LS2- 7.	Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.
FOCUS / COURSE	MA.HS- ETS.	High School Technology/Engineering
STRAND	ETS1.	Engineering Design
STANDARD / CONCEPT / SKILL	HS- ETS1-1.	Analyze a major global challenge to specify a design problem that can be improved. Determine necessary qualitative and quantitative criteria and constraints for solutions, including any requirements set by society.
STANDARD / CONCEPT / SKILL	HS- ETS1-2.	Break a complex real-world problem into smaller, more manageable problems that each can be solved using scientific and engineering principles.
STANDARD / CONCEPT / SKILL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, aesthetics, and maintenance, as well as social, cultural, and environmental impacts.
STANDARD / CONCEPT / SKILL	HS- ETS1- 6(MA).	Document and present solutions that include specifications, performance results, successes and remaining issues, and limitations.
		Grade 9 - Adopted: 2010
FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Key Ideas and Details
STANDARD / CONCEPT / SKILL	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD / CONCEPT / SKILL	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.

FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Craft and Structure
STANDARD / CONCEPT / SKILL	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.

STANDARD /	RST.9-	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
CONCEPT /	10.5.	force, friction, reaction force, energy).
SKILL		

FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Integration of Knowledge and Ideas
STANDARD / CONCEPT / SKILL	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Range of Reading and Level of Text Complexity
STANDARD / CONCEPT / SKILL	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

FOCUS / COURSE	MA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
STRAND		Text Types and Purposes
ST ANDARD / CONCEPT / SKILL	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.

FOCUS / COURSE	MA.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
STRAND		Production and Distribution of Writing
STANDARD / CONCEPT / SKILL	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPT / SKILL	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Massachusetts Curriculum Frameworks Science Grade 10 - Adopted: 2016

FOCUS / COURSE	MA.HS- ESS.	High School Earth and Space Science
STRAND	ESS2.	Earth's Systems
STANDARD / CONCEPT / SKILL	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems over different time scales result in changes in climate. Analyze and interpret data to explain that long-term changes in Earth's tilt and orbit result in cycles of climate change such as Ice Ages.
STANDARD / CONCEPT / SKILL	HS- ESS2-6.	Use a model to describe cycling of carbon through the ocean, atmosphere, soil, and biosphere and how increases in carbon dioxide concentrations due to human activity have resulted in atmospheric and climate changes.
FOCUS / COURSE	MA.HS- ESS.	High School Earth and Space Science
STRAND	ESS3.	Earth and Human Activity
STANDARD / CONCEPT / SKILL	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of key natural resources and changes due to variations in climate have influenced human activity.
STANDARD / CONCEPT / SKILL	HS- ESS3-3.	Illustrate relationships among management of natural resources, the sustainability of human populations, and biodiversity.
FOCUS / COURSE	MA.HS- LS.	High School Biology
STRAND	LS2.	Ecosystems: Interactions, Energy, and Dynamics
STANDARD / CONCEPT / SKILL	HS-LS2- 2.	Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem.
STANDARD / CONCEPT / SKILL	HS-LS2- 5.	Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere.
STANDARD / CONCEPT / SKILL	HS-LS2- 7.	Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.
FOCUS / COURSE	MA.HS- ETS.	High School Technology/Engineering
STRAND	ET S1.	Engineering Design
STANDARD / CONCEPT / SKILL	HS- ETS1-1.	Analyze a major global challenge to specify a design problem that can be improved. Determine necessary qualitative and quantitative criteria and constraints for solutions, including any requirements set by society.
STANDARD / CONCEPT / SKILL	HS- ETS1-2.	Break a complex real-world problem into smaller, more manageable problems that each can be solved using scientific and engineering principles.

STANDARD / CONCEPT / SKILL	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, aesthetics, and maintenance, as well as social, cultural, and environmental impacts.
STANDARD / CONCEPT / SKILL	HS- ETS1- 6(MA).	Document and present solutions that include specifications, performance results, successes and remaining issues, and limitations.
		Grade 10 - Adopted: 2010
FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Key Ideas and Details
STANDARD / CONCEPT / SKILL	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD / CONCEPT / SKILL	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Craft and Structure
STANDARD / CONCEPT / SKILL	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
STANDARD / CONCEPT / SKILL	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Integration of Knowledge and Ideas
STANDARD / CONCEPT / SKILL	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
FOCUS / COURSE	MA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Range of Reading and Level of Text Complexity
STANDARD / CONCEPT / SKILL	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
FOCUS / COURSE	MA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects

STRAND

Text Types and Purposes

STANDARD / CONCEPT / SKILL	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.

FOCUS / COURSE	MA.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
STRAND		Production and Distribution of Writing
STANDARD / CONCEPT / SKILL	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
	MUCTO	

STANDARD /	WHST.9-	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking
CONCEPT /	10.6.	advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
SKILL		

Massachusetts Curriculum Frameworks

Technology Education

Grade 9 - Adopted: 2016

FOCUS / COURSE	MA.9- 12.CT.	Grades 9 – 12: Computational Thinking (CT)
STRAND	9- 12.CT.b.	Algorithms
STANDARD / CONCEPT / SKILL	9- 12.CT.b.1.	Recognize that the design of an algorithm is distinct from its expression in a programming language.
STANDARD / CONCEPT / SKILL	9- 12.CT.b.5.	Explain that there are some problems which cannot be computationally solved.

Massachusetts Curriculum Frameworks Technology Education

Grade 10 - Adopted: 2016

FOCUS / COURSE	MA.9- 12.CT.	Grades 9 – 12: Computational Thinking (CT)
STRAND	9- 12.CT.b.	Algorithms
STANDARD / CONCEPT / SKILL	9- 12.CT.b.1.	Recognize that the design of an algorithm is distinct from its expression in a programming language.
STANDARD / CONCEPT / SKILL	9- 12.CT.b.5.	Explain that there are some problems which cannot be computationally solved.

Michigan Academic Standards Mathematics Grade 9 - Adopted: 2010

STRAND / STANDARD CATEGORY	MI.CC.MP	Mathematical Practices
STANDARD	MP-1.	Make sense of problems and persevere in solving them.
STANDARD	MP-2.	Reason abstractly and quantitatively.
STANDARD	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP-4.	Model with mathematics.
STANDARD	MP-6.	Attend to precision.
STANDARD	MP-7.	Look for and make use of structure.
STANDARD	MP-8.	Look for and express regularity in repeated reasoning.
STRAND / STANDARD CATEGORY	MI.CC.F.	Functions
STANDARD	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION		Interpret functions that arise in applications in terms of the context.
EXPECTATION	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Michigan Academic Standards

Mathematics

Grade 10 - Adopted: 2010

STRAND / STANDARD CATEGORY	MI.CC.MP	Mathematical Practices
STANDARD	MP-1.	Make sense of problems and persevere in solving them.
STANDARD	MP-2.	Reason abstractly and quantitatively.
STANDARD	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP-4.	Model with mathematics.
STANDARD	MP-6.	Attend to precision.
STANDARD	MP-7.	Look for and make use of structure.
STANDARD	MP-8.	Look for and express regularity in repeated reasoning.

STRAND / STANDARD CATEGORY	MI.CC.F.	Functions
STANDARD	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION		Interpret functions that arise in applications in terms of the context.
EXPECTATION	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
		Michigan Academic Standards Science Grade 9 - Adopted: 2015
STRAND / STANDARD CATEGORY	MI.SC.5.	Waves and Electromagnetic Radiation
STANDARD	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.
STRAND / STANDARD CATEGORY	MI.SC.7.	Matter and Energy in Organisms and Ecosystems
STANDARD	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STRAND / STANDARD CATEGORY	MI.SC.8.	Matter and Energy in Organisms and Ecosystems (cont.)
STANDARD	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
STRAND / STANDARD CATEGORY	MI.SC.9.	Interdependent Relationships in Ecosystems
STANDARD	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STANDARD	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STANDARD	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STRAND / STANDARD CATEGORY	MI.SC.15.	Earth's Systems
STANDARD	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

STRAND / STANDARD CATEGORY	MI.SC.16.	Weather and Climate
STANDARD	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STRAND / STANDARD CATEGORY	MI.SC.17.	Human Sustainability
STANDARD	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STANDARD	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
STANDARD	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
STANDARD	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STRAND / STANDARD CATEGORY	MI.SC.18.	Engineering Design
STANDARD	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
STANDARD	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
STANDARD	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 9 - Adopted: 2010
STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
GRADE LEVEL EXPECTATION	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Craft and Structure

GRADE LEVEL EXPECTATION	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
GRADE LEVEL EXPECTATION	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STRAND / STANDARD CATEGORY	MI.WHST. 9-10.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND / STANDARD CATEGORY	MI.WHST. 9-10.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Michigan Academic Standards
		Science Grade 10 - Adopted: 2015
STRAND / STANDARD CATEGORY	MI.SC.5.	Waves and Electromagnetic Radiation
STANDARD	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.

STRAND / STANDARD CATEGORY	MI.SC.7.	Matter and Energy in Organisms and Ecosystems
STANDARD	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STRAND / STANDARD CATEGORY	MI.SC.8.	Matter and Energy in Organisms and Ecosystems (cont.)
STANDARD	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
STRAND / STANDARD CATEGORY	MI.SC.9.	Interdependent Relationships in Ecosystems
STANDARD	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STANDARD	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STANDARD	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STRAND / STANDARD CATEGORY	MI.SC.15.	Earth's Systems
STANDARD	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / STANDARD CATEGORY	MI.SC.16.	Weather and Climate
STANDARD	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STRAND / STANDARD CATEGORY	MI.SC.17.	Human Sustainability
STANDARD	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STANDARD	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
STANDARD	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
STANDARD	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / STANDARD CATEGORY	MI.SC.18.	Engineering Design
STANDARD	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
STANDARD	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
STANDARD	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and

environmental impacts.

Grade 10 - Adopted: 2010			
STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects	
STANDARD		Key Ideas and Details	
GRADE LEVEL EXPECTATION	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.	
GRADE LEVEL EXPECTATION	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.	
STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects	
STANDARD		Craft and Structure	
GRADE LEVEL EXPECTATION	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.	
GRADE LEVEL EXPECTATION	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).	
STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects	
STANDARD		Integration of Knowledge and Ideas	
GRADE LEVEL EXPECTATION	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.	

STRAND / STANDARD CATEGORY	MI.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

STRAND / STANDARD CATEGORY	MI.WHST. 9-10.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND / STANDARD CATEGORY	MI.WHST. 9-10.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Michigan Academic Standards Technology Education Grade 9 - Adopted: 2017
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	MITECS. 3.d.	Build knowledge by actively exploring realworld issues and problems, developing ideas and theories, and pursuing answers and solutions.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	MITECS. 4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GRADE LEVEL EXPECTATION	MITECS. 4.c.	Develop, test, and refine prototypes as part of a cyclical design process.
GRADE LEVEL EXPECTATION	MITECS. 4.d.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

GRADE LEVELMITECS.Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and
algorithmic thinking in exploring and finding solutions.

GRADE LEVELMITECS.Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and testEXPECTATION5.d.automated solutions.

Grade 9 - Adopted: 2019		
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 3A: HIGH SCHOOL (GRADES 9-10)
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING
EXPECTATION	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. Subconcept: Algorithms; Practice 5.2
EXPECTATION	3A-AP-	Create artifacts by using procedures within a program, combinations of data and procedures, or independent but

	18.	interrelated programs. Subconcept: Modularity; Practice 5.2
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 3A: HIGH SCHOOL (GRADES 9-10)
GRADE LEVEL EXPECTATION		IMPACTS OF COMPUTING

EXPECTATION 3A-IC-26. Demonstrate ways a given algorithm applies to problems across disciplines. Subconcept: Culture; Practice 3.1

Michigan Academic Standards

Technology Education

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	MITECS. 3.d.	Build knowledge by actively exploring realworld issues and problems, developing ideas and theories, and pursuing answers and solutions.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	MITECS. 4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GRADE LEVEL EXPECTATION	MITECS. 4.c.	Develop, test, and refine prototypes as part of a cyclical design process.

GRADE LEVELMITECS.Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.EXPECTATION4.d.

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 10 - Adopted: 2019			
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards	
STANDARD		LEVEL 3A: HIGH SCHOOL (GRADES 9-10)	
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING	
EXPECTATION	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. Subconcept: Algorithms; Practice 5.2	
EXPECTATION	30-0D-	Create artifacts by using procedures within a program combinations of data and procedures, or independent but	

EXPECTATION	3A-AP-	Create artifacts by using procedures within a program, combinations of data and procedures, or independent but
	18.	interrelated programs. Subconcept: Modularity; Practice 5.2

STRAND / STANDARD CATEGORY	Michigan Computer Science Standards
STANDARD	LEVEL 3A: HIGH SCHOOL (GRADES 9-10)
GRADE LEVEL EXPECTATION	IMPACTS OF COMPUTING

EXPECTATION 3A-IC-26. Demonstrate ways a given algorithm applies to problems across disciplines. Subconcept: Culture; Practice 3.1

Minnesota Academic Standards

Mathematics

Grade 9 - Adopted: 2008

CONTENT STANDARD / DOMAIN	MN.9.4.	Data Analysis & Probability
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.4.1.	Display and analyze data; use various measures associated with data to draw conclusions, identify trends and describe relationships.
INDICATORS OF PROGRESS / STRAND	9.4.1.1.	Describe a data set using data displays, including box-and whisker plots; describe and compare data sets using summary statistics, including measures of center, location and spread. Measures of center and location include mean, median, quartile and percentile. Measures of spread include standard deviation, range and inter-quartile range. Know how to use calculators, spreadsheets or other technology to display data and calculate summary statistics.

Mathematics

Grade 10 - Adopted: 2008

CONTENT STANDARD / DOMAIN	MN.9.4.	Data Analysis & Probability
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.4.1.	Display and analyze data; use various measures associated with data to draw conclusions, identify trends and describe relationships.
INDICATORS OF PROGRESS / STRAND	9.4.1.1.	Describe a data set using data displays, including box-and whisker plots; describe and compare data sets using summary statistics, including measures of center, location and spread. Measures of center and location include mean, median, quartile and percentile. Measures of spread include standard deviation, range and inter-quartile range. Know how to use calculators, spreadsheets or other technology to display data and calculate summary statistics.

Minnesota Academic Standards

Science

Grade 9 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.9.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.1.2.	The Practice of Engineering
INDICATORS OF PROGRESS / STRAND	9.1.2.1.	The student will understand that engineering is a way of addressing human needs by applying science concepts and mathematical techniques to develop new products, tools, processes and systems.
INDICATORS OF PROGRESS	9.1.2.1.1.	Understand that engineering designs and products must be continually checked and critiqued for alternatives, risks, costs and benefits, so that subsequent designs are refined and improved.
INDICATORS OF PROGRESS	9.1.2.1.2.	Recognize that risk analysis is used to determine the potential positive and negative consequences of using a new technology or design, including the evaluation of causes and effects of failures.
INDICATORS OF PROGRESS	9.1.2.1.3.	Explain and give examples of how, in the design of a device or process, engineers consider how it is to be manufactured, operated, maintained, replaced and disposed of.
CONTENT STANDARD / DOMAIN	MN.9.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.1.2.	The Practice of Engineering
INDICATORS OF PROGRESS / STRAND	9.1.2.2.	The student will understand that engineering design is an analytical and creative process of devising a product or solution to meet a need or solve a specific problem.
INDICATORS OF PROGRESS	9.1.2.2.1.	Identify a problem and the associated constraints on possible design solutions.
INDICATORS OF PROGRESS	9.1.2.2.2.	Develop possible solutions to an engineering problem and evaluate them using conceptual, physical and mathematical models to determine the extent to which the solutions meet the design specifications.
CONTENT STANDARD / DOMAIN	MN.9.1.	The Nature of Science and Engineering
--	------------	---
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	9.1.3.4.	The student will understand that science, technology, engineering and mathematics rely on each other to enhance knowledge and understanding.
INDICATORS OF PROGRESS	9.1.3.4.1.	Describe how technological problems and advances often create a demand for new scientific knowledge, improved mathematics and new technologies.
INDICATORS OF PROGRESS	9.1.3.4.2.	Determine and use appropriate safety procedures, tools, computers and measurement instruments in science and engineering contexts.
INDICATORS OF PROGRESS	9.1.3.4.3.	Select and use appropriate numeric, symbolic, pictorial, or graphical representation to communicate scientific ideas, procedures and experimental results.
CONTENT STANDARD / DOMAIN	MN.9.4.	Life Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.4.2.	Interdependence among Living Systems
INDICATORS OF PROGRESS / STRAND	9.4.2.2.	The student will understand that matter cycles and energy flows through different levels of organization of living systems and the physical environment, as chemical elements are combined in different ways.
INDICATORS OF PROGRESS	9.4.2.2.2.	Explain how matter and energy in an ecosystem is transformed and transferred among organisms, and how energy is dissipated as heat into the environment.
CONTENT STANDARD / DOMAIN	MN.9.4.	Life Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.4.4.	Human Interactions with Living Systems
INDICATORS OF PROGRESS / STRAND	9.4.4.1.	The student will understand that human activity has consequences on living organisms and ecosystems.
INDICATORS OF PROGRESS	9.4.4.1.2.	Describe the social, economic and ecological risks and benefits of changing a natural ecosystem as a result of human activity.

Grade 9 - Adopted: 2010

CONTENT STANDARD / DOMAIN	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Key Ideas and Details

INDICATORS OF PROGRESS / STRAND	9.13.2.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
INDICATORS OF PROGRESS / STRAND	9.13.3.3.	Follow precisely a complex multistep procedure when carrying out experiments, designing solutions, taking measurements, or performing technical tasks, attending to special cases (constraints) or exceptions defined in the text.
CONTENT STANDARD / DOMAIN	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Craft and Structure
INDICATORS OF PROGRESS / STRAND	9.13.4.4.	Determine the meaning of symbols, equations, graphical representations, tabular representations, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
INDICATORS OF PROGRESS / STRAND	9.13.5.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
INDICATORS OF PROGRESS / STRAND	9.13.6.6.	Analyze the author's purpose in describing phenomena, providing an explanation, describing a procedure, or discussing/reporting an experiment in a text, defining the question the author seeks to address.
CONTENT STANDARD / DOMAIN	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Integration of Knowledge and Ideas
INDICATORS OF PROGRESS / STRAND	9.13.9.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD / DOMAIN	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Range of Reading and Level of Text Complexity
INDICATORS OF PROGRESS / STRAND	9.13.10.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MN.9.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Text Types and Purposes

INDICATORS OF PROGRESS / STRAND	9.14.2.2	Write informative/explanatory texts, as they apply to each discipline and reporting format, including the narration of historical events, of scientific procedures/ experiments, or description of technical processes.
J		

INDICATORS SOF PROGRESS .

/ STRAND

9.14.2.2.d Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.

CONTENT STANDARD / DOMAIN	MN.9.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Production and Distribution of Writing
INDICATORS OF PROGRESS	9.14.4.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to discipline, task, purpose, and audience.

Minnesota Academic Standards

Science

Grade 10 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.9.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.1.2.	The Practice of Engineering
INDICATORS OF PROGRESS / STRAND	9.1.2.1.	The student will understand that engineering is a way of addressing human needs by applying science concepts and mathematical techniques to develop new products, tools, processes and systems.
INDICATORS OF PROGRESS	9.1.2.1.1.	Understand that engineering designs and products must be continually checked and critiqued for alternatives, risks, costs and benefits, so that subsequent designs are refined and improved.
INDICATORS OF PROGRESS	9.1.2.1.2.	Recognize that risk analysis is used to determine the potential positive and negative consequences of using a new technology or design, including the evaluation of causes and effects of failures.
INDICATORS OF PROGRESS	9.1.2.1.3.	Explain and give examples of how, in the design of a device or process, engineers consider how it is to be manufactured, operated, maintained, replaced and disposed of.
CONTENT STANDARD / DOMAIN	MN.9.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.1.2.	The Practice of Engineering
INDICATORS OF PROGRESS / STRAND	9.1.2.2.	The student will understand that engineering design is an analytical and creative process of devising a product or solution to meet a need or solve a specific problem.

INDICATORS 9.1.2.2.1. Identify a problem and the associated constraints on possible design solutions. OF PROGRESS

INDICATORS9.1.2.2.2.Develop possible solutions to an engineering problem and evaluate them using conceptual, physical and
mathematical models to determine the extent to which the solutions meet the design specifications.

CONTENT STANDARD / DOMAIN	MN.9.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	9.1.3.4.	The student will understand that science, technology, engineering and mathematics rely on each other to enhance knowledge and understanding.
INDICATORS OF PROGRESS	9.1.3.4.1.	Describe how technological problems and advances often create a demand for new scientific knowledge, improved mathematics and new technologies.
INDICATORS OF PROGRESS	9.1.3.4.2.	Determine and use appropriate safety procedures, tools, computers and measurement instruments in science and engineering contexts.
INDICATORS OF PROGRESS	9.1.3.4.3.	Select and use appropriate numeric, symbolic, pictorial, or graphical representation to communicate scientific ideas, procedures and experimental results.
CONTENT STANDARD / DOMAIN	MN.9.4.	Life Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.4.2.	Interdependence among Living Systems
INDICATORS OF PROGRESS / STRAND	9.4.2.2.	The student will understand that matter cycles and energy flows through different levels of organization of living systems and the physical environment, as chemical elements are combined in different ways.

INDICATORS9.4.2.2.Explain how matter and energy in an ecosystem is transformed and transferred among organisms, and how energyOF PROGRESSis dissipated as heat into the environment.

CONTENT STANDARD / DOMAIN	MN.9.4.	Life Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9.4.4.	Human Interactions with Living Systems
INDICATORS OF PROGRESS / STRAND	9.4.4.1.	The student will understand that human activity has consequences on living organisms and ecosystems.
INDICATORS	9.4.4.1.2.	Describe the social, economic and ecological risks and benefits of changing a natural ecosystem as a result of

 OF PROGRESS
 9.4.4.1.2.
 Describe the social, economic and ecological fisks and benefits of changing a natural ecosystem as a

Grade 10 - Adopted: 2010

CONTENT	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
STANDARD / DOMAIN		

PERFORMANC E INDICATOR / DOMAIN COMPONENT		Key Ideas and Details
INDICATORS OF PROGRESS / STRAND	9.13.2.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
INDICATORS OF PROGRESS / STRAND	9.13.3.3.	Follow precisely a complex multistep procedure when carrying out experiments, designing solutions, taking measurements, or performing technical tasks, attending to special cases (constraints) or exceptions defined in the text.
CONTENT STANDARD / DOMAIN	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Craft and Structure
INDICATORS OF PROGRESS / STRAND	9.13.4.4.	Determine the meaning of symbols, equations, graphical representations, tabular representations, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
INDICATORS OF PROGRESS / STRAND	9.13.5.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
INDICATORS OF PROGRESS / STRAND	9.13.6.6.	Analyze the author's purpose in describing phenomena, providing an explanation, describing a procedure, or discussing/reporting an experiment in a text, defining the question the author seeks to address.
CONTENT STANDARD / DOMAIN	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Integration of Knowledge and Ideas
INDICATORS OF PROGRESS / STRAND	9.13.9.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD / DOMAIN	MN.9.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Range of Reading and Level of Text Complexity
INDICATORS OF PROGRESS / STRAND	9.13.10.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MN.9.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12

PERFORMANC E INDICATOR / DOMAIN COMPONENT		Text Types and Purposes
INDICATORS OF PROGRESS / STRAND	9.14.2.2	Write informative/explanatory texts, as they apply to each discipline and reporting format, including the narration of historical events, of scientific procedures/ experiments, or description of technical processes.
	0.1.1.0.0.1	

INDICATORS9.14.2.2.dUse precise language and domain-specific vocabulary to manage the complexity of the topic and convey a styleOF PROGRESS.appropriate to the discipline and context as well as to the expertise of likely readers.

CONTENT STANDARD / DOMAIN	MN.9.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Production and Distribution of Writing
INDICATORS	9.14.4.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to discipline,

OF PROGRESS task, purpose, and audience. / STRAND

Minnesota Academic Standards

Technology Education

Grade 9 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.IT L.9- 12.	Information and Technology Literacy Standards (Refresh 2009)
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9-12.3.	Technology Use and Concepts: Students will explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.
INDICATORS OF PROGRESS / STRAND	9-12.3.I.	Use of Technology
INDICATORS OF PROGRESS	9- 12.3.I.D.	Strategically solve information and technology issues.
INDICATOR	9- 12.3.I.D.1.	Independently troubleshoot technology issues, following organizational policies.
INDICATOR	9- 12.3.I.D.2.	Locate assistance independently and ask appropriate expert when necessary.

Minnesota Academic Standards Technology Education

Grade 10 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.IT L.9- 12.	Information and Technology Literacy Standards (Refresh 2009)
PERFORMANC E INDICATOR / DOMAIN COMPONENT	9-12.3.	Technology Use and Concepts: Students will explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.

INDICATORS OF PROGRESS / STRAND	9-12.3.I.	Use of Technology
INDICATORS OF PROGRESS	9- 12.3.I.D.	Strategically solve information and technology issues.
INDICATOR	9- 12.3.I.D.1.	Independently troubleshoot technology issues, following organizational policies.
INDICATOR	9- 12.3.I.D.2.	Locate assistance independently and ask appropriate expert when necessary.

Mississippi College & Career Readiness Standards

Mathematics

Grade 9 - Adopted: 2016

тнеме	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.6.	Attend to precision.
SUBJECT	MP.7.	Look for and make use of structure.
SUBJECT	MP.8.	Look for and express regularity in repeated reasoning.
тнеме	MS.AI.	Algebra I
SUBJECT	AI.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context
OBJECTIVE	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
ТНЕМЕ	MS.AII.	Algebra II
SUBJECT	AII.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context
OBJECTIVE	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

THEME	MS.IMI.	Integrated Mathematics I
SUBJECT	IMI.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context

F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

ТНЕМЕ	MS.IMII.	Integrated Mathematics II
SUBJECT	IMII.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context

OBJECTIVE F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

ТНЕМЕ	MS.IMIII.	Integrated Mathematics III
SUBJECT	IMIII.F- IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context

OBJECTIVE F-IF.6.

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

ТНЕМЕ	MS.FAC.	Foundations of Algebra Course
SUBJECT	FAC.S.	Statistics
STANDARD	FAC.S.4 0.	Without technology, fluently calculate the measures of central tendency (mean, median, mode), measures of spread (range, interquartile range), and understand the impact of extreme values (outliers) on each of these values. (6.SP.5, 8.SP.1, S-ID.3) Justify which measure is appropriate to use when describing a data set or a real-world context.

Mississippi College & Career Readiness Standards

Mathematics

Grade 10 - Adopted: 2016

THEME	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.6.	Attend to precision.
SUBJECT	MP.7.	Look for and make use of structure.
SUBJECT	MP.8.	Look for and express regularity in repeated reasoning.

ТНЕМЕ	MS.AI.	Algebra I
SUBJECT	AI.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context

F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

тнеме	MS.AII.	Algebra II
SUBJECT	AII.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context

OBJECTIVE F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

ТНЕМЕ	MS.IMI.	Integrated Mathematics I
SUBJECT	IMI.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context
OBJECTIVE	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

specified interval. Estimate the rate of change from a graph.

ТНЕМЕ	MS.IMII.	Integrated Mathematics II
SUBJECT	IMII.F-IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context
OBJECTIVE	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

OBJECTIVE

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

ТНЕМЕ	MS.IMIII.	Integrated Mathematics III
SUBJECT	IMIII.F- IF.	Functions: Interpreting Functions (F-IF)
STANDARD		Interpret functions that arise in applications in terms of the context
OBJECTIVE	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

ТНЕМЕ	MS.FAC.	Foundations of Algebra Course
SUBJECT	FAC.S.	Statistics
STANDARD	FAC.S.4 0.	Without technology, fluently calculate the measures of central tendency (mean, median, mode), measures of spread (range, interquartile range), and understand the impact of extreme values (outliers) on each of these values. (6.SP.5,

8.SP.1, S-ID.3) Justify which measure is appropriate to use when describing a data set or a real-world context.

Mississippi College & Career Readiness Standards

Science

Grade 9 - Adopted: 2018

ТНЕМЕ	MS.BIO.	Biology
SUBJECT		Interdependence of Organisms and Their Environments
STANDARD	BIO.5.	Students will Investigate and evaluate the interdependence of living organisms and their environment.

OBJECTIVE	BIO.5.2.	Analyze models of the cycling of matter (e.g., carbon, nitrogen, phosphorus, and water) between abiotic and biotic factors in an ecosystem and evaluate the ability of these cycles to maintain the health and sustainability of the ecosystem.
OBJECTIVE	BIO.5.3.	Analyze and interpret quantitative data to construct an explanation for the effects of greenhouse gases on the carbon dioxide cycle and global climate.
OBJECTIVE	BIO.5.8.	Enrichment: Use an engineering design process to create a solution that addresses changing ecological conditions (e.g., climate change, invasive species, loss of biodiversity, human population growth, habitat destruction, biomagnification, or natural phenomena).

ТНЕМЕ	MS.BOT.	Botany
SUBJECT		Plant Morphology, Cell Structure, and Function
STANDARD	BOT.1.	Students will investigate the morphology, anatomy, and physiology of plants.
OBJECTIVE	BOT.1.9.	Communicate the importance of carbon, hydrogen, oxygen, phosphorus, and nitrogen cycles to plant physiology through graphics such as poster or computer presentations.

ТНЕМЕ	MS.ESS.	Earth and Space Science
SUBJECT		Earth's Systems and Cycles
STANDARD	ESS.3.	Students will develop an understanding of Earth's systems and cycles.

OBJECTIVE ESS.3.6. Construct an explanation from data sets to obtain and evaluate scientific information to construct scientific arguments on changes in climate caused by various natural factors (e.g., plate tectonics and continent location and Milankovitch cycles) versus anthropogenic factors (e.g., fossil fuel use and agricultural factors).

тнеме	MS.ESS.	Earth and Space Science
SUBJECT		Earth's Resources and Human Activity
STANDARD	ESS.4.	Students will develop an understanding of Earth's resources and the impact of human activities.
OBJECTIVE	ESS.4.1.	Research, evaluate, and communicate about how human life on Earth shapes Earth's systems and responds to the interaction of Earth's systems (e.g., geosphere, hydrosphere, atmosphere, and biosphere). Examine how geochemical and ecological processes interact through time to cycle matter and energy and how human activity alters the rates of these processes.

OBJECTIVE ESS.4.4. Enrichment: Use an engineering design process to research, develop, and test models to aid in the responsible management of natural resources (e.g., recycling, composting, and energy usage).

ТНЕМЕ	MS.ENV.	Environmental Science
SUBJECT		Biosphere and Biodiversity
STANDARD	ENV.1.	Students will investigate the interdependence of diverse living organisms and their interactions with the components of the biosphere.
OBJECTIVE	ENV.1.2.	Evaluate evidence in nonfiction text to explain how biological or physical changes within biomes affect populations and communities and how changing conditions may result in altered ecosystems.
OBJECTIVE	ENV.1.5.	Develop and use models to diagram the flow of nitrogen, carbon, and phosphorus through the environment.

ENV.1.9. Evaluate and communicate data that explains how human activity may impact biodiversity (e.g., introduction, removal, and reintroduction of an organism within an ecosystem; land usage) and genetic variations of organisms, including endangered and threatened species.

тнеме	MS.ENV.	Environmental Science
SUBJECT		Natural Resources Use and Conservation
STANDARD	ENV.2.	Students will relate the impact of human activities on the environment, conservation activities, and efforts to maintain and restore ecosystems.

OBJECTIVE

ENV.2.4. Examine solutions for developing, conserving, managing, recycling, and reusing energy and mineral resources to minimize impacts in natural systems (e.g., agricultural soil use, mining for coal, construction sites, and exploration of petroleum and natural gas sources).

ТНЕМЕ	MS.ENV.	Environmental Science
SUBJECT		Human Activities and Climate Change
STANDARD	ENV.3.	Students will discuss the direct and indirect impacts of certain types of human activities on the Earth's climate.
OBJECTIVE	ENV.3.1.	Use a model to describe cycling of carbon through the ocean, atmosphere, soil, and biosphere and how increases in carbon dioxide concentrations have resulted in atmospheric and climate changes.
OBJECTIVE	ENV.3.2.	Interpret data and climate models to predict how global and regional climate change can affect Earth's systems (e.g., precipitation, temperature, impacts on sea level, global ice volumes, and atmosphere and ocean composition).
OBJECTIVE	ENV.3.3.	Use satellite imagery and other resources to analyze changes in biomes over time (e.g., glacial retreat, deforestation, desertification) and propose strategies to reduce the impact of human activities leading to these issues.
OBJECTIVE	ENV.3.4.	Enrichment: Determine mathematically an individual's impact on the environment (carbon footprint, water usage, landfill contribution) and develop a plan to reduce personal contribution.
тнеме	MS.ENV.	Environmental Science
SUBJECT		Human Sustainability
STANDARD	ENV.4.	Students will demonstrate an understanding of the interdependence of human sustainability and the environment.
OBJECTIVE	ENV.4.1.	Identify human impact and develop a solution for protection of the atmosphere, considering pollutants (e.g., acid rain, air pollution, smog, ozone layer, or increased levels of greenhouse gases) and the impacts of pollutants on human health (e.g., asthma, COPD, emphysema, and cancer).
тнеме	MS.FB.	Foundations of Biology
SUBJECT		Organization and Energy in Living Systems
STANDARD	FB.3.	Students will demonstrate an understanding of how the structure of living organisms supports the essential functions of life.
OBJECTIVE	FB.3.4.	Analyze the relationship between photosynthesis and cellular respiration and explain that relationship in terms of the need for all living things to acquire energy from their environment.
тнеме	MS.FB.	Foundations of Biology
SUBJECT		Ecological Principals

STANDARD	FB.6.	Students will understand the interdependence of living organisms and their environment.
OBJECTIVE	FB.6.2.	Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen).
OBJECTIVE	FB.6.3.	Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time.
OBJECTIVE	FB.6.7.	Enrichment: Design solutions to reduce the impact of human activity on the ecosystem.
		Grade 9 - Adopted: 2017
ТНЕМЕ	MS.FSL.	Foundations of Science Literacy
SUBJECT		History of Science and Impacts on Society
STANDARD	FSL.1.	Students will relate the importance of significant historical experiments and their impact on research and development.
OBJECTIVE	FSL.1.2.	Research, analyze, explain, and communicate how scientific enterprise relates to society and classic inventions (e.g., microscope, telescope, computer, and telephone).
OBJECTIVE	FSL.1.3.	Identify and communicate the impact of mathematics and technology in the development of scientific thought and the practice of science (e.g., space exploration, the human genome project, and ocean exploration).
OBJECTIVE	FSL.1.4.	Enrichment: Research, analyze, explain, and communicate the influence of society, including cultural components, on the direction and progress of science and technology (e.g., medical treatments, antibiotic resistance, alternative energy development, and biomimicry).
ТНЕМЕ	MS.FSL.	Foundations of Science Literacy
SUBJECT		Nature of Technology and Engineering
STANDARD	FSL.2.	Students will identify, research, and communicate the development of technology and engineering practices.

OBJECTIVE FSL.2.1. Research and present a technology that was developed through engineering design. Identify its purpose, how it has advanced through alterations in design (e.g., systems that provide homes and businesses with utilities, parking structures, park and recreational structures, and traffic flow), and careers related to its use).

OBJECTIVE FSL.2.2. Use an engineering design process to identify a problem within the local community, and propose and develop a possible solution for that problem.

ТНЕМЕ	MS.FSL.	Foundations of Science Literacy
SUBJECT		Nature of Science
STANDARD	FSL.3B.	Students will apply scientific literacy and thinking skills to analyze and interpret data found in various graphics including, but not limited to, those found in sample ACT science passages.

OBJECTIVE FSL.3B.5. Analyze presented information when given new information (e.g., given a new scenario, how would a given scenario be changed).

ТНЕМЕ	MS.FSL.	Foundations of Science Literacy
SUBJECT		Nature of Science
STANDARD	FSL.3C.	Students will apply scientific literacy and thinking skills to analyze scientific investigations found in various experimental designs including, but not limited to, those found in sample ACT science passages.

FSL.3C.1. Analyze the methods and choice of tools used in simple and complex experimental designs.

ТНЕМЕ	MS.MAQI. MAQ	Marine and Aquatic Science I
SUBJECT		Flora and Fauna
STANDARD	MAQI.M AQ.4.	Students will examine characteristics of specific aquatic ecosystems and the effects of human and natural phenomena on those ecosystems.
OBJECTIVE	MAQI.MA	Enrichment: Choose an environmental issue that currently exists in one of the aquatic ecosystems and use an

MAQI.MA Enrichment: Choose an environmental issue that currently exists in one of the aquatic ecosystems and use an engineering design process to propose and develop a possible solution using scientific knowledge and best management practices (BMPs). Create an environmental action plan to include moral, legal, societal, political, and economic decisions that impact animal diversity in both the short and long term. Results from developed plans will be communicated with classmates.

ТНЕМЕ	MS.ZII.ZO O.	Zoology II
SUBJECT		Phylum Chordata, Class Mammalia
STANDARD	ZII.ZOO. 10.	Students will understand the structure and function of phylum Chordata, class Mammalia, and how they demonstrate the characteristics of living things.

OBJECTIVE ZII.ZOO. Enrichment: Use an engineering design process to develop a possible solution to an environmental issue that 10.7. currently exists in an ecosystem.

Mississippi College & Career Readiness Standards

Science

Grade 10 - Adopted: 2018

ТНЕМЕ	MS.BIO.	Biology
SUBJECT		Interdependence of Organisms and Their Environments
STANDARD	BIO.5.	Students will Investigate and evaluate the interdependence of living organisms and their environment.
OBJECTIVE	BIO.5.2.	Analyze models of the cycling of matter (e.g., carbon, nitrogen, phosphorus, and water) between abiotic and biotic factors in an ecosystem and evaluate the ability of these cycles to maintain the health and sustainability of the ecosystem.
OBJECTIVE	BIO.5.3.	Analyze and interpret quantitative data to construct an explanation for the effects of greenhouse gases on the carbon dioxide cycle and global climate.
OBJECTIVE	BIO.5.8.	Enrichment: Use an engineering design process to create a solution that addresses changing ecological conditions (e.g., climate change, invasive species, loss of biodiversity, human population growth, habitat destruction, biomagnification, or natural phenomena).
ТНЕМЕ	MS.BOT.	Botany
SUBJECT		Plant Morphology, Cell Structure, and Function
STANDARD	BOT.1.	Students will investigate the morphology, anatomy, and physiology of plants.
OBJECTIVE	BOT.1.9.	Communicate the importance of carbon, hydrogen, oxygen, phosphorus, and nitrogen cycles to plant physiology through graphics such as poster or computer presentations.
тнеме	MS.ESS.	Earth and Space Science
SUBJECT		Earth's Systems and Cycles

STANDARD	ESS.3.	Students will develop an understanding of Earth's systems and cycles.
OBJECTIVE	ESS.3.6.	Construct an explanation from data sets to obtain and evaluate scientific information to construct scientific arguments on changes in climate caused by various natural factors (e.g., plate tectonics and continent location and Milankovitch cycles) versus anthropogenic factors (e.g., fossil fuel use and agricultural factors).

ТНЕМЕ	MS.ESS.	Earth and Space Science
SUBJECT		Earth's Resources and Human Activity
STANDARD	ESS.4.	Students will develop an understanding of Earth's resources and the impact of human activities.
OBJECTIVE	ESS.4.1.	Research, evaluate, and communicate about how human life on Earth shapes Earth's systems and responds to the interaction of Earth's systems (e.g., geosphere, hydrosphere, atmosphere, and biosphere). Examine how geochemical and ecological processes interact through time to cycle matter and energy and how human activity alters the rates of these processes.

ESS.4.4. Enrichment: Use an engineering design process to research, develop, and test models to aid in the responsible management of natural resources (e.g., recycling, composting, and energy usage).

тнеме	MS.ENV.	Environmental Science
SUBJECT		Biosphere and Biodiversity
STANDARD	ENV.1.	Students will investigate the interdependence of diverse living organisms and their interactions with the components of the biosphere.
OBJECTIVE	ENV.1.2.	Evaluate evidence in nonfiction text to explain how biological or physical changes within biomes affect populations and communities and how changing conditions may result in altered ecosystems.
OBJECTIVE	ENV.1.5.	Develop and use models to diagram the flow of nitrogen, carbon, and phosphorus through the environment.
OBJECTIVE	ENV.1.9.	Evaluate and communicate data that explains how human activity may impact biodiversity (e.g., introduction, removal, and reintroduction of an organism within an ecosystem; land usage) and genetic variations of organisms, including endangered and threatened species.

ТНЕМЕ	MS.ENV.	Environmental Science
SUBJECT		Natural Resources Use and Conservation
STANDARD	ENV.2.	Students will relate the impact of human activities on the environment, conservation activities, and efforts to maintain and restore ecosystems.
OBJECTIVE	ENV.2.4.	Examine solutions for developing, conserving, managing, recycling, and reusing energy and mineral resources to

DBJECTIVE ENV.2.4. Examine solutions for developing, conserving, managing, recycling, and reusing energy and mineral resources to minimize impacts in natural systems (e.g., agricultural soil use, mining for coal, construction sites, and exploration of petroleum and natural gas sources).

ТНЕМЕ	MS.ENV.	Environmental Science
SUBJECT		Human Activities and Climate Change
STANDARD	ENV.3.	Students will discuss the direct and indirect impacts of certain types of human activities on the Earth's climate.
OBJECTIVE	ENV.3.1.	Use a model to describe cycling of carbon through the ocean, atmosphere, soil, and biosphere and how increases in carbon dioxide concentrations have resulted in atmospheric and climate changes.
OBJECTIVE	ENV.3.2.	Interpret data and climate models to predict how global and regional climate change can affect Earth's systems

(e.g., precipitation, temperature, impacts on sea level, global ice volumes, and atmosphere and ocean composition).

OBJECTIVE	ENV.3.3.	Use satellite imagery and other resources to analyze changes in biomes over time (e.g., glacial retreat, deforestation, desertification) and propose strategies to reduce the impact of human activities leading to these issues.
OBJECTIVE	ENV.3.4.	Enrichment: Determine mathematically an individual's impact on the environment (carbon footprint, water usage, landfill contribution) and develop a plan to reduce personal contribution.
тнеме	MS.ENV.	Environmental Science
SUBJECT		Human Sustainability
STANDARD	ENV.4.	Students will demonstrate an understanding of the interdependence of human sustainability and the environment.
OBJECTIVE	ENV.4.1.	Identify human impact and develop a solution for protection of the atmosphere, considering pollutants (e.g., acid rain, air pollution, smog, ozone layer, or increased levels of greenhouse gases) and the impacts of pollutants on human health (e.g., asthma, COPD, emphysema, and cancer).
тнеме	MS.FB.	Foundations of Biology
SUBJECT		Organization and Energy in Living Systems
STANDARD	FB.3.	Students will demonstrate an understanding of how the structure of living organisms supports the essential functions of life.
OBJECTIVE	FB.3.4.	Analyze the relationship between photosynthesis and cellular respiration and explain that relationship in terms of the need for all living things to acquire energy from their environment.
ТНЕМЕ	MS.FB.	Foundations of Biology
THEME SUBJECT	MS.FB.	Foundations of Biology Ecological Principals
THEME SUBJECT STANDARD	MS.FB.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment.
THEME SUBJECT ST ANDARD OBJECTIVE	MS.FB. FB.6. FB.6.2.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen).
THEME SUBJECT ST ANDARD OBJECTIVE OBJECTIVE	MS.FB. FB.6. FB.6.2. FB.6.3.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen). Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time.
THEME SUBJECT STANDARD OBJECTIVE OBJECTIVE OBJECTIVE	MS.FB. FB.6. FB.6.2. FB.6.3.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen). Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time. Enrichment: Design solutions to reduce the impact of human activity on the ecosystem.
THEME SUBJECT STANDARD OBJECTIVE OBJECTIVE OBJECTIVE	MS.FB. FB.6. FB.6.2. FB.6.3.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen). Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time. Enrichment: Design solutions to reduce the impact of human activity on the ecosystem. Grade 10 - Adopted: 2017
THEME SUBJECT STANDARD OBJECTIVE OBJECTIVE OBJECTIVE THEME	MS.FB. FB.6.2. FB.6.3. FB.6.7.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen). Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time. Enrichment: Design solutions to reduce the impact of human activity on the ecosystem. Explain to a context of human activity on the ecosystem. Grade 10 - Adopted: 2017 Foundations of Science Literacy
THEME SUBJECT STANDARD OBJECTIVE OBJECTIVE OBJECTIVE SUBJECT	MS.FB. FB.6.2. FB.6.3. FB.6.7. MS.FSL.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen). Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time. Enrichment: Design solutions to reduce the impact of human activity on the ecosystem. Grade 10 - Adopted: 2017 Foundations of Science Literacy History of Science and Impacts on Society
THEME SUBJECT ST ANDARD OBJECTIVE OBJECTIVE OBJECTIVE THEME SUBJECT ST ANDARD	MS.FB. FB.6.2. FB.6.3. FB.6.7. MS.FSL. FSL.1.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen). Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time. Enrichment: Design solutions to reduce the impact of human activity on the ecosystem. Grade 10 - Adopted: 2017 Foundations of Science Literacy History of Science and Impacts on Society Students will relate the importance of significant historical experiments and their impact on research and development.
THEME SUBJECT ST ANDARD OBJECTIVE OBJECTIVE UBJECTIVE SUBJECT ST ANDARD OBJECTIVE OBJECTIVE	MS.FB. FB.6.2. FB.6.3. FB.6.7. MS.FSL. FSL.1.2.	Foundations of Biology Ecological Principals Students will understand the interdependence of living organisms and their environment. Use models to analyze the cycling of matter in an ecosystem (e.g., water, carbon dioxide/oxygen, nitrogen). Obtain, evaluate, and communicate information to explain relationships that exist between abiotic and biotic components of an ecosystem. Explain how changes in biotic and abiotic components affect the balance of an ecosystem over time. Enrichment: Design solutions to reduce the impact of human activity on the ecosystem. Grade 10 - Adopted: 2017 Foundations of Science Literacy History of Science and Impacts on Society Students will relate the importance of significant historical experiments and their impact on research and development. Research, analyze, explain, and communicate how scientific enterprise relates to society and classic inventions (e.g., microscope, telescope, computer, and telephone).

OBJECTIVE FSL.1.4. Enrichment: Research, analyze, explain, and communicate the influence of society, including cultural components, on the direction and progress of science and technology (e.g., medical treatments, antibiotic resistance, alternative energy development, and biomimicry).

THEME	MS.FSL.	Foundations of Science Literacy
SUBJECT		Nature of Technology and Engineering
STANDARD	FSL.2.	Students will identify, research, and communicate the development of technology and engineering practices.
OBJECTIVE	FSL.2.1.	Research and present a technology that was developed through engineering design. Identify its purpose, how it has advanced through alterations in design (e.g., systems that provide homes and businesses with utilities, parking structures, park and recreational structures, and traffic flow), and careers related to its use).
OBJECTIVE	FSL.2.2.	Use an engineering design process to identify a problem within the local community, and propose and develop a possible solution for that problem.
ТНЕМЕ	MS.FSL.	Foundations of Science Literacy
SUBJECT		Nature of Science
STANDARD	FSL.3B.	Students will apply scientific literacy and thinking skills to analyze and interpret data found in various graphics including, but not limited to, those found in sample ACT science passages.
OBJECTIVE	FSL.3B.5.	Analyze presented information when given new information (e.g., given a new scenario, how would a given scenario be changed).
THEME	MS.FSL.	Foundations of Science Literacy
SUBJECT		Nature of Science
STANDARD	FSL.3C.	Students will apply scientific literacy and thinking skills to analyze scientific investigations found in various experimental designs including, but not limited to, those found in sample ACT science passages.
OBJECTIVE	FSL.3C.1.	Analyze the methods and choice of tools used in simple and complex experimental designs.

THEME	MS.MAQI. MAQ	Marine and Aquatic Science I
SUBJECT		Flora and Fauna
STANDARD	MAQI.M AQ.4.	Students will examine characteristics of specific aquatic ecosystems and the effects of human and natural phenomena on those ecosystems.

OBJECTIVE

MAQI.MA Enrichment: Choose an environmental issue that currently exists in one of the aquatic ecosystems and use an engineering design process to propose and develop a possible solution using scientific knowledge and best management practices (BMPs). Create an environmental action plan to include moral, legal, societal, political, and economic decisions that impact animal diversity in both the short and long term. Results from developed plans will be communicated with classmates.

ТНЕМЕ	MS.ZII.ZO O.	Zoology II
SUBJECT		Phylum Chordata, Class Mammalia
STANDARD	ZII.ZOO. 10.	Students will understand the structure and function of phylum Chordata, class Mammalia, and how they demonstrate the characteristics of living things.

ZII.ZOO. Enrichment: Use an engineering design process to develop a possible solution to an environmental issue that 10.7. currently exists in an ecosystem.

Mississippi College & Career Readiness Standards

Technology Education

Grade 9 - Adopted: 2018

ТНЕМЕ		Mississippi College- and Career-Readiness Standards for Computer Science
SUBJECT		Level 3A: GRADES 9-10 - Data and Analysis
STANDARD	DA.3A.	Data and Analysis (DA.3A)
OBJECTIVE	DA.3A.2.	Evaluate the tradeoffs in how data elements are organized and where data is stored. [STORAGE] (P3.3)

OBJECTIVE

DA.3A.2a Students should evaluate whether a chosen solution is most appropriate for a particular problem.

Mississippi College & Career Readiness Standards

Technology Education Grade 10 - Adopted: 2018

ТНЕМЕ		Mississippi College- and Career-Readiness Standards for Computer Science
SUBJECT		Level 3A: GRADES 9-10 - Data and Analysis
STANDARD	DA.3A.	Data and Analysis (DA.3A)
OBJECTIVE	DA.3A.2.	Evaluate the tradeoffs in how data elements are organized and where data is stored. [STORAGE] (P3.3)
OBJECTIVE	DA.3A.2a	Students should evaluate whether a chosen solution is most appropriate for a particular problem.

Missouri Learning Standards

Science

Grade 9 - Adopted: 2016

STRAND: BIG IDEA / STANDARD	MO.9- 12.LS.	Life Sciences
CONCEPT: GLE / BENCHMARK	9- 12.LS2.	Ecosystems: Interactions, Energy, and Dynamics
GLE / COMPONENT	9- 12.LS2.B	Cycles of matter and Energy Transfer in Ecosystems

INDICATOR / 9-PROFICIENCY 12.LS

 9- Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to
 12.LS2.B.3 explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere.
 . [Clarification Statement: The primary forms of carbon include carbon dioxide, hydrocarbons, waste, and biomass. Examples of models could include simulations and mathematical and conceptual models.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.LS.	Life Sciences
CONCEPT: GLE / BENCHMARK	9- 12.LS2.	Ecosystems: Interactions, Energy, and Dynamics
GLE / COMPONENT	9- 12.LS2.C	Ecosystem Dynamics, Functioning and Resilience

INDICATOR /	9-	Evaluate the claims, evidence, and reasoning that the interactions in ecosystems maintain relatively consistent
PROFICIENCY	12.LS2.C.	populations of species while conditions remain stable, but changing conditions may result in new ecosystem
	1.	dynamics. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]

INDICATOR / 9-PROFICIENCY 2.

Design, evaluate, and/or refine solutions that positively impact the environment and biodiversity. [Clarification 12.LS2.C. Statement: Examples of solutions may include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, agriculture and mining programs, and ecotourism.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.LS.	Life Sciences
CONCEPT: GLE / BENCHMARK	9- 12.LS4.	Biological Evolution; Unity and Diversity
GLE / COMPONENT	9- 12.LS4.C	Adaptation

INDICATOR / PROFICIENCY

9-

3.

Create or revise a model to test a solution to mitigate adverse impacts of human activity on biodiversity. 12.LS4.C. [Clarification Statement: Emphasis is on designing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS2.	Earth's Systems
GLE / COMPONENT	9- 12.ESS2. A.	Earth Materials and Systems

INDICATOR / Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in 9-12.ESS2.A climate. PROFICIENCY .4.

STRAND: BIG IDEA / STANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS2.	Earth's Systems
GLE / COMPONENT	9- 12.ESS2. D.	Weather and Climate

INDICATOR / 9-PROFICIENCY 12.ESS2. D.1.

Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS3.	Earth and Human Activity

GLE / COMPONENT	9- 12.ESS3. A.	Natural Resources
INDICATOR / PROFICIENCY	9- 12.ESS3.A .1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water, regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather. Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]
ST RAND: BIG IDEA / ST ANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS3.	Earth and Human Activity
GLE / COMPONENT	9- 12.ESS3. C.	Human Impacts on Earth's Systems
INDICATOR / PROFICIENCY	9- 12.ESS3. C.1.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.]
STRAND: BIG IDEA / STANDARD	MO.9- 12.ETS.	Engineering, Technology, and Application of Science
CONCEPT : GLE / BENCHMARK	9- 12.ET S1.	Engineering Design
GLE / COMPONENT	9- 12.ET S1. A.	Defining and Delimiting Engineering Problems
INDICATOR / PROFICIENCY	9- 12.ETS1.A .1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
INDICATOR / PROFICIENCY	9- 12.ETS1.A .2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
STRAND: BIG IDEA / STANDARD	MO.9- 12.ETS.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	9- 12.ET S1.	Engineering Design
GLE / COMPONENT	9- 12.ET S1. B.	Developing Possible Solutions

 INDICATOR /
 9 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a

 PROFICIENCY
 12.ETS1.B
 range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and

 .1.
 environmental impacts.

Grade 9 - Adopted: 2010

ST RAND: BIG IDEA / ST ANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Key Ideas and Details
GLE / COMPONENT	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
GLE / COMPONENT	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
ST RAND: BIG IDEA / ST ANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Craft and Structure
GLE / COMPONENT	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
GLE / COMPONENT	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
ST RAND: BIG IDEA / ST ANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Integration of Knowledge and Ideas
GLE / COMPONENT	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STRAND: BIG IDEA / STANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Range of Reading and Level of Text Complexity
GLE / COMPONENT	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STRAND: BIG IDEA / STANDARD	MO.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Text Types and Purposes
GLE / COMPONENT	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

INDICATOR /	WHST.9-	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style
PROFICIENCY	10.2(d)	appropriate to the discipline and context as well as to the expertise of likely readers.

STRAND: BIG IDEA / STANDARD	MO.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Production and Distribution of Writing
GLE / COMPONENT	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GLE / COMPONENT	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Missouri Learning Standards Science

Grade 10 - Adopted: 2016

STRAND: BIG IDEA / STANDARD	MO.9- 12.LS.	Life Sciences
CONCEPT: GLE / BENCHMARK	9- 12.LS2.	Ecosystems: Interactions, Energy, and Dynamics
GLE / COMPONENT	9- 12.LS2.B	Cycles of matter and Energy Transfer in Ecosystems
INDICATOR / PROFICIENCY	9- 12.LS2.B.3	Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere.

I2.LS2.B.3 explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere.
 [Clarification Statement: The primary forms of carbon include carbon dioxide, hydrocarbons, waste, and biomass.
 Examples of models could include simulations and mathematical and conceptual models.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.LS.	Life Sciences
CONCEPT: GLE / BENCHMARK	9- 12.LS2.	Ecosystems: Interactions, Energy, and Dynamics
GLE / COMPONENT	9- 12.LS2.C	Ecosystem Dynamics, Functioning and Resilience
INDICATOR / PROFICIENCY	9- 12.LS2.C. 1.	Evaluate the claims, evidence, and reasoning that the interactions in ecosystems maintain relatively consistent populations of species while conditions remain stable, but changing conditions may result in new ecosystem dynamics. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]
INDICATOR / PROFICIENCY	9- 12.LS2.C. 2.	Design, evaluate, and/or refine solutions that positively impact the environment and biodiversity. [Clarification Statement: Examples of solutions may include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, agriculture and mining programs, and ecotourism.]
STRAND: BIG IDEA / STANDARD	MO.9- 12.LS.	Life Sciences

CONCEPT: GLE / BENCHMARK	9- 12.LS4.	Biological Evolution; Unity and Diversity
GLE / COMPONENT	9- 12.LS4.C	Adaptation
INDICATOR /	9-	Create or revise a model to test a solution to mitigate adverse impacts of human activity on biodiversity.

PROFICIENCY

3.

Create or revise a model to test a solution to mitigate adverse impacts of human activity on biodiversity. 12.LS4.C. [Clarification Statement: Emphasis is on designing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS2.	Earth's Systems
GLE / COMPONENT	9- 12.ESS2. A.	Earth Materials and Systems

INDICATOR / 9-Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in PROFICIENCY 12.ESS2.A climate. .4.

STRAND: BIG IDEA / STANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS2.	Earth's Systems
GLE / COMPONENT	9- 12.ESS2. D.	Weather and Climate
	9-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere

e the cycling of carbon among the hydrosphere, atmosphere, geo 12.ESS2. and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of D.1. carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS3.	Earth and Human Activity
GLE / COMPONENT	9- 12.ESS3. A.	Natural Resources
INDICATOR /	9-	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural

PROFICIENCY .1.

PROFICIENCY

12.ESS3.A hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water, regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather. Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	9- 12.ESS3.	Earth and Human Activity
GLE / COMPONENT	9- 12.ESS3. C.	Human Impacts on Earth's Systems
INDICATOR / PROFICIENCY	9- 12.ESS3. C.1.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include

agricultural efficiency, levels of conservation, and urban planning.]

STRAND: BIG IDEA / STANDARD	MO.9- 12.ETS.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	9- 12.ET S1.	Engineering Design
GLE / COMPONENT	9- 12.ET S1. A.	Defining and Delimiting Engineering Problems
INDICATOR / PROFICIENCY	9- 12.ETS1.A .1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
INDICATOR / PROFICIENCY	9- 12.ETS1.A .2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
STRAND: BIG IDEA / STANDARD	MO.9- 12.ETS.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	9- 12.ET S1.	Engineering Design
GLE / COMPONENT	9- 12.ET S1. B.	Developing Possible Solutions

INDICATOR /	9-	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a
PROFICIENCY	12.ETS1.B	range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and
	.1.	environmental impacts.

Grade 10 - Adopted: 2010		
STRAND: BIG IDEA / STANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Key Ideas and Details
GLE / COMPONENT	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.

GLE / COMPONENT	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STRAND: BIG IDEA / STANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Craft and Structure
GLE / COMPONENT	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
GLE / COMPONENT	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
ST RAND: BIG IDEA / ST ANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Integration of Knowledge and Ideas
GLE / COMPONENT	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
ST RAND: BIG IDEA / ST ANDARD	MO.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Range of Reading and Level of Text Complexity
GLE / COMPONENT	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
ST RAND: BIG IDEA / ST ANDARD	MO.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT : GLE / BENCHMARK		Text Types and Purposes
GLE / COMPONENT	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR / PROFICIENCY	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND: BIG IDEA / STANDARD	MO.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Production and Distribution of Writing
GLE /	WHST 0-	Produce clear and coherent writing in which the development organization and style are appropriate to task

GLE /WHST.9-Produce clear and coherent writing in which the development, organization, and style are appropriate to task,COMPONENT10.4.purpose, and audience.

GLE /	WHST
COMPONENT	10.6.

T.9- Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Missouri Learning Standards Technology Education Grade 9 - Adopted: 2019

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Algorithms

INDICATOR / 1.

Create a prototype that uses algorithms (e.g., searching, sorting, finding shortest distance) to provide a possible 9-PROFICIENCY 10.AP.A.0 solution for a real-world problem.

STRAND: BIG IDEA / STANDARD		Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK		Algorithms & Programming
GLE / COMPONENT		Program Development
INDICATOR / PROFICIENCY	9- 10.AP.PD. 02.	Create a program by analyzing a problem and/or process, developing and documenting a solution, testing outcomes, debugging errors and adapting the program for a variety of users.
INDICATOR / PROFICIENCY	9- 10.AP.PD. 04.	While collaborating in a team, develop, test and refine programs that solve practical problems or allow self- expression.

Missouri Learning Standards Technology Education

Grade 10 - Adopted: 2019

STRAND: BIG IDEA / STANDARD		Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK		Algorithms & Programming
GLE / COMPONENT		Algorithms
INDICATOR / PROFICIENCY	9- 10.AP.A.0 1.	Create a prototype that uses algorithms (e.g., searching, sorting, finding shortest distance) to provide a possible solution for a real-world problem.
STRAND: BIG IDEA / STANDARD		Computer Science Performance Standards

CONCEPT: GLE / BENCHMARK		Algorithms & Programming
GLE / COMPONENT		Program Development
INDICATOR / PROFICIENCY	9- 10.AP.PD. 02.	Create a program by analyzing a problem and/or process, developing and documenting a solution, testing outcomes, debugging errors and adapting the program for a variety of users.
INDICATOR / PROFICIENCY	9- 10.AP.PD. 04.	While collaborating in a team, develop, test and refine programs that solve practical problems or allow self- expression.

Montana Content Standards

Mathematics

Grade 9 - Adopted: 2011

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / DOMAIN	MT.CC.F.	Functions
BENCHMARK / STANDARD	F-IF.	Interpreting Functions

EXPECTATION F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Interpret functions that arise in applications in terms of the context.

GRADE LEVEL EXPECTATION / BENCHMARK

Grade 10 - Adopted: 2011

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK /	MP.8.	Look for and express regularity in repeated reasoning.

STANDARD

egul larity Ŋ ιμ ep

BENCHMARK / STANDARD F-IF. Interpreting Functions GRADE LEVEL Interpret functions that arise in applications in terms of the context. Image: Comparison of the context of the context of the context of the context. Image: Comparison of the context of the context of the context.	CONTENT STANDARD / DOMAIN	MT.CC.F.	Functions
GRADE LEVEL Interpret functions that arise in applications in terms of the context.	BENCHMARK / STANDARD	F-IF.	Interpreting Functions
	GRADE LEVEL EXPECT ATION / BENCHMARK		Interpret functions that arise in applications in terms of the context.

EXPECTATION F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Montana Content Standards

Science

Grade 9 - Adopted: 2016

CONTENT STANDARD / DOMAIN	MT.9- 12.LS.	LIFE SCIENCE content standards for ninth through twelfth grades are that each student will:
BENCHMARK / STANDARD	9- 12.LS.8.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem
BENCHMARK / STANDARD	9- 12.LS.9.	Use mathematical or computational representations to support arguments about environmental factors that affect carrying capacity, biodiversity, and populations in ecosystems
BENCHMARK / STANDARD	9- 12.LS.11.	Design, evaluate, and refine a solution for reducing the direct and indirect impacts of human activities on the environment and biodiversity and analyze scientific concepts used by American Indians to maintain healthy relationships with environmental resources

CONTENT STANDARD / DOMAIN	MT.9- 12.LS.	LIFE SCIENCE content standards for ninth through twelfth grades are that each student will:
BENCHMARK / STANDARD	9- 12.LS.19	Evaluate the evidence supporting claims that changes in environmental conditions may result in:
GRADE LEVEL EXPECTATION / BENCHMARK	9- 12.LS.19. 3.	The extinction of other species
CONTENT STANDARD / DOMAIN	MT.9- 12.ESS.	EARTH AND SPACE SCIENCE content standards for ninth through twelfth grades are that students will:
BENCHMARK / STANDARD	9- 12.ESS.11	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere
BENCHMARK / STANDARD	9- 12.ESS.13	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate
BENCHMARK / STANDARD	9- 12.ESS.1 5.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity
BENCHMARK / STANDARD	9- 12.ESS.1 6.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios
BENCHMARK / STANDARD	9- 12.ESS.17	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, biodiversity, and investigate and explain how some American Indian tribes use scientific knowledge and practices in managing natural resources
		Grade 9 - Adopted: 2011
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Craft and Structure

GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments, and knowledge derived from American Indian cultures), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MT.WHST .9-10.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECT ATION / BENCHMARK	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.9- 10.2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
CONTENT STANDARD / DOMAIN	MT.WHS T.9-10.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Production and Distribution of Writing

GRADE LEVEL	WHST.9-	Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
EXPECTATION /	10.4.	purpose, and audience.
BENCHMARK		

GRADE LEVELWHST.9-Use technology, including the Internet, to produce, publish, and update individual or shared writing products, takingEXPECTATION /10.6.advantage of technology's capacity to link to other information and to display information flexibly and dynamically.BENCHMARKbenchmark

Montana Content Standards Science Grade 10 - Adopted: 2016

CONTENT STANDARD / DOMAIN	MT.9- 12.LS.	LIFE SCIENCE content standards for ninth through twelfth grades are that each student will:
BENCHMARK / STANDARD	9- 12.LS.8.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem
BENCHMARK / STANDARD	9- 12.LS.9.	Use mathematical or computational representations to support arguments about environmental factors that affect carrying capacity, biodiversity, and populations in ecosystems
BENCHMARK / STANDARD	9- 12.LS.11.	Design, evaluate, and refine a solution for reducing the direct and indirect impacts of human activities on the environment and biodiversity and analyze scientific concepts used by American Indians to maintain healthy relationships with environmental resources
CONTENT STANDARD / DOMAIN	MT.9- 12.LS.	LIFE SCIENCE content standards for ninth through twelfth grades are that each student will:
BENCHMARK / STANDARD	9- 12.LS.19	Evaluate the evidence supporting claims that changes in environmental conditions may result in:
GRADE LEVEL EXPECTATION / BENCHMARK	9- 12.LS.19. 3.	The extinction of other species
CONTENT STANDARD / DOMAIN	MT.9- 12.ESS.	EARTH AND SPACE SCIENCE content standards for ninth through twelfth grades are that students will:
BENCHMARK / STANDARD	9- 12.ESS.11	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere
BENCHMARK / STANDARD	9- 12.ESS.13	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate
BENCHMARK / STANDARD	9- 12.ESS.1 5.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity
BENCHMARK / STANDARD	9- 12.ESS.1 6.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios
BENCHMARK / STANDARD	9- 12.ESS.17	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, biodiversity, and investigate and explain how some American Indian tribes use scientific knowledge and practices in managing natural resources
		Grade 10 - Adopted: 2011
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Key Ideas and Details

GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments, and knowledge derived from American Indian cultures), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD / DOMAIN	MT.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION / BENCHMARK	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MT.WHST .9-10.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.9- 10.2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
	MT.WHS	Writing Standards for Literacy in Science, and Technical Subjects

DOMAIN

BENCHMARK / STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Montana Content Standards

Technology Education Grade 9 - Adopted: 2020/Effective 2021

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for ninth-twelfth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	initiate a deliberate design process for generating ideas, testing theories, creating innovative artifacts, or solving authentic problems;
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(b)	select and use digital tools to plan and manage design process that considers design constraints and calculated risks; and
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(5)	The computational thinker content standards for ninth-twelfth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	identify problems suited for technology-assisted methods for data analysis, abstract models, and algorithmic thinking;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(b)	collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(d)	explain how automation works and use algorithmic thinking to develop a sequence of steps to create and test automate solutions.
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for ninth-twelfth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(b)	create original works or responsibly repurpose or remix digital resources into new creative works;

CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for ninth through twelfth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(a)	create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	implement an artificial intelligence algorithm to play a game against a human opponent or solve a problem;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(s)	plan and develop programs for broad audiences using a software life cycle process;
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for ninth through twelfth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(c)	test and refine computational artifacts to reduce bias and equity deficits;

Montana Content Standards Technology Education

Grade 10 - /	Adopted: 2020/Effective	2021

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for ninth-twelfth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	initiate a deliberate design process for generating ideas, testing theories, creating innovative artifacts, or solving authentic problems;
GRADELEVE	(4)(b)	select and use digital tools to plan and manage design process that considers design constraints and calculated

GRADE LEVEL	(4)(b)	select and use digital tools to plan and manage design process that considers design constraints and calculated
EXPECTATION /		risks; and
BENCHMARK		

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(5)	The computational thinker content standards for ninth-twelfth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	identify problems suited for technology-assisted methods for data analysis, abstract models, and algorithmic thinking;

GRADE LEVEL EXPECTATION / BENCHMARK	(5)(b)	collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(d)	explain how automation works and use algorithmic thinking to develop a sequence of steps to create and test automate solutions.
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for ninth-twelfth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(b)	create original works or responsibly repurpose or remix digital resources into new creative works;
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for ninth through twelfth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(a)	create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	implement an artificial intelligence algorithm to play a game against a human opponent or solve a problem;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(s)	plan and develop programs for broad audiences using a software life cycle process;
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR NINTH THROUGH TWELFTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for ninth through twelfth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(c)	test and refine computational artifacts to reduce bias and equity deficits;