Main Criteria: Forward Education

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 9, 10, Key Stage 3, Key Stage 4

Forward Education

Replanting our Forests with Automated Tree Seeders

Nebraska Content Area Standards

Science

Grade 9 - Adopted: 2017

CONTENT STANDARD	NE.SC.HS -PS.	HS Physical Sciences
STRAND	SC.HS.2.	Waves and Electromagnetic Radiation
INDICATOR	SC.HS.2 .2.	Gather, analyze, and communicate evidence of the interactions of waves.

STRAND SC.HS.2. Evaluate questions about the advantages of using digital transmission and storage of information. 2.B.

CONTENT STANDARD	NE.SC.HS -PS.	HS Physical Sciences
STRAND	SC.HS.4	Energy
INDICATOR	SC.HS.4 .4.	Gather, analyze, and communicate evidence of the interactions of energy.

STRANDSC.HS.4.Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that4.D.account for societal needs and wants.

CONTENT STANDARD	NE.SC.HS -LS.	HS Life Sciences
STRAND	SC.HS.7.	Interdependent Relationships in Ecosystems
INDICATOR	SC.HS.7 .2.	Gather, analyze, and communicate evidence of interdependent relationships in ecosystems.
STRAND	SC.HS.7. 2.B.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STRAND	SC.HS.7. 2.E.	Design, evaluate, and refine a solution for increasing the positive impacts of human activities on the environment and biodiversity.
STRAND	SC.HS.7. 2.F.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
CONTENT STANDARD	NE.SC.HS -LS.	HS Life Sciences
STRAND	SC.HS.8.	Matter and Energy in Organisms and Ecosystems

SC.HS.8 Gather, analyze, and communicate evidence of the flow of energy and cycling of matter in organisms

INDICATOR

.3.

and ecosystems.

STRAND	SC.HS.8. 3.E.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STRAND	SC.HS.8. 3.F.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CONTENT STANDARD	NE.SC.HS -ESS.	HS Earth and Space Sciences
STRAND	SC.HS.1 2.	Weather and Climate
INDICATOR	SC.HS.1 2.2.	Gather, analyze, and communicate evidence to support that Earth's climate and weather are influenced by energy flow through Earth systems.
STRAND	SC.HS.12 .2.B.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
CONTENT STANDARD	NE.SC.HS -ESS.	HS Earth and Space Sciences
STRAND	SC.HS.1 5.	Sustainability
INDICATOR	SC.HS.1 5.5.	Gather, analyze, and communicate evidence to describe the interactions between society, environment, and economy.
STRAND	SC.HS.15 .5.A.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STRAND	SC.HS.15 .5.B.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
STRAND	SC.HS.15 .5.C.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

CONTENT STANDARD	NE.SC.HS P-P.	HS Physics – Plus Standards
STRAND	SC.HSP. 4.	Energy: Physics
INDICATOR	SC.HSP. 4.3.	Gather, analyze, and communicate evidence of the interactions of energy.

STRAND

SC.HSP. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that 4.3.D. account for societal needs and wants.

CONTENT STANDARD	NE.SC.HS P-P.	HS Physics – Plus Standards
STRAND	SC.HSP. 16.	Electricity and Magnetism
INDICATOR	SC.HSP. 16.4.	Gather, analyze, and communicate evidence of electricity and magnetism.

STRAND

SC.HSP. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that 16.4.G. account for societal needs and wants.

CONTENT STANDARD	NE.SC.HS P-C.	HS Chemistry – Plus Standards
STRAND	SC.HSP. 3.	Structure and Properties of Matter
INDICATOR	SC.HSP. 3.1.	Gather, analyze, and communicate evidence of the structure, properties, and interactions of matter.

STRAND

SC.HSP. Evaluate a solution to a complex, real-world problem based on prioritized criteria and tradeoffs that account for a 3.3.D. range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

CONTENT STANDARD	NE.SC.HS P-C.	HS Chemistry – Plus Standards
STRAND	SC.HSP. 4.	Energy: Chemistry
INDICATOR	SC.HSP. 4.2.	Gather, analyze, and communicate evidence of the interactions of energy.

STRAND

4.2.D.

SC.HSP. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

CONTENT STANDARD	NE.SC.HS P-B.	HS Biology – Plus Standards
STRAND	SC.HSP. 7.	Interdependent Relationships in Ecosystems
INDICATOR	SC.HSP. 7.2.	Gather, analyze, and communicate evidence of interdependent relationships in ecosystems.
STRAND	SC.HSP. 7.2.B.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STRAND	SC.HSP. 7.2.D.	Design, evaluate, and refine a solution for increasing the positive impacts of human activities on the environment and biodiversity.
STRAND	SC.HSP. 7.2.E.	Create or revise a simulation to test a solution to mitigate the impacts of human activity on biodiversity.
CONTENT STANDARD	NE.SC.HS P-B.	HS Biology – Plus Standards
STRAND	SC.HSP. 8.	Matter and Energy in Organisms and Ecosystems
INDICATOR	SC.HSP. 8.3.	Gather, analyze, and communicate evidence of the flow of energy and cycling of matter in organisms and ecosystems.
STRAND	SC.HSP. 8.3.E.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STRAND	SC.HSP. 8.3.F.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

CONTENT STANDARD	NE.SC.HS P-AP.	HS Anatomy and Physiology – Plus Standards
STRAND	SC.HSP. 18	Engineering in Health Sciences
INDICATOR	SC.HSP. 17.1.	Gather, analyze, and communicate evidence of the connection between health science careers and engineering.
STRAND	SC.HSP. 17.1.B.	Design a solution to a complex real-world problem affecting body systems that can be solved through engineering.

Nebraska Content Area Standards

Science

CONTENT STANDARD	NE.SC.HS -PS.	HS Physical Sciences
STRAND	SC.HS.2.	Waves and Electromagnetic Radiation
INDICATOR	SC.HS.2 .2.	Gather, analyze, and communicate evidence of the interactions of waves.
STRAND	SC.HS.2. 2.B.	Evaluate questions about the advantages of using digital transmission and storage of information.
CONTENT STANDARD	NE.SC.HS -PS.	HS Physical Sciences
STRAND	SC.HS.4	Energy
INDICATOR	SC.HS.4 .4.	Gather, analyze, and communicate evidence of the interactions of energy.
STRAND	SC.HS.4. 4.D.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CONTENT STANDARD	NE.SC.HS -LS.	HS Life Sciences
STRAND	SC.HS.7.	Interdependent Relationships in Ecosystems
INDICATOR	SC.HS.7 .2.	Gather, analyze, and communicate evidence of interdependent relationships in ecosystems.
STRAND	SC.HS.7. 2.B.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STRAND	SC.HS.7. 2.E.	Design, evaluate, and refine a solution for increasing the positive impacts of human activities on the environment and biodiversity.
STRAND	SC.HS.7.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

CONTENT STANDARD	NE.SC.HS -LS.	HS Life Sciences
STRAND	SC.HS.8.	Matter and Energy in Organisms and Ecosystems
INDICATOR	SC.HS.8 .3.	Gather, analyze, and communicate evidence of the flow of energy and cycling of matter in organisms and ecosystems.

STRAND	SC.HS.8. 3.E.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STRAND	SC.HS.8. 3.F.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CONTENT STANDARD	NE.SC.HS -ESS.	HS Earth and Space Sciences
STRAND	SC.HS.1 2.	Weather and Climate
INDICATOR	SC.HS.1 2.2.	Gather, analyze, and communicate evidence to support that Earth's climate and weather are influenced by energy flow through Earth systems.
STRAND	SC.HS.12 .2.B.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
CONTENT STANDARD	NE.SC.HS -ESS.	HS Earth and Space Sciences
STRAND	SC.HS.1 5.	Sustainability
INDICATOR	SC.HS.1 5.5.	Gather, analyze, and communicate evidence to describe the interactions between society, environment, and economy.
STRAND	SC.HS.15 .5.A.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STRAND	SC.HS.15 .5.B.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
STRAND	SC.HS.15 .5.C.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

CONTENT STANDARD	NE.SC.HS P-P.	HS Physics – Plus Standards
STRAND	SC.HSP. 4.	Energy: Physics
INDICATOR	SC.HSP. 4.3.	Gather, analyze, and communicate evidence of the interactions of energy.

STRAND

SC.HSP. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that 4.3.D. account for societal needs and wants.

CONTENT STANDARD	NE.SC.HS P-P.	HS Physics – Plus Standards
STRAND	SC.HSP. 16.	Electricity and Magnetism
INDICATOR	SC.HSP. 16.4.	Gather, analyze, and communicate evidence of electricity and magnetism.

STRAND

SC.HSP. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that 16.4.G. account for societal needs and wants.

CONTENT STANDARD	NE.SC.HS P-C.	HS Chemistry – Plus Standards
STRAND	SC.HSP. 3.	Structure and Properties of Matter
INDICATOR	SC.HSP. 3.1.	Gather, analyze, and communicate evidence of the structure, properties, and interactions of matter.

STRAND

SC.HSP. Evaluate a solution to a complex, real-world problem based on prioritized criteria and tradeoffs that account for a 3.3.D. range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

CONTENT STANDARD	NE.SC.HS P-C.	HS Chemistry – Plus Standards
STRAND	SC.HSP. 4.	Energy: Chemistry
INDICATOR	SC.HSP. 4.2.	Gather, analyze, and communicate evidence of the interactions of energy.

STRAND

4.2.D.

SC.HSP. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

CONTENT STANDARD	NE.SC.HS P-B.	HS Biology – Plus Standards
STRAND	SC.HSP. 7.	Interdependent Relationships in Ecosystems
INDICATOR	SC.HSP. 7.2.	Gather, analyze, and communicate evidence of interdependent relationships in ecosystems.
STRAND	SC.HSP. 7.2.B.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STRAND	SC.HSP. 7.2.D.	Design, evaluate, and refine a solution for increasing the positive impacts of human activities on the environment and biodiversity.
STRAND	SC.HSP. 7.2.E.	Create or revise a simulation to test a solution to mitigate the impacts of human activity on biodiversity.
CONTENT STANDARD	NE.SC.HS P-B.	HS Biology – Plus Standards
STRAND	SC.HSP. 8.	Matter and Energy in Organisms and Ecosystems
INDICATOR	SC.HSP. 8.3.	Gather, analyze, and communicate evidence of the flow of energy and cycling of matter in organisms and ecosystems.
STRAND	SC.HSP. 8.3.E.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STRAND	SC.HSP. 8.3.F.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

CONTENT STANDARD	NE.SC.HS P-AP.	HS Anatomy and Physiology – Plus Standards
STRAND	SC.HSP. 18	Engineering in Health Sciences
INDICATOR	SC.HSP. 17.1.	Gather, analyze, and communicate evidence of the connection between health science careers and engineering.
STRAND	SC.HSP. 17.1.B.	Design a solution to a complex real-world problem affecting body systems that can be solved through engineering.

Nebraska Content Area Standards

Technology Education

Grade 9 - Adopted: 2018		
CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence	
STRAND	BASIC TECHNOLOGY - Operations/Concepts	
INDICATOR	HARDWARE/SOFT WARE STANDARDS	
STRAND	Apply strategies for identifying and solving routine problems that occur during everyday computer use.	
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence	
STRAND	DIGITAL MEDIA	
INDICATOR	DIGITAL MEDIA STANDARDS	
STRAND	Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.	
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence	
STRAND	COMPUTER SCIENCE/PROGRAMMING	
INDICATOR	COMPUTATIONAL THINKING STANDARDS	
STRAND	Create algorithms, or series of ordered steps, to solve problems.	
STRAND	Decompose a problem into smaller more manageable parts.	
STRAND	Optimize an algorithm for execution by a computer.	
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.	

STRAND	Evaluate algorithms by their efficiency, correctness, and clarity.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

Write programs using visual (block-based) programming languages (scratch, code.org).

Nebraska Content Area Standards

Technology Education

Grade 10 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE STANDARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS

STRAND

Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
STRAND	Evaluate algorithms by their efficiency, correctness, and clarity.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).

Nevada Academic Content Standards

Mathematics

Grade 9 - Adopted: 2010

actices

CONTENT	NV.CC.M	Mathematical Pr
STANDARD	Ρ.	

STRAND / INDICATOR	MP-1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP-2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP-3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP-4.	Model with mathematics.
STRAND / INDICATOR	MP-6.	Attend to precision.
STRAND / INDICATOR	MP-7.	Look for and make use of structure.
STRAND / INDICATOR	MP-8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD	NV.CC.F.	Functions
STRAND / INDICATOR	F-IF.	Interpreting Functions
INDICATOR / GRADE LEVEL EXPECTATION		Interpret functions that arise in applications in terms of the context.
GRADE LEVEL EXPECTATION	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
		Nevada Academic Content Standards Mathematics Grade 10 - Adopted: 2010
CONTENT STANDARD	NV.CC.M P.	Mathematical Practices
STRAND / INDICATOR	MP-1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP-2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP-3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP-4.	Model with mathematics.
STRAND / INDICATOR	MP-6.	Attend to precision.

STRAND / INDICATOR	MP-7.	Look for and make use of structure.
STRAND / INDICATOR	MP-8.	Look for and express regularity in repeated reasoning.

CONTENT STANDARD	NV.CC.F.	Functions
STRAND / INDICATOR	F-IF.	Interpreting Functions
INDICATOR / GRADE LEVEL EXPECTATION		Interpret functions that arise in applications in terms of the context.
GRADE LEVEL EXPECTATION	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Nevada Academic Content Standards

Science

Grade 9 - Adopted: 2014		
CONTENT STANDARD	NV.HS- PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVELHS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.EXPECTATION2.

CONTENT STANDARD	NV.HS- LS.	LIFE SCIENCE
STRAND / INDICATOR	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GRADE LEVEL EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
GRADE LEVEL EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GRADE LEVEL EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT ST ANDARD	NV.HS- LS.	LIFE SCIENCE

STRAND / INDICATOR	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVELHS-LS4-Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.EXPECTATION6.

CONTENT STANDARD	NV.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS2.	Earth's Systems
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
GRADE LEVEL EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CONTENT STANDARD	NV.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GRADE LEVEL EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GRADE LEVEL EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
GRADE LEVEL EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CONTENT STANDARD	NV.HS- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	HS- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

GRADE LEVEL EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 9 - Adopted: 2010
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
CONTENT STANDARD	NV.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects

STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVELWHST.9-Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a styleEXPECTATION10.2(d)appropriate to the discipline and context as well as to the expertise of likely readers.

CONTENT STANDARD	NV.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

INDICATOR /WHST.9-Use technology, including the Internet, to produce, publish, and update individual or shared writing products, takingGRADE LEVEL10.6.advantage of technology's capacity to link to other information and to display information flexibly and dynamically.EXPECTATIONEXPECTATION

Nevada Academic Content Standards

Science

Grade 10 - Adopted: 2014

CONTENT STANDARD	NV.HS- PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVELHS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.EXPECTATION2.

CONTENT STANDARD	NV.HS- LS.	LIFE SCIENCE
STRAND / INDICATOR	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GRADE LEVEL EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
GRADE LEVEL EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GRADE LEVEL EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

CONTENT STANDARD	NV.HS- LS.	LIFE SCIENCE
STRAND / INDICATOR	HS-LS4.	Biological Evolution: Unity and Diversity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVELHS-LS4-Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.EXPECTATION6.

CONTENT STANDARD	NV.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS2.	Earth's Systems
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

GRADE LEVEL	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
EXPECTATION	ESS2-6.	and biosphere.

CONTENT STANDARD	NV.HS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	HS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GRADE LEVEL EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GRADE LEVEL EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
GRADE LEVEL EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

CONTENT STANDARD	NV.HS- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	HS- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVELHS-Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions thatEXPECTATIONETS1-1.account for societal needs and wants.

GRADE LEVEL EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 10 - Adopted: 2010
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD	NV.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
CONTENT STANDARD	NV.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects

STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVELWHST.9-Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a styleEXPECTATION10.2(d)appropriate to the discipline and context as well as to the expertise of likely readers.

CONTENT STANDARD	NV.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
	WHST 9-	Use technology including the Internet to produce publish and update individual or shared writing products taking

INDICATOR /	WHST.9-	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking
GRADE LEVEL	10.6.	advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
EXPECTATION		

Nevada Academic Content Standards

Technology Education

Grade 9 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL EXPECTATION P4.3.

Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL P6.1.

Systematically test computational artifacts by considering all scenarios and using test cases.

EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing

GRADE LEVEL EXPECTATION P7.1.

Select, organize, and interpret large data sets from multiple sources to support a claim.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Algorithms and Programming
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.AP.A.1.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Impacts of Computing
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.IC.C.2.	Test and refine computational artifacts to reduce bias and equity deficits.
CONTENT STANDARD		Grades 9-12 Advanced Computer Science Standards
STRAND / INDICATOR		Algorithms and Programming
INDICATOR / GRADE LEVEL EXPECTATION	A9- 12.AP.A.3.	Use and adapt classic algorithms to solve computational problems.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.ID.B.1.	Creatively use digital tools to support a design process and expand their understanding to identify constraints, trade- offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.ID.C.1.	Engage in a cyclical design process to inquire and analyze, develop ideas, test, and revise prototypes, presenting finished products and best practices learned during the development.
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.CT.A.1.	Define complex issues, create a plan, and select appropriate technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.CT.C.1.	Collaborate to break problems into component parts, identify key pieces, and use that information to problem-solve.

Nevada Academic Content Standards

Technology Education Grade 10 - Adopted: 2019

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices

INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.

GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL P4.3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONT ENT ST AND ARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

STRAND / INDICATOR

Practices

INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL EXPECTATION

EXPECTATION

P6.1. Systema

Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing

GRADE LEVELP7.1.Select, organize, and interpret large data sets from multiple sources to support a claim.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Algorithms and Programming
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.AP.A.1.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Impacts of Computing
INDICATOR / GRADE LEVEL	9- 12.IC.C.2.	Test and refine computational artifacts to reduce bias and equity deficits.

CONTENT
STANDARDGrades 9-12 Advanced Computer Science StandardsSTRAND /
INDICATORAlgorithms and ProgrammingINDICATOR /
GRADE LEVELA9-
12.AP.A.3.Use and adapt classic algorithms to solve computational problems.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.ID.B.1.	Creatively use digital tools to support a design process and expand their understanding to identify constraints, trade- offs, and to weigh risks.

INDICATOR /	9-	Engage in a cyclical design process to inquire and analyze, develop ideas, test, and revise prototypes, presenting
GRADE LEVEL	12.ID.C.1.	finished products and best practices learned during the development.
EXPECTATION		

INDICATOR /	9-	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
GRADE LEVEL	12.ID.D.1.	
EXPECTATION		

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	9- 12.CT.A.1.	Define complex issues, create a plan, and select appropriate technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.

INDICATOR /	9-	Collaborate to break problems into component parts, identify key pieces, and use that information to problem-solve.
GRADE LEVEL	12.CT.C.1.	
EXPECTATION		

New Hampshire College and Career Ready Standards

Mathematics

Grade 9 - Adopted: 2010

STRAND / STANDARD	NH.CC.M P.	Mathematical Practices
STANDARD / GLE	MP-1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP-2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP-4.	Model with mathematics.
STANDARD / GLE	MP-6.	Attend to precision.
STANDARD / GLE	MP-7.	Look for and make use of structure.
STANDARD / GLE	MP-8.	Look for and express regularity in repeated reasoning.

STRAND / STANDARD	NH.CC.F.	Functions
STANDARD / GLE	F-IF.	Interpreting Functions

GRADE LEVEL EXPECTATION	Interpret functions that arise in applications in terms of the context.

EXPECTATION F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

New Hampshire College and Career Ready Standards

Mathematics

Grade 10 - Adopted: 2010

STRAND / STANDARD	NH.CC.M P.	Mathematical Practices
STANDARD / GLE	MP-1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP-2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP-4.	Model with mathematics.
STANDARD / GLE	MP-6.	Attend to precision.
STANDARD / GLE	MP-7.	Look for and make use of structure.
STANDARD /	MP-8.	Look for and express regularity in repeated reasoning.

GLE

 STRAND / STANDARD
 NH.CC.F.
 Functions

 ST ANDARD / GLE
 F-IF.
 Interpreting Functions

 GRADE LEVEL EXPECT ATION
 Interpret functions that arise in applications in terms of the context.

 EXPECTATION
 F-IF.6.
 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

 KPECTATION
 F-IF.6.
 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

New Hampshire College and Career Ready Standards

Science

Grade 9 - Adopted: 2016

STRAND / STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
ST ANDARD / GLE	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION

2.

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

NGSS.HS LIFE SCIENCE STRAND / STANDARD 1.5 STANDARD / HS-LS2. Ecosystems: Interactions, Energy, and Dynamics GLE **GRADE LEVEL** Students who demonstrate understanding can: **EXPECTATION** EXPECTATION HS-LS2-Use mathematical representations to support and revise explanations based on evidence about factors affecting 2. biodiversity and populations in ecosystems of different scales. **EXPECTATION** HS-LS2-Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in 4. an ecosystem. **EXPECTATION** HS-LS2-Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the 5. biosphere, atmosphere, hydrosphere, and geosphere. **EXPECTATION** HS-LS2-Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and 7. biodiversity. NGSS.HS LIFE SCIENCE STRAND / STANDARD ·LS. STANDARD / HS-LS4. **Biological Evolution: Unity and Diversity** GLE **GRADE LEVEL** Students who demonstrate understanding can: **EXPECTATION EXPECTATION** HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. 6. NGSS.HS EARTH AND SPACE SCIENCE STRAND / STANDARD ESS. STANDARD / HS-Earth's Systems GLE ESS2. **GRADE LEVEL** Students who demonstrate understanding can: **EXPECTATION EXPECTATION** HS-Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in ESS2-4. climate. EXPECTATION HS-Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, ESS2-6. and biosphere. STRAND / NGSS.HS EARTH AND SPACE SCIENCE STANDARD ESS. STANDARD / HS-Earth and Human Activity GLE ESS3. **GRADE LEVEL** Students who demonstrate understanding can: **EXPECTATION**

EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
STANDARD / GLE	HS- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

New Hampshire College and Career Ready Standards

Science

Grade 10 - Adopted: 2016

STRAND / STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STANDARD / GLE	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

2.

STRAND / STANDARD	NGSS.HS -LS.	LIFE SCIENCE
ST ANDARD / GLE	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

biodiversity and populations in ecosystems of different scales.

EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

STRAND / STANDARD	NGSS.HS -LS.	LIFE SCIENCE
STANDARD / GLE	HS-LS4.	Biological Evolution: Unity and Diversity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. 6.

STRAND / STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / GLE	HS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	HS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
STRAND / STANDARD	NGSS.HS -ETS.	

STANDARD / GLE	HS- ET S1.	Engineering Design	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	
EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	
EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	
EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	
		New Hampshire College and Career Ready Standards	
		Technology Education	
		Grade 9 - Adopted: 2005	
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program	
ST ANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:	
GRADE LEVEL EXPECTATION	ICT.2.d.	Science	
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program	
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:	
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving	
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program	
STANDARD /	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:	

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

Grade 9 - Adopted: 2018

STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Algorithms & Programming
GRADE LEVEL	3A-AP-	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and

GRADE LEVEL 3A-AP- Create prototypes EXPECTATION 13. personal interests.

New Hampshire College and Career Ready Standards

Technology Education

Grade 10 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects
		Grade 10 - Adopted: 2018
STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.
		New Jersey Student Learning Standards Mathematics Grade 9 - Adopted: 2016
CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.

Attend to precision.

STRAND

STRAND

MP.6.

MP.7.

STRAND MP.8. Look for and express regularity in repeated reasoning.

Look for and make use of structure.

CONTENT AREA / STANDARD	NJ.F.	Functions
STRAND	F-IF.	Interpreting Functions
CONTENT STATEMENT	F-IF.B.	Interpret functions that arise in applications in terms of the context
		Coloulate and interpret the overage rate of change of a function (precented cumbalically or equal table) over a

CUMULATIVE	F-IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
PROGRESS		specified interval. Estimate the rate of change from a graph.
INDICATOR		

New Jersey Student Learning Standards Mathematics

Grade 10 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.
STRAND	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT AREA / STANDARD	NJ.F.	Functions
STRAND	F-IF.	Interpreting Functions
CONTENT STATEMENT	F-IF.B.	Interpret functions that arise in applications in terms of the context
CUMULATIVE PROGRESS	F-IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

New Jersey Student Learning Standards

INDICATOR

Science

Grade 9 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	HS-PS.	Physical Science
STRAND	HS-PS4:	Waves and Their Applications in Technologies for Information Transfer

CONTENT

STATEMENT

6.

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

STATEMENT 2.

CONTENT AREA / STANDARD	HS-LS.	Life Science
STRAND	HS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STATEMENT	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
CONTENT STATEMENT	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
CONTENT STATEMENT	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CONTENT STATEMENT	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT AREA / STANDARD	HS-LS.	Life Science
STRAND	HS-LS4:	Biological Evolution: Unity and Diversity
CONTENT	HS-LS4-	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

 CONTENT AREA / STANDARD
 HS-ESS.
 Earth and Space Science

 STRAND
 HS-ESS2:
 Earth's Systems

 CONTENT STATEMENT
 HS-ESS2-4.
 Lise a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

CONTENT AREA / STANDARD	HS-ESS.	Earth and Space Science
STRAND	HS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and climate change have influenced human activity.
CONTENT STATEMENT	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
CONTENT STATEMENT	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
CONTENT STATEMENT	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity (i.e., climate change).

CONTENT AREA / STANDARD	HS-ET S.	Engineering, Technology and Applications of Science
STRAND	HS- ET S1:	Engineering Design
CONTENT STATEMENT	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CONTENT STATEMENT	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
CONTENT STATEMENT	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

New Jersey Student Learning Standards Science

Grade 10 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	HS-PS.	Physical Science
STRAND	HS-PS4:	Waves and Their Applications in Technologies for Information Transfer
CONTENT STATEMENT	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.

CONTENT AREA / STANDARD	HS-LS.	Life Science
STRAND	HS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STATEMENT	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
CONTENT STATEMENT	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
CONTENT STATEMENT	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CONTENT STATEMENT	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT AREA / STANDARD	HS-LS.	Life Science
STRAND	HS-LS4:	Biological Evolution: Unity and Diversity
CONTENT STATEMENT	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
CONTENT AREA / STANDARD	HS-ESS.	Earth and Space Science

STRAND	HS- ESS2:	Earth's Systems
CONTENT STATEMENT	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
CONTENT AREA / STANDARD	HS-ESS.	Earth and Space Science
STRAND	HS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and climate change have influenced human activity.
CONTENT STATEMENT	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
CONTENT STATEMENT	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
CONTENT STATEMENT	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity (i.e., climate change).
CONTENT AREA / STANDARD	HS-ETS.	Engineering, Technology and Applications of Science
STRAND	HS- ET S1:	Engineering Design
CONTENT STATEMENT	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CONTENT STATEMENT	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
CONTENT STATEMENT	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

New Jersey Student Learning Standards

Technology Education

Grade 9 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts

CONTENT STATEMENT	Te Th int int pra	esting and refinement is the deliberate and iterative process of improving a computational artifact. his process includes debugging (identifying and fixing errors) and comparing actual outcomes to itended outcomes. Students also respond to the changing needs and expectations of end users and nprove the performance, reliability, usability, and accessibility of artifacts. When engaging in this ractice, students:
----------------------	-------------------------------	---

```
CUMULATIVE
PROGRESS
INDICATOR
```

Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Impacts of Computing
CONTENT STATEMENT		The design and use of computing technologies and artifacts can positively or negatively affect equitable access to information and opportunities.

CUMULATIVE8.1.12.IC. Test and refine computational artifacts to reduce bias and equity deficits.PROGRESS2:INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation.

CUMULATIVE8.1.12.APDesign algorithms to solve computational problems using a combination of original and existing algorithms.PROGRESS.1:INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources, libraries, and tools.

CUMULATIVE	8.1.12.AP	Collaboratively document and present design decisions in the development of complex programs.
PROGRESS	.9:	
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a complex process in which creativity, content knowledge, research, and analysis are used to address local and global problems. Decisions on trade-offs involve systematic comparisons of all costs and benefits, and final steps that may involve redesigning for optimization.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .1:	Use research to design and create a product or system that addresses a problem and make modifications based on input from potential consumers.

CUMULATIVE	8.2.12.ED	Design a product or system that addresses a global problem and document decisions made based on research,
PROGRESS	.4:	constraints, trade-offs, and aesthetic and ethical considerations and share this information with an appropriate
INDICATOR		audience.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design evaluation, a process for determining how well a solution meets requirements, involves systematic comparisons between requirements, specifications, and constraints.
CUMULATIVE	8.2.12.ED .5:	Evaluate the effectiveness of a product or system based on factors that are related to its requirements, specifications, and constraints (e.g., safety, reliability, economic considerations, quality control, environmental

CUMULATIVE	8.2.12.ED	Analyze the effects of changing resources when designing a specific product or system (e.g., materials, energy,
PROGRESS	.6:	tools, capital, labor).
INDICATOR		

 $\label{eq:concerns} concerns, manufacturability, maintenance and repair, ergonomics).$

INDICATOR

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Interaction of Technology and Humans
CONTENT STATEMENT		Decisions to develop new technology are driven by societal and cultural opinions and demands that differ from culture to culture.
	0.0.10 1711	Applying a product to determine the impact that appropriate political applied and/or sultural factors have had applied

CUMULATIVE	8.2.12.ITH	Analyze a product to determine the impact that economic, political, social, and/or cultural factors have had on its
PROGRESS	.1:	design, including its design constraints.
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Development and modification of any technological system needs to take into account how the operation of the system will affect natural resources and ecosystems. Impacts of technological systems on the environment need to be monitored and must inform decision-making. Many technologies have been designed to have a positive impact on the environment and to monitor environmental change over time.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ET W.1:	Evaluate ethical considerations regarding the sustainability of environmental resources that are used for the design, creation, and maintenance of a chosen product.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ET W.2:	Synthesize and analyze data collected to monitor the effects of a technological product or system on the environment.

New Jersey Student Learning Standards

Technology Education

Grade 10 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture

CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational
	artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT AREA /	Computer Science and Design Thinking Practices
STANDARD	
STRAND	6 Testing and Refining Computational Artifacts
CONTENT STATEMENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:

CUMULATIVE
PROGRESS
INDICATOR

Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT
AREA /
STANDARD8.1.Computer Science and Design Thinking - Computer ScienceSTRANDImpacts of ComputingCONTENT
STATEMENTThe design and use of computing technologies and artifacts can positively or negatively affect
equitable access to information and opportunities.

CUMULATIVE8.1.12.IC. Test and refine computational artifacts to reduce bias and equity deficits.PROGRESS2:INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation.
	9 1 12 AD	Design algorithms to solve computational problems using a combination of original and existing algorithms

CUMULATIVE	8.1.12.AP	Design algorithms to solve computational problems using a combination of original and existing algorithms.
PROGRESS	.1:	
INDICATOR		

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources, libraries, and tools.
CUMULATIVE PROGRESS INDICATOR	8.1.12.AP .9:	Collaboratively document and present design decisions in the development of complex programs.
CONTENT	8.2.	Computer Science and Design Thinking – Design Thinking

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a complex process in which creativity, content knowledge, research, and analysis are used to address local and global problems. Decisions on trade-offs involve systematic comparisons of all costs and benefits, and final steps that may involve redesigning for optimization.
-------------------------------------	-------------------	--
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .1:	Use research to design and create a product or system that addresses a problem and make modifications based on input from potential consumers.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .4:	Design a product or system that addresses a global problem and document decisions made based on research, constraints, trade-offs, and aesthetic and ethical considerations and share this information with an appropriate audience.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design evaluation, a process for determining how well a solution meets requirements, involves systematic comparisons between requirements, specifications, and constraints.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .5:	Evaluate the effectiveness of a product or system based on factors that are related to its requirements, specifications, and constraints (e.g., safety, reliability, economic considerations, quality control, environmental concerns, manufacturability, maintenance and repair, ergonomics).
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .6:	Analyze the effects of changing resources when designing a specific product or system (e.g., materials, energy, tools, capital, labor).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Interaction of Technology and Humans
CONTENT STATEMENT		Decisions to develop new technology are driven by societal and cultural opinions and demands that differ from culture to culture.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ITH .1:	Analyze a product to determine the impact that economic, political, social, and/or cultural factors have had on its design, including its design constraints.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Development and modification of any technological system needs to take into account how the operation of the system will affect natural resources and ecosystems. Impacts of technological systems on the environment need to be monitored and must inform decision-making. Many technologies have been designed to have a positive impact on the environment and to monitor environmental change over time.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ET W.1:	Evaluate ethical considerations regarding the sustainability of environmental resources that are used for the design, creation, and maintenance of a chosen product.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ET W.2:	Synthesize and analyze data collected to monitor the effects of a technological product or system on the environment.

Grade 9 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.

STRAND / CONTENT STANDARD	NM.F.	Functions
BENCHMARK / STANDARD	F-IF.	Interpreting Functions
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Interpret functions that arise in applications in terms of the context.
PERFORMANCE	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

New Mexico Content Standards

specified interval. Estimate the rate of change from a graph.

STANDARD /

INDICATOR

Mathematics

Grade 10 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.

BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
STRAND / CONTENT STANDARD	NM.F.	Functions
BENCHMARK / ST ANDARD	F-IF.	Interpreting Functions
PERFORMANC E ST ANDARD / BENCHMARK /		Interpret functions that arise in applications in terms of the context.

PERFORMANCE	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
STANDARD /		specified interval. Estimate the rate of change from a graph.
INDICATOR		

PROFICIENCY

New Mexico Content Standards

Science

Grade 9 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
BENCHMARK / STANDARD	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. STANDARD / 2. INDICATOR

STRAND / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
BENCHMARK / STANDARD	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCEHS-LS2-Use mathematical representations to support and revise explanations based on evidence about factors affecting
biodiversity and populations in ecosystems of different scales.INDICATOR-

PERFORMANCE STANDARD / INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANCE STANDARD / INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANCE STANDARD / INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

STRAND / CONTENT STANDARD	NM.HS- LS.	
BENCHMARK / STANDARD	HS-LS2.	Interdependent Relationships in Ecosystems
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCEHS-LS2-7Using a local issue in your solution design, describe and analyze the advantages and disadvantages of humanSTANDARD /NM.activities that support the local population such as reclamation projects, building dams, and habitat restoration.INDICATORINDICATORINDICATOR

STRAND / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
BENCHMARK / STANDARD	HS-LS4.	Biological Evolution: Unity and Diversity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

STRAND / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	HS- ESS2.	Earth's Systems
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
PERFORMANCE STANDARD / INDICATOR	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

STRAND / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	HS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANCE STANDARD / INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANCE STANDARD / INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
PERFORMANCE STANDARD / INDICATOR	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / CONTENT STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	HS- ETS1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANCE STANDARD / INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
PERFORMANCE STANDARD / INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STRAND / CONTENT STANDARD	NM.SS.	SCIENCE AND SOCIETY
BENCHMARK / STANDARD	HS-SS.	Science and Society
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

STANDARD / NM. INDICATOR

PERFORMANCE HS-SS-1 Obtain and communicate information about the role of New Mexico in nuclear science and 21st century innovations including how the national laboratories have contributed to theoretical, experimental, and applied science; have illustrated the interdependence of science, engineering, and technology; and have used systems involving hardware, software, production, simulation, and information flow.

New Mexico Content Standards Science

Grade 10 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
BENCHMARK / STANDARD	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. STANDARD / 2.

INDICATOR

STRAND / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
BENCHMARK / STANDARD	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANCE STANDARD / INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANCE STANDARD / INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANCE STANDARD / INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND / CONTENT STANDARD	NM.HS- LS.	LIFE SCIENCE
BENCHMARK / STANDARD	HS-LS2.	Interdependent Relationships in Ecosystems
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCEHS-LS2-7Using a local issue in your solution design, describe and analyze the advantages and disadvantages of humanSTANDARD /NM.activities that support the local population such as reclamation projects, building dams, and habitat restoration.INDICATORVV

STRAND / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
BENCHMARK / STANDARD	HS-LS4.	Biological Evolution: Unity and Diversity
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 HS-LS4 Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

 STANDARD /
 6.

INDICATOR

STRAND / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	HS- ESS2.	Earth's Systems
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE	HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in
STANDARD /	ESS2-4.	climate.
INDICATOR		

 PERFORMANCE
 HS Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,

 STANDARD /
 ESS2-6.
 and biosphere.

 INDICATOR

STRAND / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	HS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
PERFORMANCE STANDARD / INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
PERFORMANCE STANDARD / INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

PERFORMANCE HS-STANDARD / ESS3-6. INDICATOR

Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / CONTENT STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	HS- ETS1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
PERFORMANCE STANDARD / INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
PERFORMANCE STANDARD / INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STRAND / CONTENT STANDARD	NM.SS.	SCIENCE AND SOCIETY
BENCHMARK /	HS-SS.	Science and Society

PERFORMANC Students who demonstrate understanding can: E ST ANDARD / BENCHMARK / PROFICIENCY PROFICIENCY	

PERFORMANCEHS-SS-1Obtain and communicate information about the role of New Mexico in nuclear science and 21st century innovationsSTANDARD /NM.including how the national laboratories have contributed to theoretical, experimental, and applied science; haveINDICATORillustrated the interdependence of science, engineering, and technology; and have used systems involving
hardware, software, production, simulation, and information flow.

New Mexico Content Standards Technology Education Grade 9 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.3 A.	Level 3A (Ages 14-16)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	3A-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms

INDICATOR 3A-AP- Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and 13. personal interests. (P5.2)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.3 A.	Level 3A (Ages 14-16)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	3A-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Culture

INDICATOR

3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)

New Mexico Content Standards

Technology Education

Grade 10 - Adopted: 2019

		· · ·
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.3 A.	Level 3A (Ages 14-16)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	3A-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms
INDICATOR	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. (P5.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.3 A.	Level 3A (Ages 14-16)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	3A-IC.	Impacts of Computing
PERFORMANC E ST ANDARD /		Culture

E STANDARD

INDICATOR

3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2)

New York State Learning Standards and Core Curriculum Mathematics Grade 9 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
CATEGORY / CLUSTER / KEY IDEA	MP.8	Look for and express regularity in repeated reasoning.
STRAND / DOMAIN / UNIFYING THEME		Algebra I
CATEGORY / CLUSTER / KEY IDEA	AI-F.IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT UAL UNDERST AND ING		Interpret functions that arise in applications in terms of the context.
EXPECTATION / CONTENT SPECIFICATION	AI-F.IF.6.	Calculate and interpret the average rate of change of a function over a specified interval. (Shared standard with Algebra II)
STRAND / DOMAIN / UNIFYING THEME		Algebra II

CATEGORY / CLUSTER / KEY IDEA

All-F.IF.

Functions - Interpreting Functions

ST ANDARD / CONCEPT UAL UNDERST AND ING		Interpret functions that arise in applications in terms of the context.
EXPECTATION / CONTENT SPECIFICATION	All-F.IF.6.	Calculate and interpret the average rate of change of a function over a specified interval. (Shared standard with Algebra I)
		New York State Learning Standards and Core Curriculum
		Mathematics Grade 10 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
CATEGORY / CLUSTER / KEY IDEA	MP.8	Look for and express regularity in repeated reasoning.
STRAND / DOMAIN / UNIFYING THEME		Algebra I
CATEGORY / CLUSTER / KEY IDEA	AI-F.IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPTUAL UNDERST AND ING		Interpret functions that arise in applications in terms of the context.

EXPECTATION /	AI-F.IF.6.	Calculate and interpret the average rate of change of a function over a specified interval. (Shared standard with
CONTENT		Algebra II)
SPECIFICATION		

STRAND / DOMAIN / UNIFYING THEME		Algebra II
CATEGORY / CLUSTER / KEY IDEA	All-F.IF.	Functions - Interpreting Functions
ST ANDARD / CONCEPT UAL UNDERST AND ING		Interpret functions that arise in applications in terms of the context.

New York State Learning Standards and Core Curriculum

Science Grade 9 - Adopted: 2016

STRAND /	NY.HS.5.	Waves and Electromagnetic Radiation
UNIFYING THEME		
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

NG

STRAND / DOMAIN / UNIFYING THEME	NY.HS.7.	Matter and Energy in Organisms and Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 5.	Develop a model to illustrate the role of various processes in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.8.	Interdependent Relationships in Ecosystems

CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.13	Earth's Systems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.14	Weather and Climate
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.15	Human Sustainability
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

STRAND / DOMAIN / UNIFYING THEME	NY.HS.ED	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Grade 9 - Adopted: 2011

STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY <i>I</i> CLUSTER <i>I</i> KEYIDEA		Craft and Structure

STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / CONTENT SPECIFICATION	9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER /		Production and Distribution of Writing

STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

STANDARD /9-Use technology, including the Internet, to produce, publish, and update individual or shared writing products, takingCONCEPTUAL10.WHST.advantage of technology's capacity to link to other information and to display information flexibly and dynamically.UNDERSTANDI6.NGVI

New York State Learning Standards and Core Curriculum

Science

Grade 10 - Adopted: 2016		
STRAND / DOMAIN / UNIFYING THEME	NY.HS.5.	Waves and Electromagnetic Radiation
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.7.	Matter and Energy in Organisms and Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 5.	Develop a model to illustrate the role of various processes in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.8.	Interdependent Relationships in Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

STANDARD / CONCEPTUAL UNDERSTANDI NG	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.13	Earth's Systems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.14	Weather and Climate
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
STRAND / DOMAIN / UNIFYING THEME	NY.HS.15	Human Sustainability
STRAND / DOMAIN / UNIFYING THEME CATEGORY / CLUSTER / KEY IDEA	NY.HS.15	Human Sustainability Students who demonstrate understanding can:
STRAND / DOMAIN / UNIFYING THEME CATEGORY / CLUSTER / KEY IDEA STANDARD / CONCEPTUAL UNDERSTANDI NG	NY.HS.15 HS- ESS3-1.	Human Sustainability Students who demonstrate understanding can: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
STANDARD / UNIFYING THEME CAT EGORY / CLUSTER / KEY IDEA STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG	NY.HS.15 HS- ESS3-1. HS- ESS3-2.	Human Sustainability Students who demonstrate understanding can: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG	NY.HS.15 HS- ESS3-1. HS- ESS3-2. HS- ESS3-3.	Human Sustainability Students who demonstrate understanding can: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

STRAND / DOMAIN / UNIFYING	NY.HS.ED	Engineering Design
THEME		
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
STANDARD / CONCEPTUAL UNDERSTANDI NG	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 10 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY <i> </i> CLUSTER <i> </i> KEYIDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.RST.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / CONTENT SPECIFICATION	9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STRAND / DOMAIN / UNIFYING THEME	NY.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI NG	9- 10.WHST. 6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Technology Education

Grade 9 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students engage in the following steps in a design process initiate and carry out a thorough investigation of an unfamiliar situation and identify needs and opportunities for technological invention or innovation.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.2.	Students identify, locate, and use a wide range of information resources including subject experts, library references, magazines, videotapes, films, electronic data bases and on-line services, and discuss and document through notes and sketches how findings relate to the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students generate creative solution ideas, break ideas into the significant functional elements, and explore possible refinements; predict possible outcomes using mathematical and functional modeling techniques; choose the optimal solution to the problem, clearly documenting ideas against design criteria and constraints; and explain how human values, economics, ergonomics, and environmental considerations have influenced the solution.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop work schedules and plans which include optimal use and cost of materials, processes, time, and expertise; construct a model of the solution, incorporating developmental modifications while working to a high degree of quality (craftsmanship).
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.5.	Students in a group setting, devise a test of the solution relative to the design criteria and perform the test; record, portray, and logically evaluate performance test results through quantitative, graphic, and verbal means; and use a variety of creative verbal and graphic techniques effectively and persuasively to present conclusions, predict impacts and new problems, and suggest and pursue modifications.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.3.	Computer Technology: Computers, as tools for design, modeling, information processing, communication, and system control, have greatly increased human productivity and knowledge.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.3.5.	Students develop an understanding of computer programming and attain some facility in writing computer programs.
		New York State Learning Standards and Core Curriculum Technology Education Grade 10 - Adopted: 1996
STRAND /	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and

STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students engage in the following steps in a design process initiate and carry out a thorough investigation of an unfamiliar situation and identify needs and opportunities for technological invention or innovation.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.2.	Students identify, locate, and use a wide range of information resources including subject experts, library references, magazines, videotapes, films, electronic data bases and on-line services, and discuss and document through notes and sketches how findings relate to the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students generate creative solution ideas, break ideas into the significant functional elements, and explore possible refinements; predict possible outcomes using mathematical and functional modeling techniques; choose the optimal solution to the problem, clearly documenting ideas against design criteria and constraints; and explain how human values, economics, ergonomics, and environmental considerations have influenced the solution.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop work schedules and plans which include optimal use and cost of materials, processes, time, and expertise; construct a model of the solution, incorporating developmental modifications while working to a high degree of quality (craftsmanship).
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.5.	Students in a group setting, devise a test of the solution relative to the design criteria and perform the test; record, portray, and logically evaluate performance test results through quantitative, graphic, and verbal means; and use a variety of creative verbal and graphic techniques effectively and persuasively to present conclusions, predict impacts and new problems, and suggest and pursue modifications.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.3.	Computer Technology: Computers, as tools for design, modeling, information processing, communication, and system control, have greatly increased human productivity and knowledge.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.3.5.	Students develop an understanding of computer programming and attain some facility in writing computer programs.

North Carolina Standard Course of Study

Mathematics

Grade 9 - Adopted: 2016/IMPL 2016

CONTENT AREA / STRAND		Math 1
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING	MP.8.	Look for and express regularity in repeated reasoning.

```
OBJECTIVE
```

CONTENT AREA / STRAND	Math 1
STRAND / ESSENTIAL STANDARD	Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Interpret functions that arise in applications in terms of the context.

CLARIFYINGNC.M1.F-Calculate and interpret the average rate of change over a specified interval for a function presented numerically,OBJECTIVEIF.6.graphically, and/or symbolically.

CONTENT AREA / STRAND		Math 1
STRAND / ESSENTIAL STANDARD		Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Analyze functions using different representations.
CLARIFYING OBJECTIVE	NC.M1.F- IF.7.	Analyze linear, exponential, and quadratic functions by generating different representations, by hand in simple cases and using technology for more complicated cases, to show key features, including: domain and range; rate of change; intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; and end behavior.

CONTENT AREA / STRAND	Math 2
STRAND / ESSENTIAL STANDARD	Standards for Mathematical Practice

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT AREA / STRAND		Math 2
STRAND / ESSENTIAL STANDARD		Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Interpret functions that arise in applications in terms of the context.

CLARIFYING NC.M OBJECTIVE IF.4.

NC.M2.F- Interpret key features of graphs, tables, and verbal descriptions in context to describe functions that arise in applications relating two quantities, including: domain and range, rate of change, symmetries, and end behavior.

CONTENT AREA / STRAND	Math 2
STRAND / ESSENTIAL STANDARD	Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Analyze functions using different representations.

CLARIFYING	NC.M2.F-	Analyze quadratic, square root, and inverse variation functions by generating different representations, by hand in
OBJECTIVE	IF.7.	simple cases and using technology for more complicated cases, to show key features, including: domain and range;
		intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; maximums
		and minimums; symmetries; and end behavior.

CONTENT AREA / STRAND		Math 3
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.

CONTENT AREA / STRAND	Math 3
STRAND / ESSENTIAL STANDARD	Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Analyze functions using different representations.

CLARIFYING

OBJECTIVE IF.7.

NC.M3.F- Analyze piecewise, absolute value, polynomials, exponential, rational, and trigonometric functions (sine and cosine) using different representations to show key features of the graph, by hand in simple cases and using technology for more complicated cases, including: domain and range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; relative maximums and minimums; symmetries; end behavior; period; and discontinuities.

Grade 9 - Adopted: 2019/IMPL 2020

CONTENT AREA / STRAND		Math 4
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.9.	Use strategies and procedures flexibly.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.10.	Reflect on mistakes and misconceptions.

CONTENT AREA / STRAND		Discrete Mathematics for Computer Science
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.9.	Use strategies and procedures flexibly.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.10.	Reflect on mistakes and misconceptions.
CONTENT AREA / STRAND		Precalculus
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.9.	Use strategies and procedures flexibly.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.10.	Reflect on mistakes and misconceptions.
		North Carolina Standard Course of Study Mathematics
		Grade 10 - Adopted: 2016/IMPL 2016
		Math 1

AREA / STRAND	
STRAND / ESSENTIAL STANDARD	Standards for Mathematical Practice

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.

CONTENT AREA / STRAND		Math 1
STRAND / ESSENTIAL STANDARD		Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Interpret functions that arise in applications in terms of the context.
CLARIFYING OBJECTIVE	NC.M1.F- IF.6.	Calculate and interpret the average rate of change over a specified interval for a function presented numerically, graphically, and/or symbolically.

CONTENT AREA / STRAND	Math 1
STRAND / ESSENTIAL STANDARD	Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Analyze functions using different representations.

CLARIFYING OBJECTIVE	NC.M1.F- IF.7.	Analyze linear, exponential, and quadratic functions by generating different representations, by hand in simple cases and using technology for more complicated cases, to show key features, including: domain and range; rate of change; intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; and end behavior.
CONTENT AREA / STRAND		Math 2
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIEYING	MP.8.	Look for and express regularity in repeated reasoning.

CONTENT AREA / STRAND	Math 2
STRAND / ESSENTIAL STANDARD	Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Interpret functions that arise in applications in terms of the context.

OBJECTIVE

CLARIFYINGNC.M2.F-Interpret key features of graphs, tables, and verbal descriptions in context to describe functions that arise inOBJECTIVEIF.4.applications relating two quantities, including: domain and range, rate of change, symmetries, and end behavior.

CONTENT AREA / STRAND	Math 2
STRAND / ESSENTIAL STANDARD	Functions: Interpreting Functions
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Analyze functions using different representations.

CLARIFYING NC. OBJECTIVE IF.7.

NC.M2.F- Analyze quadratic, square root, and inverse variation functions by generating different representations, by hand in IF.7. simple cases and using technology for more complicated cases, to show key features, including: domain and range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; maximums and minimums; symmetries; and end behavior.

CONTENT AREA / STRAND		Math 3
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.

ESSENTIAL
STANDARD /
CLARIFYING
OBJECTIVE

MP.8. Look for and express regularity in repeated reasoning.

CONTENT
AREA / STRANDMath 3STRAND /
ESSENTIAL
STANDARDFunctions: Interpreting FunctionsESSENTIAL
STANDARD /
CLARIFYING
OBJECTIVEAnalyze functions using different representations.

CLARIFYING NC. OBJECTIVE IF.7.

NC.M3.F- Analyze piecewise, absolute value, polynomials, exponential, rational, and trigonometric functions (sine and cosine) IF.7. using different representations to show key features of the graph, by hand in simple cases and using technology for more complicated cases, including: domain and range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; relative maximums and minimums; symmetries; end behavior; period; and discontinuities.

Grade 10 - Adopted: 2019/IMPL 2020

CONTENT AREA / STRAND		Math 4
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.9.	Use strategies and procedures flexibly.
ESSENTIAL STANDARD /	MP.10.	Reflect on mistakes and misconceptions.

CLARIFYING OBJECTIVE

CONTENT AREA / STRAND		Discrete Mathematics for Computer Science
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.9.	Use strategies and procedures flexibly.
ESSENTIAL	MP.10.	Reflect on mistakes and misconceptions.

STANDARD / CLARIFYING OBJECTIVE

CONTENT AREA / STRAND		Precalculus
STRAND / ESSENTIAL STANDARD		Standards for Mathematical Practice
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.4.	Model with mathematics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.6.	Attend to precision.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.7.	Look for and make use of structure.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.8.	Look for and express regularity in repeated reasoning.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	MP.9.	Use strategies and procedures flexibly.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE

North Carolina Standard Course of Study

Science

Grade 9 - Adopted: 2010

CONTENT AREA / STRAND	NC.Bio.	Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Bio.2.1.	Analyze the interdependence of living organisms within their environments.

CLARIFYING OBJECTIVE Bio.2.1.1. Analyze the flow of energy and cycling of matter (water, carbon, nitrogen and oxygen) through ecosystems relating the significance of each to maintaining the health and sustainability of an ecosystem.

CONTENT AREA / STRAND	NC.Bio.	Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Bio.2.2.	Understand the impact of human activities on the environment (one generation affects the next).
CLARIFYING OBJECTIVE	Bio.2.2.1.	Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat destruction and introduction of nonnative species) may impact the environment.
CLARIFYING OBJECTIVE	Bio.2.2.2.	Explain how the use, protection and conservation of natural resources by humans impact the environment from one generation to the next.

CONTENT AREA / STRAND	NC.EEn.	Earth/Environmental Science
STRAND / ESSENTIAL STANDARD		Earth: Systems, Structures and Processes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	EEn.2.2.	Understand how human influences impact the lithosphere.
CLARIFYING	EEn.2.2.1.	Explain the consequences of human activities on the lithosphere (such as mining, deforestation, agriculture,

OBJECTIVE

EEn.2.2.1. Explain the consequences of human activities on the lithosphere (such as mining, deforestation, agriculture, overgrazing, urbanization, and land use) past and present.

CONTENT AREA / STRAND	NC.EEn.	Earth/Environmental Science
STRAND / ESSENTIAL STANDARD		Earth: Systems, Structures and Processes

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	EEn.2.6.	Analyze patterns of global climate change over time.
CLARIFYING OBJECTIVE	EEn.2.6.2.	Explain changes in global climate due to natural processes.
CLARIFYING OBJECTIVE	EEn.2.6.3.	Analyze the impacts that human activities have on global climate change (such as burning hydrocarbons, greenhouse effect, and deforestation).
CLARIFYING OBJECTIVE	EEn.2.6.4.	Attribute changes in Earth systems to global climate change (temperature change, changes in pH of ocean, sea level changes, etc.).
CONTENT AREA / STRAND	NC.EEn.	Earth/Environmental Science
CONTENT AREA / STRAND STRAND / ESSENTIAL STANDARD	NC.EEn.	Earth/Environmental Science Earth: Systems, Structures and Processes
CONTENT AREA / STRAND STRAND / ESSENTIAL STANDARD ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.EEn.	Earth/Environmental Science Earth: Systems, Structures and Processes Explain how the lithosphere, hydrosphere, and atmosphere individually and collectively affect the biosphere.
CONTENT AREA / STRAND	EEn.2.7.2.	Earth/Environmental Science Earth: Systems, Structures and Processes Explain how the lithosphere, hydrosphere, and atmosphere individually and collectively affect the biosphere. Explain why biodiversity is important to the biosphere.

OBJECTIVE

EEn.2.7.3. Explain how human activities impact the biosphere.

CONTENT AREA / STRAND	NC.OBio.	Occupational Course of Study - Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	OBio.2. 1.	Analyze the interdependence of living organisms within their environments.

CLARIFYING Bio.2.1.1. Compare the flow of energy and cycling of matter (water, carbon, nitrogen and oxygen) through ecosystems relating OBJECTIVE the significance of each to maintaining the health and sustainability of an ecosystem.

CONTENT AREA / STRAND	NC.OBio.	Occupational Course of Study - Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	OBio.2. 2.	Understand the impact of human activities on the environment (one generation affects the next).

CLARIFYING Bio.2.2.1. Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat OBJECTIVE destruction and introduction of nonnative species) may impact the environment.

CLARIFYING OBJECTIVE	Bio.2.2.2.	Explain how the use, protection and conservation of natural resources by humans impact the environment from one generation to the next.
CONTENT AREA / STRAND	NC.OA.	Occupational Course of Study - Applied Science
STRAND / ESSENTIAL STANDARD		The Environment
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	OA6.1.	Understand how humans can have positive and negative effects on the environment.
CLARIFYING OBJECTIVE	OA6.1.1.	Explain how humans can have a positive impact on natural resources.
CLARIFYING OBJECTIVE	OA6.1.2.	Explain the effects of pollution on the earth, air and waterways and what can be done at the individual, family and community level to reduce pollution.
CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL	9-	Compare and contrast findings presented in a text to those from other sources (including their own experiments),
------------	-----------	--
STANDARD /	10.RST.9.	noting when the findings support or contradict previous explanations or accounts.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

CONTENT AREA / STRAND	NC.CC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CLARIFYING OBJECTIVE	9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
CONTENT AREA / STRAND	NC.CC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects

STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.WHST. 6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

North Carolina Standard Course of Study

Science

Grade 10 - Adopted: 2010

CONTENT AREA / STRAND	NC.Bio.	Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Bio.2.1.	Analyze the interdependence of living organisms within their environments.

CLARIFYING OBJECTIVE Bio.2.1.1. Analyze the flow of energy and cycling of matter (water, carbon, nitrogen and oxygen) through ecosystems relating the significance of each to maintaining the health and sustainability of an ecosystem.

CONTENT AREA / STRAND	NC.Bio.	Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Bio.2.2.	Understand the impact of human activities on the environment (one generation affects the next).
CLARIFYING OBJECTIVE	Bio.2.2.1.	Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat destruction and introduction of nonnative species) may impact the environment.

CLARIFYING	Bio.2.2.2.	Explain how the use, protection and conservation of natural resources by humans impact the environment from one
OBJECTIVE		generation to the next.

CONTENT AREA / STRAND	NC.EEn.	Earth/Environmental Science
STRAND / ESSENTIAL STANDARD		Earth: Systems, Structures and Processes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	EEn.2.2.	Understand how human influences impact the lithosphere.

CLARIFYINGEEn.2.2.1.Explain the consequences of human activities on the lithosphere (such as mining, deforestation, agriculture,
overgrazing, urbanization, and land use) past and present.

CONTENT AREA / STRAND	NC.EEn.	Earth/Environmental Science
STRAND / ESSENTIAL STANDARD		Earth: Systems, Structures and Processes
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	EEn.2.6.	Analyze patterns of global climate change over time.
CLARIFYING OBJECTIVE	EEn.2.6.2.	Explain changes in global climate due to natural processes.
CLARIFYING OBJECTIVE	EEn.2.6.3.	Analyze the impacts that human activities have on global climate change (such as burning hydrocarbons, greenhouse effect, and deforestation).
CLARIFYING OBJECTIVE	EEn.2.6.4.	Attribute changes in Earth systems to global climate change (temperature change, changes in pH of ocean, sea level changes, etc.).
CONTENT AREA / STRAND	NC.EEn.	Earth/Environmental Science
STRAND / ESSENTIAL STANDARD		Earth: Systems, Structures and Processes

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	EEn.2.7.	Explain how the lithosphere, hydrosphere, and atmosphere individually and collectively affect the biosphere.
CLARIFYING OBJECTIVE	EEn.2.7.2.	Explain why biodiversity is important to the biosphere.
CLARIFYING OBJECTIVE	EEn.2.7.3.	Explain how human activities impact the biosphere.
CONTENT AREA / STRAND	NC.OBio.	Occupational Course of Study - Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	OBio.2. 1.	Analyze the interdependence of living organisms within their environments.
CLARIFYING OBJECTIVE	Bio.2.1.1.	Compare the flow of energy and cycling of matter (water, carbon, nitrogen and oxygen) through ecosystems relating the significance of each to maintaining the health and sustainability of an ecosystem.
CONTENT AREA / STRAND	NC.OBio.	Occupational Course of Study - Biology
STRAND / ESSENTIAL STANDARD		Ecosystems
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	OBio.2. 2.	Understand the impact of human activities on the environment (one generation affects the next).
CLARIFYING OBJECTIVE	Bio.2.2.1.	Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat destruction and introduction of nonnative species) may impact the environment.
CLARIFYING OBJECTIVE	Bio.2.2.2.	Explain how the use, protection and conservation of natural resources by humans impact the environment from one generation to the next.
CONTENT AREA / STRAND	NC.OA.	Occupational Course of Study - Applied Science
STRAND / ESSENTIAL STANDARD		The Environment
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	OA6.1.	Understand how humans can have positive and negative effects on the environment.
CLARIFYING OBJECTIVE	OA6.1.1.	Explain how humans can have a positive impact on natural resources.
CLARIFYING OBJECTIVE	OA6.1.2.	Explain the effects of pollution on the earth, air and waterways and what can be done at the individual, family and community level to reduce pollution.
CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects

STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.

CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

CONTENT AREA / STRAND	NC.CC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.RST.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

CONTENT AREA / STRAND	NC.CC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CLARIFYING OBJECTIVE	9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
CONTENT AREA / STRAND	NC.CC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	9- 10.WHST. 6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

North Carolina Standard Course of Study Technology Education Grade 9 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards

STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 9 - Adopted: 2020
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Introduction to CS
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	ICS-AP- 01.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Introduction to CS
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	ICS-AP- 13.	Develop computational artifacts working in team roles using collaborative tools.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Introduction to CS

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE

Impacts of Computing

CLARIFYING OBJECTIVE	Culture
INDICATOR ICS-I0 04.	Test computational artifacts to reduce bias and equity deficits.

INDICATOR

ICS-IC-

05.

Demonstrate ways a given algorithm applies to problems across disciplines.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Networks & The Internet
CLARIFYING OBJECTIVE		Network Communication & Organization
INDICATOR	HS-NI-01.	Identify issues of network functionality in computational artifact design.

INDICATOR HS-NI-02. Analyze issues of network functionality in computational artifact design.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Networks & The Internet
CLARIFYING OBJECTIVE		Cybersecurity
INDICATOR	HS-NI-03.	Identify issues of unauthorized access and cybersecurity in computational artifact design.

INDICATOR HS-NI- Analyze issues of unauthorized access and cybersecurity in computational artifact design. 04.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR HS-AP- Identify artificial intelligence algorithms.

01.

INDICATOR	HS-AP-	
	02.	

AP- Solve computational problems with classic algorithms.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	HS-AP- 09.	Create a computational artifact through an industry-standard process.

INDICATOR HS-AP- Justify that a computational artifact meets design specifications with systematic testing and debugging methods. 10.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Impacts of Computing
CLARIFYING OBJECTIVE		Culture
INDICATOR	HS-IC- 05.	Create computational artifacts to ensure accessibility and reduce computational bias.

North Carolina Standard Course of Study Technology Education Grade 10 - Adopted: 2020 (ISTE-S)

		· · · ·
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

OBJECTIVE

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 10 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Introduction to CS
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATORICS-AP-
01.Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and
personal interests.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Introduction to CS
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Program Development

INDICATOR	

13.

ICS-AP- Develop computational artifacts working in team roles using collaborative tools.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Introduction to CS
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Impacts of Computing
CLARIFYING OBJECTIVE		Culture
INDICATOR	ICS-IC- 04.	Test computational artifacts to reduce bias and equity deficits.
INDICATOR	ICS-IC- 05.	Demonstrate ways a given algorithm applies to problems across disciplines.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Networks & The Internet
CLARIFYING OBJECTIVE		Network Communication & Organization
INDICATOR	HS-NI-01.	Identify issues of network functionality in computational artifact design.
INDICATOR	HS-NI-02.	Analyze issues of network functionality in computational artifact design.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Networks & The Internet
CLARIFYING OBJECTIVE		Cybersecurity
INDICATOR	HS-NI-03.	Identify issues of unauthorized access and cybersecurity in computational artifact design.
INDICATOR	HS-NI- 04.	Analyze issues of unauthorized access and cybersecurity in computational artifact design.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards

STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	HS-AP- 01.	Identify artificial intelligence algorithms.
INDICATOR	HS-AP- 02.	Solve computational problems with classic algorithms.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	HS-AP- 09.	Create a computational artifact through an industry-standard process.
INDICATOR	HS-AP- 10.	Justify that a computational artifact meets design specifications with systematic testing and debugging methods.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		High School – CS Level 1
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Impacts of Computing
CLARIFYING OBJECTIVE		Culture
INDICATOR	HS-IC- 05.	Create computational artifacts to ensure accessibility and reduce computational bias.
		North Dakota Content Standards Mathematics Grade 9 - Adopted: 2017
CONTENT STANDARD		Standards for Mathematical Practice

BENCHMARK MP.1 Make sense of problems and persevere in solving them.

	CONTENT		High School—Functions
	BENCHMARK	MP.7	Look for and make use of structure.
BENCHMARK MP.7 Look for and make use of structure.	BENCHMARK	MP.6	Attend to precision.
BENCHMARK MP.6 Attend to precision. BENCHMARK MP.7 Look for and make use of structure.	BENCHMARK	MP.4	Model with mathematics.
BENCHMARK MP.4 Model with mathematics. BENCHMARK MP.6 Attend to precision. BENCHMARK MP.7 Look for and make use of structure.	BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARKMP.3Construct viable arguments and critique the reasoning of others.BENCHMARKMP.4Model with mathematics.BENCHMARKMP.6Attend to precision.BENCHMARKMP.7Look for and make use of structure.	BENCHMARK	MP.2	Reason abstractly and quantitatively.

North Dakota Content Standards

specified interval. Estimate the rate of change from a graph.

Mathematics

Grade 10 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.6	Attend to precision.
BENCHMARK	MP.7	Look for and make use of structure.
BENCHMARK	MP.8	Look for and express regularity in repeated reasoning.

CONTENT STANDARD	High School—Functions
BENCHMARK	Interpreting Functions
GRADE LEVEL EXPECTATION	Interpret functions that arise in applications in terms of the context

INDICATOR

HS.F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Science Grade 9 - Adopted: 2019			
CONTENT STANDARD		Science and Engineering Practices	
BENCHMARK	2	Developing and using models	
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.	
CONTENT STANDARD		Science and Engineering Practices	
BENCHMARK	6	Constructing explanations and designing solutions	
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.	
CONTENT STANDARD		Life Science (LS)	
BENCHMARK	HS-LS2.	ECOSYSTEMS: INTERACTIONS, ENERGY, AND DYNAMICS	
GRADE LEVEL EXPECTATION	HS-LS2- 2.	Use evidence from mathematical representations to explain factors that affect population dynamics and biodiversity.	
GRADE LEVEL EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	
GRADE LEVEL EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	

GRADE LEVEL HS-LS2- Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and EXPECTATION 7. biodiversity.

CONTENT STANDARD		Life Science (LS)
BENCHMARK	HS-LS4.	BIOLOGICAL EVOLUTION: UNITY AND DIVERSITY

EXPECTATION 6.

GRADE LEVEL HS-LS4- Design and revise a solution to mitigate impacts of human activity on biodiversity.

CONTENT STANDARD Earth and Space Science (ESS) BENCHMARK HS-Earth's Systems ESS2. GRADE LEVEL HS-Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in EXPECTATION ESS2-4. climate. GRADE LEVEL HS-Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, EXPECTATION ESS2-6. and biosphere.

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	HS- ESS3.	EARTH AND HUMAN ACTIVITY
GRADE LEVEL EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GRADE LEVEL EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GRADE LEVEL EXPECTATION	HS- ESS3-3.	Analyze the relationships among management of natural resources, the sustainability of human populations, and biodiversity through the use of a computational simulation.
GRADE LEVEL EXPECTATION	HS- ESS3-6.	Use data from computational representations to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CONTENT STANDARD		Engineering and Technology (ET)
BENCHMARK	HS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	HS-ET1- 1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GRADE LEVEL EXPECTATION	HS-ET1- 2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	HS-ET1- 3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

North Dakota Content Standards

Science

Grade 10 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Life Science (LS)

BENCHMARK HS-LS2. ECOSYSTEMS: INTERACTIONS, ENERGY, AND DYNAMICS

GRADE LEVEL EXPECTATION	HS-LS2- 2.	Use evidence from mathematical representations to explain factors that affect population dynamics and biodiversity.
GRADE LEVEL EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
GRADE LEVEL EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GRADE LEVEL	HS-LS2-	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and

EXPECTATION 7. biodiversity.

BENCHMARK	HS-LS4.	BIOLOGICAL EVOLUTION: UNITY AND DIVERSITY

GRADE LEVELHS-LS4-Design and revise a solution to mitigate impacts of human activity on biodiversity.EXPECTATION6.

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	HS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
GRADE LEVEL	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,

GRADE LEVEL	п 3 -	Develop a quantitative mou
EXPECTATION	ESS2-6.	and biosphere.

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	HS- ESS3.	EARTH AND HUMAN ACTIVITY
GRADE LEVEL EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GRADE LEVEL EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GRADE LEVEL EXPECTATION	HS- ESS3-3.	Analyze the relationships among management of natural resources, the sustainability of human populations, and biodiversity through the use of a computational simulation.
GRADE LEVEL EXPECTATION	HS- ESS3-6.	Use data from computational representations to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

CONTENT STANDARD		Engineering and Technology (ET)
BENCHMARK	HS-ET1.	Engineering & Technology

GRADE LEVEL EXPECTATION	HS-ET1- 1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GRADE LEVEL EXPECTATION	HS-ET1- 2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	HS-ET1- 3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

North Dakota Content Standards

Technology Education

Grade 9	-	Adopted:	2	0	1	9
---------	---	----------	---	---	---	---

CONTENT ST AND ARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms
INDICATOR	Strategies for understanding and solving problems.

INDICATOR 9.PSA.1. Identify, recognize, and use an algorithm to solve a complex problem across disciplines.

CONTENT STANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	CS Extension Standards
GRADE LEVEL EXPECTATION	Computational Thinking
INDICATOR	Algorithms & Programming

INDICATOR ES.AP.1. Design algorithms to solve computational problems using a combination of original and existing algorithms.

North Dakota Content Standards

Technology Education

Grade 10 - Adopted: 2019

CONTENT STANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms
INDICATOR	Strategies for understanding and solving problems.

INDICATOR

10.PSA.1. Create and test an algorithm to solve a complex problem across disciplines.

CONTENT STANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	CS Extension Standards
GRADE LEVEL EXPECTATION	Computational Thinking
INDICATOR	Algorithms & Programming

ES.AP.1. Design algorithms to solve computational problems using a combination of original and existing algorithms.

Ohio Learning Standards

Mathematics

Grade 9 - Adopted: 2017				
DOMAIN / ACADEMIC CONTENT STANDARD	он.мр.	Standards for Mathematical Practice		
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.		
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.		
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.		
STANDARD / BENCHMARK	MP.4.	Model with mathematics.		
STANDARD / BENCHMARK	MP.6.	Attend to precision.		
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.		
STANDARD / BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.		
DOMAIN / ACADEMIC CONTENT STANDARD	OH.F.	Functions Standards		
ST ANDARD / BENCHMARK	F.IF.	INTERPRETING FUNCTIONS		
BENCHMARK / GRADE LEVEL INDICATOR		Interpret functions that arise in applications in terms of the context.		
PROFICIENCY LEVEL	F.IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (A2, M3)		
		Ohio Learning Standards Mathematics Grade 10 - Adopted: 2017		
DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice		
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.		

STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.6.	Attend to precision.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
STANDARD / BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.

DOMAIN / ACADEMIC CONTENT STANDARD	OH.F.	Functions Standards
STANDARD / BENCHMARK	F.IF.	INTERPRETING FUNCTIONS
BENCHMARK / GRADE LEVEL INDICATOR		Interpret functions that arise in applications in terms of the context.
PROFICIENCY	F.IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (A2, M3)

Ohio Learning Standards

Science

Grade 9 - Adopted: 2018

DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH SYSTEMS: INTERCONNECTED SPHERES OF EARTH
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ES. 1:	Biosphere

PROFICIENCY LEVEL Biodiversity

DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH SYSTEMS: INTERCONNECTED SPHERES OF EARTH
BENCHMARK / GRADE LEVEL INDICAT OR	ENV.ES. 5:	Movement of matter and energy through the hydrosphere, lithosphere, atmosphere and biosphere

PROFICIENCY LEVEL		Biogeochemical cycles
PROFICIENCY LEVEL		Ecosystems
PROFICIENCY LEVEL		Climate
DOMAIN / ACADEMIC CONTENT ST ANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ER. 2:	Air and air pollution
PROFICIENCY LEVEL		Greenhouse gases
DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ER. 4:	Soil and land
PROFICIENCY LEVEL		Land use and land management (including food production, agriculture and zoning)
DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL	ENV.ER. 5:	Wildlife and wilderness

GRADE LEVEL	5:	
PROFICIENCY LEVEL		Wildlife and wilderness management

INDICATOR

Endangered species

DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK	ENV.GP:	GLOBAL ENVIRONMENTAL PROBLEMS AND ISSUES

BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 1:	Human Population
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 3:	Climate change
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 4:	Sustainability
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 5:	Species depletion and extinction
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 8:	Deforestation and loss of biodiversity
DOMAIN / ACADEMIC CONTENT STANDARD		Physical Geology
ST ANDARD / BENCHMARK	PG.ER:	EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL INDICATOR	PG.ER.2 :	Air
PROFICIENCY LEVEL		Greenhouse gases
DOMAIN / ACADEMIC CONTENT STANDARD		Biology
STANDARD / BENCHMARK	B.DI:	DIVERSITY AND INDEPENDENCE OF LIFE
BENCHMARK / GRADE LEVEL INDICATOR	B.DI.1:	Biodiversity
PROFICIENCY LEVEL		Species diversity
DOMAIN / ACADEMIC CONTENT STANDARD		Biology
STANDARD / BENCHMARK	B.DI:	DIVERSITY AND INDEPENDENCE OF LIFE

BENCHMARK / GRADE LEVEL INDICATOR

B.DI.3:

Loss of Diversity

PROFICIENCY LEVEL		Climate change
PROFICIENCY LEVEL		Anthropocene effects
PROFICIENCY LEVEL		Extinction
		Ohio Learning Standards Science Grade 10 - Adopted: 2018
DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH SYSTEMS: INTERCONNECTED SPHERES OF EARTH
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ES. 1:	Biosphere
PROFICIENCY LEVEL		Biodiversity
DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH SYSTEMS: INTERCONNECTED SPHERES OF EARTH
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ES. 5:	Movement of matter and energy through the hydrosphere, lithosphere, atmosphere and biosphere
PROFICIENCY LEVEL		Biogeochemical cycles
PROFICIENCY LEVEL		Ecosystems
PROFICIENCY LEVEL		Climate
DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ER. 2:	Air and air pollution

DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ER. 4:	Soil and land

PROFICIENCY

Land use and land management (including food production, agriculture and zoning)

LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD		Environmental Science
STANDARD / BENCHMARK		EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL INDICATOR	ENV.ER. 5:	Wildlife and wilderness
PROFICIENCY LEVEL		Wildlife and wilderness management

INDICATOR

Endangered species

DOMAIN / ACADEMIC CONTENT ST ANDARD		Environmental Science
ST ANDARD / BENCHMARK	ENV.GP:	GLOBAL ENVIRONMENTAL PROBLEMS AND ISSUES
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 1:	Human Population
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 3:	Climate change
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 4:	Sustainability
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 5:	Species depletion and extinction
BENCHMARK / GRADE LEVEL INDICATOR	ENV.GP. 8:	Deforestation and loss of biodiversity
DOMAIN / ACADEMIC CONTENT STANDARD		Physical Geology

STANDARD / BENCHMARK	PG.ER:	EARTH'S RESOURCES
BENCHMARK / GRADE LEVEL INDICATOR	PG.ER.2 :	Air

PROFICIENCY LEVEL Greenhouse gases

DOMAIN / ACADEMIC CONTENT STANDARD		Biology
STANDARD / BENCHMARK	B.DI:	DIVERSITY AND INDEPENDENCE OF LIFE
BENCHMARK / GRADE LEVEL INDICATOR	B.DI.1:	Biodiversity

PROFICIENCY

Species diversity

LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD		Biology
STANDARD / BENCHMARK	B.DI:	DIVERSITY AND INDEPENDENCE OF LIFE
BENCHMARK / GRADE LEVEL INDICATOR	B.DI.3:	Loss of Diversity
PROFICIENCY LEVEL		Climate change
PROFICIENCY LEVEL		Anthropocene effects
PROFICIENCY LEVEL		Extinction
		Ohio Learning Standards Technology Education Grade 9 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.

PROFICIENCY9-Debate the advantages and disadvantages of widespread use, accessibility, and reliance on technology in yourLEVEL12.ST.1.b.world, in the workplace and in global society.

PROFICIENCY LEVEL	9- 12.ST.1.c.	Select a technology and analyze its global impact across multiple disciplines.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICAT OR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	9- 12.DT.2.a.	Evaluate a design solution using conceptual, physical, digital and mathematical models at various intervals of the design process in order to check for proper design and note areas where improvements are needed (e.g., check the design solutions against criteria and constraints).
PROFICIENCY LEVEL	9- 12.DT.2.b.	Implement, document and present the design process as applied to a particular product, process or problem.
		Grade 9 - Adopted: 2022
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.9- 12.F.a.	Apply a systemic process to identify problems and take steps to correct them within an integrated computing system.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Algorithms
PROFICIENCY LEVEL	ATP.A.9- 12.F.a.	Define and use appropriate problem solving strategies and visual artifacts to create and refine a solution to a real- world problem.
PROFICIENCY LEVEL	ATP.A.9- 12.F.b.	Define and implement an algorithm by decomposing problem requirements from a problem statement to solve a problem.
PROFICIENCY LEVEL	ATP.A.9- 12.F.c.	Define and explain iterative algorithms to understand how and when to apply them.
PROFICIENCY LEVEL	ATP.A.9- 12.F.d.	Define and explain recursive algorithms to understand how and when to apply them.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Modularity
PROFICIENCY LEVEL	ATP.M.9- 12.F.b.	Create computational artifacts by systematically organizing, manipulating and/or processing data.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Program Development
PROFICIENCY LEVEL	ATP.PD.9 -12.F.c.	Correctly use consistent naming conventions, version control and comments to demonstrate why these are important for future use, maintenance and reuse of code.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
ST ANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Representation & Reasoning
PROFICIENCY LEVEL	AI.RR.9- 12.F.b.	For each of these types of reasoning problems (classification, prediction, sequential decision-making, combinatorial search, heuristic search, adversarial search, logical deduction and statistical inference), list an algorithm that could be used to solve that problem.
PROFICIENCY LEVEL	AI.RR.9- 12.F.c.	Describe the differences between types of search algorithms.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICAT OR		Machine Learning
PROFICIENCY LEVEL	AI.ML.9- 12.F.b.	Use either a supervised or unsupervised learning algorithm to train a model on real-world data, then evaluate the results.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICAT OR		Natural Interaction
PROFICIENCY LEVEL	AI.NI.9- 12.F.a.	Construct context-free grammar to parse simple languages and use language-processing tools to construct a chatbot. Use sentiment analysis tools to extract emotional tone from text.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Advanced Level
ST ANDARD / BENCHMARK	· · · · · · · · · · · · · · · · · · ·	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Algorithms
PROFICIENCY LEVEL	ATP.A.9- 12.A.a.	Define and explain Iterative and recursive algorithms to understand how and when to apply them.
PROFICIENCY LEVEL	ATP.A.9- 12.A.d.	Define and explain sorting and searching algorithms to understand how and when to apply them.
PROFICIENCY LEVEL	ATP.A.9- 12.A.f.	Compare and contrast classical, cluster and quantum computing algorithms.
		Ohio Learning Standards Technology Education Grade 10 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.
PROFICIENCY LEVEL	9- 12.ST.1.b.	Debate the advantages and disadvantages of widespread use, accessibility, and reliance on technology in your world, in the workplace and in global society.
PROFICIENCY LEVEL	9- 12.ST.1.c.	Select a technology and analyze its global impact across multiple disciplines.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.

BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	9- 12.DT.2.a.	Evaluate a design solution using conceptual, physical, digital and mathematical models at various intervals of the design process in order to check for proper design and note areas where improvements are needed (e.g., check the design solutions against criteria and constraints).
PROFICIENCY LEVEL	9- 12.DT.2.b.	Implement, document and present the design process as applied to a particular product, process or problem.
		Grade 10 - Adopted: 2022
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.9- 12.F.a.	Apply a systemic process to identify problems and take steps to correct them within an integrated computing system.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
ST ANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Algorithms
PROFICIENCY LEVEL	ATP.A.9- 12.F.a.	Define and use appropriate problem solving strategies and visual artifacts to create and refine a solution to a real- world problem.
PROFICIENCY LEVEL	ATP.A.9- 12.F.b.	Define and implement an algorithm by decomposing problem requirements from a problem statement to solve a problem.
PROFICIENCY LEVEL	ATP.A.9- 12.F.c.	Define and explain iterative algorithms to understand how and when to apply them.
PROFICIENCY LEVEL	ATP.A.9- 12.F.d.	Define and explain recursive algorithms to understand how and when to apply them.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
ST ANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Modularity

PROFICIENCY LEVEL	ATP.M.9- 12.F.b.	Create computational artifacts by systematically organizing, manipulating and/or processing data.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Program Development
PROFICIENCY LEVEL	ATP.PD.9 -12.F.c.	Correctly use consistent naming conventions, version control and comments to demonstrate why these are important for future use, maintenance and reuse of code.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Representation & Reasoning
PROFICIENCY LEVEL	AI.RR.9- 12.F.b.	For each of these types of reasoning problems (classification, prediction, sequential decision-making, combinatorial search, heuristic search, adversarial search, logical deduction and statistical inference), list an algorithm that could be used to solve that problem.
PROFICIENCY LEVEL	AI.RR.9- 12.F.c.	Describe the differences between types of search algorithms.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Machine Learning
PROFICIENCY LEVEL	AI.ML.9- 12.F.b.	Use either a supervised or unsupervised learning algorithm to train a model on real-world data, then evaluate the results.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Foundational Level
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Natural Interaction

PROFICIENCY	AI.NI.9-	Construct context-free grammar to parse simple languages and use language-processing tools to construct a
LEVEL	12.F.a.	chatbot. Use sentiment analysis tools to extract emotional tone from text.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 9-12 Advanced Level
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Algorithms
PROFICIENCY LEVEL	ATP.A.9- 12.A.a.	Define and explain Iterative and recursive algorithms to understand how and when to apply them.
PROFICIENCY LEVEL	ATP.A.9- 12.A.d.	Define and explain sorting and searching algorithms to understand how and when to apply them.
PROFICIENCY LEVEL	ATP.A.9- 12.A.f.	Compare and contrast classical, cluster and quantum computing algorithms.

Oklahoma Academic Standards Mathematics Grade 9 - Adopted: 2022

CONTENT STANDARD / COURSE		Mathematical Actions and Processes
STRAND / STANDARD		Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD		Develop Strategies for Problem Solving
STRAND / STANDARD		Develop Mathematical Reasoning
STRAND / STANDARD		Develop a Productive Mathematical Disposition
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD		Develop the Ability to Communicate Mathematically
CONTENT STANDARD / COURSE	PA.	Pre-Algebra (PA)

STRAND / STANDARD	PA.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	PA.A.2.	Identify and justify linear functions using mathematical models and situations; solve problems involving linear functions and interpret results in the original context.

SKILL / CONCEPT PA.A.2.1. Represent linear functions with tables, verbal descriptions, symbols, and graphs; translate from one representation to another.

CONTENT STANDARD / COURSE	PA.	Pre-Algebra (PA)
STRAND / STANDARD	PA.D.	Data & Probability (D)
OBJECTIVE	PA.D.1.	Display and interpret data in a variety of ways, including using scatter plots and approximate lines of best fit. Use the line of best fit and average rate of change to make predictions and draw conclusions about data.

SKILL / CONCEPT PA.D.1.1. Describe the impact that inserting or deleting a data point has on the mean and the median of a data set. Create data displays using technology to examine this impact.

CONTENT STANDARD / COURSE	A2.	Algebra 2 (A2)
STRAND / STANDARD	A2.D.	Data & Probability (D)
OBJECTIVE	A2.D.1.	Display, describe, and compare data. For linear and nonlinear relationships, make predictions and assess the reliability of those predictions.

SKILL / A2.D.1.1. Use the mean and standard deviation of a data set to create a normal distribution (bell-shaped curve). CONCEPT

Oklahoma Academic Standards

Mathematics

Grade 10 - Adopted: 2022

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize

STRAND / STANDARD

Develop the Ability to Communicate Mathematically

CONTENT
STANDARD /
COURSEPA.Pre-Algebra (PA)STRAND /
STANDARDPA.A.Algebraic Reasoning & Algebra (A)OBJECTIVEPA.A.2.Identify and justify linear functions using mathematical models and situations; solve problems
involving linear functions and interpret results in the original context.

SKILL / CONCEPT PA.A.2.1. Represent linear functions with tables, verbal descriptions, symbols, and graphs; translate from one representation to another.

CONTENT STANDARD / COURSE	PA.	Pre-Algebra (PA)
STRAND / STANDARD	PA.D.	Data & Probability (D)
OBJECTIVE	PA.D.1.	Display and interpret data in a variety of ways, including using scatter plots and approximate lines of best fit. Use the line of best fit and average rate of change to make predictions and draw conclusions about data.

SKILL / CONCEPT PA.D.1.1. Describe the impact that inserting or deleting a data point has on the mean and the median of a data set. Create data displays using technology to examine this impact.

CONTENT STANDARD / COURSE	A2.	Algebra 2 (A2)
STRAND / STANDARD	A2.D.	Data & Probability (D)
OBJECTIVE	A2.D.1.	Display, describe, and compare data. For linear and nonlinear relationships, make predictions and assess the reliability of those predictions.
SKILL / CONCEPT	A2.D.1.1.	Use the mean and standard deviation of a data set to create a normal distribution (bell-shaped curve).

Oklahoma Academic Standards

Science

Grade 9 - Adopted: 2020

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		PHYSICAL SCIENCE (PS)
OBJECTIVE		Waves and Their Applications in Technologies for Information Transfer (PS4)
SKILL / CONCEPT	PS.PS4.2	Evaluate questions about the advantages and disadvantages of using a digital transmission and storage of information.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		PHYSICS (PH)

OBJECTIVE		Waves and Their Applications in Technologies for Information Transfer (PS4)
SKILL / CONCEPT	PH.PS4.2	Evaluate questions about the advantages and disadvantages of using digital transmission and storage of information.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		BIOLOGY (B)
OBJECTIVE		Ecosystems: Interactions, Energy, and Dynamics (LS2)
SKILL / CONCEPT	B.LS2.2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
SKILL / CONCEPT	B.LS2.4	Use a mathematical representation to support claims for the cycling of matter and the flow of energy among organisms in an ecosystem.
SKILL / CONCEPT	B.LS2.5	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		EARTH AND SPACE SCIENCE (ES)
OBJECTIVE		Earth Systems (ESS2)
SKILL / CONCEPT	ES.ESS2. 4	Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate.
SKILL / CONCEPT	ES.ESS2. 6	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		EARTH AND SPACE SCIENCE (ES)
OBJECTIVE		Earth and Human Activities (ESS3)
SKILL / CONCEPT	ES.ESS3. 1	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate effect human activity.
SKILL / CONCEPT	ES.ESS3. 2	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios on large and small scales.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		ENVIRONMENT AL SCIENCE (EN)
OBJECTIVE		Ecosystems: Interactions, Energy, and Dynamics (LS2)

SKILL / CONCEPT	EN.LS2.2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
SKILL / CONCEPT	EN.LS2.4	Use a mathematical representation to support claims for the cycling of matter and the flow of energy among organisms in an ecosystem.
SKILL / CONCEPT	EN.LS2.7	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		ENVIRONMENTAL SCIENCE (EN)
OBJECTIVE		Earth Systems (ESS2)
SKILL / CONCEPT	EN.ESS2. 4	Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate.
SKILL / CONCEPT	EN.ESS2. 6	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		ENVIRONMENTAL SCIENCE (EN)
OBJECTIVE		Earth and Human Activities (ESS3)
SKILL / CONCEPT	EN.ESS3. 1	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate effect human activity.
SKILL / CONCEPT	EN.ESS3. 2	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios on large and small scales.
SKILL / CONCEPT	EN.ESS3. 3	Use computational simulations to illustrate changes between the relationships of natural resources, human populations, and biodiversity and their sustainability within Earth systems.
		Oklahoma Academic Standards Science
		Grade 10 - Adopted: 2020

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		PHYSICAL SCIENCE (PS)
OBJECTIVE		Waves and Their Applications in Technologies for Information Transfer (PS4)
SKILL / CONCEPT	PS.PS4.2	Evaluate questions about the advantages and disadvantages of using a digital transmission and storage of information.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		PHYSICS (PH)
OBJECTIVE		Waves and Their Applications in Technologies for Information Transfer (PS4)
SKILL / CONCEPT	PH.PS4.2	Evaluate questions about the advantages and disadvantages of using digital transmission and storage of information.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		BIOLOGY (B)
OBJECTIVE		Ecosystems: Interactions, Energy, and Dynamics (LS2)
SKILL / CONCEPT	B.LS2.2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
SKILL / CONCEPT	B.LS2.4	Use a mathematical representation to support claims for the cycling of matter and the flow of energy among organisms in an ecosystem.
SKILL / CONCEPT	B.LS2.5	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CONTENT		Oklahoma Academic Standards for Science
ST ANDARD / COURSE		
STANDARD / COURSE STRAND / STANDARD		EARTH AND SPACE SCIENCE (ES)
STANDARD / COURSE STRAND / STANDARD OBJECTIVE		EARTH AND SPACE SCIENCE (ES) Earth Systems (ESS2)
ST ANDARD / COURSE ST RAND / ST ANDARD OBJECTIVE SKILL / CONCEPT	ES.ESS2. 4	EART H AND SPACE SCIENCE (ES) Earth Systems (ESS2) Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate.
STANDARD / COURSE STRAND / STANDARD OBJECTIVE SKILL / CONCEPT SKILL / CONCEPT	ES.ESS2. 4 ES.ESS2. 6	EART H AND SPACE SCIENCE (ES) Earth Systems (ESS2) Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STANDARD / COURSE STRAND / STANDARD OBJECTIVE SKILL / CONCEPT SKILL / CONCEPT CONTENT STANDARD / COURSE	ES.ESS2. 4 ES.ESS2. 6	EARTH AND SPACE SCIENCE (ES) Earth Systems (ESS2) Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. Oklahoma Academic Standards for Science
ST ANDARD / COURSE ST RAND / ST ANDARD OBJECTIVE SKILL / CONCEPT SKILL / CONCEPT SKILL / CONCEPT ST ANDARD / COURSE ST RAND / ST RAND / ST ANDARD	ES.ESS2. 4 ES.ESS2. 6	EARTH AND SPACE SCIENCE (ES) Earth Systems (ESS2) Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. Oklahoma Academic Standards for Science EARTH AND SPACE SCIENCE (ES)
ST ANDARD / ST ANDARD / ST RAND / ST ANDARD OBJECTIVE SKILL / CONCEPT SKILL / CONTENT ST ANDARD / CONTENT ST ANDARD / CONTENT ST ANDARD / COURSE ST RAND / ST RAND / OBJECTIVE	ES.ESS2. 4 ES.ESS2. 6	EART H AND SPACE SCIENCE (ES) Earth Systems (ESS2) Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. Oklahoma Academic Standards for Science EART H AND SPACE SCIENCE (ES) Earth and Human Activities (ESS3)
STANDARD / STRAND / STRAND / STRAND / OBJECTIVE SKILL / CONCEPT SKILL / CONCEPT STANDARD / CONTENT STANDARD / CONTENT STANDARD / COURSE STRAND / STRAND / SKILL / CONCEPT SKILL / CONCEPT	ES.ESS2. 4 ES.ESS2. 6 ES.ESS3. 1	EART H AND SPACE SCIENCE (ES) Earth Systems (ESS2) Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate. Develop a quantitative model to describe the cycling of Carbon among the hydrosphere, atmosphere, geosphere, and biosphere. Oklahoma Academic Standards for Science EART H AND SPACE SCIENCE (ES) Earth and Human Activities (ESS3) Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate effect human activity.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		ENVIRONMENT AL SCIENCE (EN)
OBJECTIVE		Ecosystems: Interactions, Energy, and Dynamics (LS2)
SKILL / CONCEPT	EN.LS2.2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
SKILL / CONCEPT	EN.LS2.4	Use a mathematical representation to support claims for the cycling of matter and the flow of energy among organisms in an ecosystem.
SKILL / CONCEPT	EN.LS2.7	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		ENVIRONMENTAL SCIENCE (EN)
OBJECTIVE		Earth Systems (ESS2)
SKILL / CONCEPT	EN.ESS2. 4	Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems causes changes to the atmosphere and climate.
SKILL / CONCEPT	EN.ESS2. 6	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		ENVIRONMENT AL SCIENCE (EN)
OBJECTIVE		Earth and Human Activities (ESS3)
SKILL / CONCEPT	EN.ESS3. 1	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate effect human activity.
SKILL / CONCEPT	EN.ESS3. 2	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios on large and small scales.
SKILL / CONCEPT	EN.ESS3. 3	Use computational simulations to illustrate changes between the relationships of natural resources, human populations, and biodiversity and their sustainability within Earth systems.
		Oklahoma Academic Standards

Technology Education

Grade 9 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices

OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions
SKILL / CONCEPT	Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

SKILL / CONCEPT Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems
SKILL /	Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by

 SKILL /
 Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by

 CONCEPT
 defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	L1.	Ninth and Tenth Grades: Level 1 (L1)
OBJECTIVE	L1.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	L1.AP.A.	Algorithms (A)
SKILL	L1.AP.A.0 1.	Create a prototype that uses algorithms (e.g., searching, sorting, finding shortest distance) to provide a possible solution for a real- world problem.

CONTENT	Oklahoma Academic Standards - Computer Science	
STANDARD /		
COURSE		
COURSE		
STRAND / STANDARD	L1.	Ninth and Tenth Grades: Level 1 (L1)
----------------------	----------	--------------------------------------
OBJECTIVE	L1.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	L1.AP.V.	Variables (V)

SKILL

L1.AP.V.0 Demonstrate the use of lists (e.g., arrays) to simplify solutions, generalizing computational problems instead of 1. repeatedly using simple variables.

SKILL

L1.AP.PD Create software that will provide solutions to a variety of users using a software development process. .01.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	L1.	Ninth and Tenth Grades: Level 1 (L1)
OBJECTIVE	L1.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	L1.IC.CU	Culture (CU)
SKILL	L1.IC.CU. 02.	Test and refine computational artifacts to ensure access to a variety of user audiences.
SKILL	L1.IC.CU.	Demonstrate ways a given algorithm can help solve computational problems across disciplines.

03.

L1.IC.CU. Demonstrate ways a given algorithm can help solve computational problems across disciplines.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

OBJECTIVE ISTE- Students S.4.b. calculate

Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards Technology Education Grade 10 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions
SKILL / CONCEPT	Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment
SKILL / CONCEPT	Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and

usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

SKILL / CONCEPT Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	L1.	Ninth and Tenth Grades: Level 1 (L1)
OBJECTIVE	L1.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	L1.AP.A.	Algorithms (A)

SKILL

L1.AP.A.0 Create a prototype that uses algorithms (e.g., searching, sorting, finding shortest distance) to provide a possible 1. solution for a real- world problem.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	L1.	Ninth and Tenth Grades: Level 1 (L1)
OBJECTIVE	L1.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	L1.AP.V.	Variables (V)

SKILL

L1.AP.V.0 Demonstrate the use of lists (e.g., arrays) to simplify solutions, generalizing computational problems instead of 1. repeatedly using simple variables.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	L1.	Ninth and Tenth Grades: Level 1 (L1)
OBJECTIVE	L1.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	L1.AP.P D.	Program Development (PD)

SKILL

L1.AP.PD Create software that will provide solutions to a variety of users using a software development process. .01.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	L1.	Ninth and Tenth Grades: Level 1 (L1)
OBJECTIVE	L1.IC.	Impacts of Computing (IC)

CONCEPT .	1.10.00	Culture (CU)
SKILL L1. 02.	1.IC.CU 2.	Test and refine computational artifacts to ensure access to a variety of user audiences.

SKILLL1.IC.CU. Demonstrate ways a given algorithm can help solve computational problems across disciplines.03.

Grade 10 - Adopted: 2019		
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE-	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and

S.3.d.

pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oregon Academic Content Standards

Mathematics

Grade 9 - Adopted: 2021

STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.

CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	6	Attend to precision.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.
CONTENT STANDARD / PROFICIENCY	8	Look for and express regularity in repeated reasoning
		Oregon Academic Content Standards Mathematics Grade 10 - Adopted: 2021
STANDARD / CONTENT AREA		Mathematical Practice Standards
STANDARD / CONTENT CONTENT STANDARD / PROFICIENCY	1	Mathematical Practice Standards Make sense of problems and persevere in solving them.
STANDARD / CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY	1	Mathematical Practice Standards Make sense of problems and persevere in solving them. Reason abstractly and quantitatively.
STANDARD / CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY	1 2 3	Mathematical Practice Standards Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others.
STANDARD / CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY	1 2 3 4	Mathematical Practice Standards Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics.
STANDARD / AREA CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY	1 2 3 4 6	Mathematical Practice Standards Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Attend to precision.

Oregon Academic Content Standards

Science

Grade 9 - Adopted: 2022

STANDARD / CONTENT AREA	OR.HS- LS2.	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
BENCHMARK / STRAND	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
BENCHMARK / STRAND	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
BENCHMARK / STRAND	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
ST ANDARD / CONTENT AREA	OR.HS- LS4.	Biological Evolution: Unity and Diversity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
ST ANDARD / CONTENT AREA	OR.HS- ESS2.	Earth's Systems
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
BENCHMARK / STRAND	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STANDARD / CONTENT AREA	OR.HS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:

BENCHMARK / STRAND	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
BENCHMARK / STRAND	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
BENCHMARK / STRAND	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
BENCHMARK / STRAND	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity (i.e., climate change).
STANDARD / CONTENT AREA	OR.HS- PS4.	Waves and their Applications in Technologies for Information Transfer
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.
STANDARD / CONTENT AREA	OR.HS- ET S1.	Engineering and Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
BENCHMARK / STRAND	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
BENCHMARK / STRAND	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
ST ANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
BENCHMARK / STRAND	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
ST ANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects

CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
BENCHMARK / STRAND	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
ST ANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
ST ANDARD / CONTENT AREA	OR.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Oregon Academic Content Standards Science Grade 10 - Adopted: 2022

ST ANDARD / CONTENT AREA	OR.HS- LS2.	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
BENCHMARK / STRAND	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
BENCHMARK / STRAND	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
BENCHMARK / STRAND	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
ST ANDARD / CONTENT AREA	OR.HS- LS4.	Biological Evolution: Unity and Diversity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STANDARD / CONTENT AREA	OR.HS- ESS2.	Earth's Systems

CONTENT
STANDARD /
PROFICIENCYStudents who demonstrate understanding can:BENCHMARK /
STRANDHS-
ESS2-4.Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in
climate.BENCHMARK /
STRANDHS-
ESS2-6.Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
and biosphere.STANDARD /
STRANDOR HS-
Earth and Human Activity

STANDARD / CONTENT AREA	OR.HS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
BENCHMARK / STRAND	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

BENCHMARK / STRAND	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
BENCHMARK / STRAND	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity (i.e., climate change).
STANDARD / CONTENT AREA	OR.HS- PS4.	Waves and their Applications in Technologies for Information Transfer
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.
ST ANDARD / CONTENT AREA	OR.HS- ET S1.	Engineering and Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
BENCHMARK / STRAND	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
BENCHMARK / STRAND	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
STANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
BENCHMARK / STRAND	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.

BENCHMARK / STRAND	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
STANDARD / CONTENT AREA	OR.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STANDARD / CONTENT AREA	OR.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.