Main Criteria: Forward Education

Secondary Criteria: Pennsylvania Core and Academic Standards, Rhode Island World-Class Standards, South Carolina Standards & Learning, South Dakota Content Standards, Tennessee Academic Standards, Texas Essential Knowledge and Skills (TEKS), Utah Core Standards, Vermont Content Standards, Virginia Standards of Learning, Washington State K-12 Learning Standards and Guidelines, Washington DC Academic Standards, West Virginia College and Career Readiness Standards, Wisconsin Academic Standards, Wyoming Content and Performance Standards

Subjects: Mathematics, Science, Technology Education

Grades: 9, 10, Key Stage 3, Key Stage 4

Forward Education

Replanting our Forests with Automated Tree Seeders

Pennsylvania Core and Academic Standards

Mathematics

Grade 9 - Adopted: 2014

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.6	Attend to precision.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
STANDARD AREA / STATEMENT	CC.MP.8	Look for and express regularity in repeated reasoning.
SUBJECT / STANDARD AREA	PA.CC.2. 2.HS.	Algebraic Concepts
STANDARD AREA / STATEMENT	CC.2.2. HS.C.	Functions
STANDARD	CC.2.2.H S.C.2.	Graph and analyze functions and use their properties to make connections between the different representations.

Pennsylvania Core and Academic Standards Mathematics Grade 10 - Adopted: 2014

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.6	Attend to precision.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
STANDARD AREA / STATEMENT	CC.MP.8	Look for and express regularity in repeated reasoning.

SUBJECT / ST ANDARD AREA	PA.CC.2. 2.HS.	Algebraic Concepts
ST ANDARD AREA / ST AT EMENT	CC.2.2. HS.C.	Functions
STANDARD	CC.2.2.H S.C.2.	Graph and analyze functions and use their properties to make connections between the different representations.

Pennsylvania Core and Academic Standards

Science

SUBJECT / ST ANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.4.	Formulate and revise explanations and models using logic and evidence.
STANDARD AREA / STATEMENT	SI.5.	Recognize and analyze alternative explanations and models.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.3.	Earth and Space Sciences
STANDARD	3.3.A.	Earth Structure, Processes and Cycles
DESCRIPTOR / STANDARD	3.3.10.A2.	Analyze the effects on the environment and the carbon cycle of using both renewable and nonrenewable sources of energy.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.10.A1.	Illustrate how the development of technologies is often driven by profit and an economic market.
DESCRIPTOR / STANDARD	3.4.10.A2.	Interpret how systems thinking applies logic and creativity with appropriate comprises in complex real-life problems.
DESCRIPTOR / STANDARD	3.4.10.A3.	Examine how technology transfer occurs when a new user applies an existing innovation developed for one purpose in a different function.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD	PA.3. 3.4.	Science and Technology and Engineering Education Technology and Engineering Education
ST ANDARD AREA ST ANDARD AREA /		
ST ANDARD AREA ST ANDARD AREA / ST AT EMENT	3.4. 3.4.B.	Technology and Engineering Education
ST ANDARD AREA ST ANDARD AREA / ST AT EMENT ST ANDARD DESCRIPTOR /	3.4. 3.4.B. 3.4.10.B1.	Technology and Engineering Education Technology and Society Compare and contrast how the use of technology involves weighing the trade-offs between the positive and
ST ANDARD AREA / ST ANDARD AREA / ST AT EMENT ST ANDARD DESCRIPTOR / DESCRIPTOR /	3.4. 3.4.B. 3.4.10.B1.	Technology and Engineering Education Technology and Society Compare and contrast how the use of technology involves weighing the trade-offs between the positive and negative effects.
ST ANDARD AREA / ST ANDARD AREA / ST ANDARD DESCRIPTOR / STANDARD DESCRIPTOR / STANDARD	3.4. 3.4.10. B1. 3.4.10.B2.	Technology and Engineering Education Technology and Society Compare and contrast how the use of technology involves weighing the trade-offs between the positive and negative effects. Demonstrate how humans devise technologies to reduce the negative consequences of other technologies. Recognize that technological development has been evolutionary, the result of a series of refinements to a basic
ST ANDARD AREA ST ANDARD AREA / ST AT EMENT ST ANDARD DESCRIPTOR / STANDARD DESCRIPTOR / STANDARD DESCRIPTOR / STANDARD SUBJECT / STANDARD	3.4. 3.4.10.B1. 3.4.10.B2. 3.4.10.B4	Technology and Engineering Education Technology and Society Compare and contrast how the use of technology involves weighing the trade-offs between the positive and negative effects. Demonstrate how humans devise technologies to reduce the negative consequences of other technologies. Recognize that technological development has been evolutionary, the result of a series of refinements to a basic invention.

DESCRIPTOR / STANDARD	3.4.10.C1	Apply the components of the technological design process.
DESCRIPTOR / STANDARD	3.4.10.C2	Analyze a prototype and/or create a working model to test a design concept by making actual observations and necessary adjustments.
DESCRIPTOR / STANDARD	3.4.10.C3	Illustrate the concept that not all problems are technological and not every problem can be solved using technology.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.10.D1	Refine a design by using prototypes and modeling to ensure quality, efficiency, and productivity of a final product.
DESCRIPTOR / STANDARD	3.4.10.D2	Diagnose a malfunctioning system and use tools, materials, and knowledge to repair it.
DESCRIPTOR / STANDARD	3.4.10.D3	Synthesize data, analyze trends, and draw conclusions regarding the effect of technology on the individual, society, and the environment.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.E.	The Designed World
DESCRIPTOR / STANDARD	3.4.10.E7.	Evaluate structure design as related to function, considering such factors as style, convenience, safety, and efficiency.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.1.	Ecology
STANDARD	4.1.10.A	Examine the effects of limiting factors on population dynamics.

DESCRIPTOR / 4.1.10.A.3 Describe how organisms become classified as threatened or endangered. STANDARD .

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.1.	Ecology

STANDARD

4.1.10.B. Explain the consequences of interrupting natural cycles.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.1.	Ecology
STANDARD	4.1.10.D	Research practices that impact biodiversity in specific ecosystems.

DESCRIPTOR / 4.1.10.D. Analyze the relationship between habitat changes to plant and animal population fluctuations. STANDARD 1.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.1.	Ecology
STANDARD	4.1.10.E.	Analyze how humans influence the pattern of natural changes (e.g. primary /secondary succession and desertification) in ecosystems over time.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.3.	Natural Resources
STANDARD	4.3.10.A	Evaluate factors affecting the use of natural resources.
DESCRIPTOR / STANDARD	4.3.10.A.1	Evaluate the effect of consumer demands on the use of natural resources.
DESCRIPTOR / STANDARD	4.3.10.A.2	Analyze how technologies such as modern mining, harvesting, and transportation equipment affect the use of our natural resources.
DESCRIPTOR / STANDARD	4.3.10.A.3	Describe how local and state agencies manage natural resources.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.3.	Natural Resources
STANDARD	4.3.10.B	Analyze how humans manage and distribute natural resources.
DESCRIPTOR / STANDARD	4.3.10.B.1	Describe the use of a natural resource with an emphasis on the environmental consequences of extracting, processing, transporting, using, and disposing of it.
DESCRIPTOR /	4.3.10.B.2	Analyze the impact of technology on the management, distribution, and disposal of natural resources.

STANDARD

.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.5.	Humans and the Environment
STANDARD	4.5.10.C	Analyze real world data and explain how point and non-point source pollution can be detected and eliminated.

DESCRIPTOR /4.5.10.C.Compare and contrast the environmental effects of different industrial strategies.STANDARD1.

		Grade 9 - Adopted: 2014
SUBJECT / ST ANDARD AREA	PA.CC.3. 5.9-10.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Key Ideas and Details
STANDARD	CC.3.5.9 -10.B.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD	CC.3.5.9 -10.C.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
SUBJECT / ST ANDARD AREA	PA.CC.3. 5.9-10.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Craft and Structure
STANDARD	CC.3.5.9 -10.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
STANDARD	CC.3.5.9 -10.E.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
SUBJECT / ST ANDARD AREA	PA.CC.3. 5.9-10.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.9 -10.l.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
SUBJECT / ST ANDARD AREA	PA.CC.3. 5.9-10.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.9 -10.J.	By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.

SUBJECT / STANDARD AREA	PA.CC.3.6 .9-10.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.9 -10.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.9- 10.B.4.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
SUBJECT / STANDARD AREA		Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Production and Distribution of Writing
STANDARD	CC.3.6.9 -10.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.9 -10.E.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Pennsylvania Core and Academic Standards

Science

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.4.	Formulate and revise explanations and models using logic and evidence.
STANDARD AREA / STATEMENT	SI.5.	Recognize and analyze alternative explanations and models.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.3.	Earth and Space Sciences
STANDARD	3.3.A.	Earth Structure, Processes and Cycles
DESCRIPTOR / STANDARD	3.3.10.A2.	Analyze the effects on the environment and the carbon cycle of using both renewable and nonrenewable sources of energy.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education

STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.10.A1.	Illustrate how the development of technologies is often driven by profit and an economic market.
DESCRIPTOR / STANDARD	3.4.10.A2.	Interpret how systems thinking applies logic and creativity with appropriate comprises in complex real-life problems.
DESCRIPTOR / STANDARD	3.4.10.A3.	Examine how technology transfer occurs when a new user applies an existing innovation developed for one purpose in a different function.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.10.B1.	Compare and contrast how the use of technology involves weighing the trade-offs between the positive and negative effects.
DESCRIPTOR / STANDARD	3.4.10.B2.	Demonstrate how humans devise technologies to reduce the negative consequences of other technologies.
DESCRIPTOR / STANDARD	3.4.10.B4	Recognize that technological development has been evolutionary, the result of a series of refinements to a basic invention.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.10.C1	Apply the components of the technological design process.
DESCRIPTOR / STANDARD	3.4.10.C2	Analyze a prototype and/or create a working model to test a design concept by making actual observations and necessary adjustments.
DESCRIPTOR / STANDARD	3.4.10.C3	Illustrate the concept that not all problems are technological and not every problem can be solved using technology.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World

DESCRIPTOR / STANDARD	3.4.10.D1	Refine a design by using prototypes and modeling to ensure quality, efficiency, and productivity of a final product.
DESCRIPTOR / STANDARD	3.4.10.D2	Diagnose a malfunctioning system and use tools, materials, and knowledge to repair it.
DESCRIPTOR / STANDARD	3.4.10.D3	Synthesize data, analyze trends, and draw conclusions regarding the effect of technology on the individual, society, and the environment.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.E.	The Designed World

DESCRIPTOR /3.4.10.E7.Evaluate structure design as related to function, considering such factors as style, convenience, safety, andSTANDARDefficiency.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.1.	Ecology
STANDARD	4.1.10.A	Examine the effects of limiting factors on population dynamics.

DESCRIPTOR / 4.1.10.A.3 Describe how organisms become classified as threatened or endangered. STANDARD .

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.1.	Ecology

STANDARD 4.1.10.B. Explain the consequences of interrupting natural cycles.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.1.	Ecology
STANDARD	4.1.10.D	Research practices that impact biodiversity in specific ecosystems.

DESCRIPTOR / 4.1.10.D. Analyze the relationship between habitat changes to plant and animal population fluctuations. STANDARD 1.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology

ST ANDARD AREA / ST AT EMENT	4.1. Ec	cology
------------------------------------	---------	--------

STANDARD

4.1.10.E. Analyze how humans influence the pattern of natural changes (e.g. primary /secondary succession and desertification) in ecosystems over time.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.3.	Natural Resources
STANDARD	4.3.10.A	Evaluate factors affecting the use of natural resources.
DESCRIPTOR / STANDARD	4.3.10.A.1	Evaluate the effect of consumer demands on the use of natural resources.
DESCRIPTOR / STANDARD	4.3.10.A.2	Analyze how technologies such as modern mining, harvesting, and transportation equipment affect the use of our natural resources.
DESCRIPTOR / STANDARD	4.3.10.A.3	Describe how local and state agencies manage natural resources.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD 4.3. Natural Resources AREA / STATEMENT		Natural Resources
STANDARD	4.3.10.B	Analyze how humans manage and distribute natural resources.
DESCRIPTOR / STANDARD	4.3.10.B.1	Describe the use of a natural resource with an emphasis on the environmental consequences of extracting, processing, transporting, using, and disposing of it.

DESCRIPTOR / 4.3.10.B.2 Analyze the impact of technology on the management, distribution, and disposal of natural resources. STANDARD .

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.5.	Humans and the Environment
STANDARD	4.5.10.C	Analyze real world data and explain how point and non-point source pollution can be detected and eliminated.

DESCRIPTOR / 4.5.10.C. Compare and contrast the environmental effects of different industrial strategies. STANDARD 1.

 SUBJECT /
 PA.CC.3.
 Reading Informational Text: Students read, understand, and respond to informational text – with

 STANDARD
 S.9-10.
 Reading on comprehension, making connections among ideas and between texts with focus on textual

 AREA
 evidence.

ST ANDARD AREA / ST AT EMENT		Key Ideas and Details
STANDARD	CC.3.5.9 -10.B.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD	CC.3.5.9 -10.C.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
SUBJECT / STANDARD AREA	PA.CC.3. 5.9-10.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Craft and Structure
STANDARD	CC.3.5.9 -10.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
STANDARD	CC.3.5.9 -10.E.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
SUBJECT / STANDARD AREA	PA.CC.3. 5.9-10.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.9 -10.l.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
SUBJECT / STANDARD AREA	PA.CC.3. 5.9-10.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.9 -10.J.	By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .9-10.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.9 -10.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.9- 10.B.4.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
SUBJECT / STANDARD AREA	PA.CC.3. 6.9-10.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

ST ANDARD AREA / ST AT EMENT		Production and Distribution of Writing
STANDARD	CC.3.6.9 -10.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.9 -10.E.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Pennsylvania Core and Academic Standards

Technology Education

Grade 9 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.3A.	Level 3A (Ages 14-16)
ST ANDARD AREA / ST AT EMENT	3A-AP.	Algorithms & Programming
STANDARD		Algorithms

DESCRIPTOR /3A-AP-Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge andSTANDARD13.personal interests. (P5.2)

SUBJECT / STANDARD AREA	CSTA.3A.	Level 3A (Ages 14-16)
ST ANDARD AREA / ST AT EMENT	3A-IC.	Impacts of Computing
STANDARD		Culture

DESCRIPTOR / 3A-IC-25. Test and refine computational artifacts to reduce bias and equity deficits. (P1.2) STANDARD

Pennsylvania Core and Academic Standards

Technology Education

Grade 10 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.3A.	Level 3A (Ages 14-16)
STANDARD AREA / STATEMENT	3A-AP.	Algorithms & Programming
STANDARD		Algorithms

DESCRIPTOR /3A-AP-Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and
personal interests. (P5.2)

SUBJECT / STANDARD AREA	CSTA.3A.	Level 3A (Ages 14-16)			
ST ANDARD AREA / ST AT EMENT	3A-IC.	Impacts of Computing			
STANDARD		Culture			

Rhode Island World-Class Standards

Mathematics

Grade 9 - Adopted: 2021

DOMAIN		The Standards for Mathematical Practice
STATEMENT OF ENDURING KNOWLEDGE	MP1	Make sense of problems and persevere in solving them.
STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.
STATEMENT OF ENDURING KNOWLEDGE	MP6	Attend to precision.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.
STATEMENT OF ENDURING	MP8	Look for and express regularity in repeated reasoning.

KNOWLEDGE

DOMAIN		Conceptual Category: Functions Content Standards [F]
STATEMENT OF ENDURING KNOWLEDGE	F-IF.	Interpreting Functions
GSE STEM	F-IF.B.	Interpret functions that arise in applications in terms of the context (linear, quadratic, exponential, rational, polynomial, square root, cube root, trigonometric, logarithmic).
SPECIFIC INDICATOR	F-IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Rhode Island World-Class Standards

Mathematics

DOMAIN	The Standards for Mathematical Practice

STATEMENT OF ENDURING KNOWLEDGE	MP1	Make sense of problems and persevere in solving them.
STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.
STATEMENT OF ENDURING KNOWLEDGE	MP6	Attend to precision.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.
STATEMENT OF ENDURING KNOWLEDGE	MP8	Look for and express regularity in repeated reasoning.

DOMAIN		Conceptual Category: Functions Content Standards [F]
ST AT EMENT OF ENDURING KNOWLEDGE	F-IF.	Interpreting Functions
GSE STEM	F-IF.B.	Interpret functions that arise in applications in terms of the context (linear, quadratic, exponential, rational, polynomial, square root, cube root, trigonometric, logarithmic).
SPECIFIC INDICATOR	F-IF.B.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Rhode Island World-Class Standards

Science

DOMAIN	NGSS.HS -PS.	PHYSICAL SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.

|--|

ST AT EMENT OF ENDURING KNOWLEDGE	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
SPECIFIC INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
SPECIFIC INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
SPECIFIC INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
DOMAIN	NGSS.HS -LS.	LIFE SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	HS-LS4.	Biological Evolution: Unity and Diversity

SPECIFICHS-LS4-Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.INDICATOR6.

Students who demonstrate understanding can:

GSE STEM

DOMAIN	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	HS- ESS2.	Earth's Systems
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

SPECIFIC	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
INDICATOR	ESS2-6.	and biosphere.

DOMAIN	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	HS- ESS3.	Earth and Human Activity
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
SPECIFIC INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

SPECIFIC	HS-	Create a computational simulation to illustrate the relationships among management of natural resources, the
INDICATOR	ESS3-3.	sustainability of human populations, and biodiversity.

SPECIFICHS-Use a computational representation to illustrate the relationships among Earth systems and how those relationshipsINDICATORESS3-6.are being modified due to human activity.

DOMAIN	NGSS.HS -ETS.	ENGINEERING DESIGN
ST AT EMENT OF ENDURING KNOWLEDGE	HS- ETS1.	Engineering Design
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
SPECIFIC INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
SPECIFIC INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and

Grade 9 - Adopted: 2010			
DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects	
STATEMENT OF ENDURING KNOWLEDGE		Key Ideas and Details	
GSE STEM	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.	
GSE STEM	RST.9-	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing	

environmental impacts.

SE STEM	RST.9-	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing
	10.3.	technical tasks attending to special cases or exceptions defined in the text.

DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Craft and Structure
GSE STEM	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
GSE STEM	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
DOMAIN	RST.9-	Reading Standards for Literacy in Science and Technical Subjects

DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Integration of Knowledge and Ideas

GSE STEM	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Range of Reading and Level of Text Complexity
GSE STEM	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
DOMAIN	WHST.9- 10.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Text Types and Purposes
GSE STEM	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SPECIFIC INDICATOR	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
DOMAIN	WHST.9- 10.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Production and Distribution of Writing
GSE STEM	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GSE STEM	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Rhode Island World-Class Standards

Science

Grade 10 - Adopted: 2013
--

DOMAIN	NGSS.HS -PS.	PHYSICAL SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GSE STEM		Students who demonstrate understanding can:

SPECIFICHS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.INDICATOR2.

DOMAIN	NGSS.HS -LS.	LIFE SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GSE STEM		Students who demonstrate understanding can:

SPECIFIC INDICATOR	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
SPECIFIC INDICATOR	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
SPECIFIC INDICATOR	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
SPECIFIC INDICATOR	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
DOMAIN	NGSS.HS -LS.	
STATEMENT OF ENDURING KNOWLEDGE	HS-LS4.	Biological Evolution: Unity and Diversity
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
DOMAIN	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATEMENT OF ENDURING KNOWLEDGE	HS- ESS2.	Earth's Systems
GSE STEM		Students who demonstrate understanding can:
GSE STEM SPECIFIC INDICATOR	HS- ESS2-4.	Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
SPECIFIC		Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in
SPECIFIC INDICATOR SPECIFIC	ESS2-4. HS- ESS2-6.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
SPECIFIC INDICATOR SPECIFIC INDICATOR	ESS2-4. HS- ESS2-6.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
SPECIFIC INDICATOR SPECIFIC INDICATOR DOMAIN ST AT EMENT OF ENDURING	ESS2-4. HS- ESS2-6. NGSS.HS -ESS. HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. EARTH AND SPACE SCIENCE
SPECIFIC INDICATOR SPECIFIC INDICATOR DOMAIN ST AT EMENT OF ENDURING KNOWLEDGE	ESS2-4. HS- ESS2-6. NGSS.HS -ESS. HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. EARTH AND SPACE SCIENCE Earth and Human Activity
SPECIFIC INDICATOR SPECIFIC INDICATOR DOMAIN STATEMENT OF ENDURING KNOWLEDGE GSE STEM SPECIFIC	ESS2-4. HS- ESS2-6. NGSS.HS -ESS. HS- HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. EARTH AND SPACE SCIENCE Earth and Human Activity Students who demonstrate understanding can: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural
SPECIFIC INDICATOR SPECIFIC INDICATOR DOMAIN ST AT EMENT OF ENDURING KNOWLEDGE GSE ST EM SPECIFIC INDICATOR SPECIFIC	ESS2-4. HS- ESS2-6. NGSS.HS -ESS3. ESS3. HS- ESS3-1. HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. EARTH AND SPACE SCIENCE Earth and Human Activity Students who demonstrate understanding can: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based

DOMAIN	NGSS.HS -ETS.	ENGINEERING DESIGN
STATEMENT OF ENDURING KNOWLEDGE	HS- ETS1.	Engineering Design
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
SPECIFIC INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
SPECIFIC INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 10 - Adopted: 2010
DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Key Ideas and Details
GSE STEM	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
GSE STEM	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Craft and Structure
GSE STEM	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
GSE STEM	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Integration of Knowledge and Ideas
GSE STEM	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
DOMAIN	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Range of Reading and Level of Text Complexity

GSE STEM	RST.9-	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band
	10.10.	independently and proficiently.

	WHST.9- 10.	Writing Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Text Types and Purposes
GSE STEM	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

SPECIFICWHST.9-Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a styleINDICATOR10.2(d)appropriate to the discipline and context as well as to the expertise of likely readers.

DOMAIN	WHST.9- 10.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Production and Distribution of Writing
GSE STEM	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GSE STEM	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Rhode Island World-Class Standards Technology Education Grade 9 - Adopted: 2016

DOMAIN ISTE Standards for Students **STATEMENT** RI.ISTE-Knowledge Constructors: Students critically curate a variety of resources using digital tools to **OF ENDURING** S.3. construct knowledge, produce creative artifacts and make meaningful learning experiences for **KNOWLEDGE** themselves and others. GSE STEM ISTE-Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing S.3.d. answers and solutions. DOMAIN ISTE Standards for Students **STATEMENT** RI.ISTE-Innovative Designers: Students use a variety of technologies within a design process to identify and **OF ENDURING** solve problems by creating new, useful or imaginative solutions. S.4. KNOWLEDGE GSE STEM ISTE-Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or S.4.a. solving authentic problems. GSE STEM ISTE-Select and use digital tools to plan and manage a design process that considers design constraints and calculated S.4.b. risks. DOMAIN ISTE Standards for Students

Computational Thinkers: Students develop and employ strategies for understanding and solving

problems in ways that leverage the power of technological methods to develop and test solutions.

RI.ISTE-

S.5.

STATEMENT OF ENDURING

KNOWLEDGE

GSE STEM	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
GSE STEM	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GSE STEM	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Rhode Island World-Class Standards

Technology Education

Grade 10 - Adopted: 2016

DOMAIN		ISTE Standards for Students
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GSE STEM	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
DOMAIN		ISTE Standards for Students
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GSE STEM	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GSE STEM	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
DOMAIN		ISTE Standards for Students
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GSE STEM	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
GSE STEM	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GSE STEM	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

South Carolina Standards & Learning

Mathematics

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.

PERFORMANC E DESCRIPTOR / STANDARD	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1c.	Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1d.	Evaluate the success of an approach to solve a problem and refine it if necessary.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.2.	Reason both contextually and abstractly.
PERFORMANC E DESCRIPTOR / STANDARD	PS.2d.	Connect the meaning of mathematical operations to the context of a given situation.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3d.	Reflect on and provide thoughtful responses to the reasoning of others.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.6.	Communicate mathematically and approach mathematical situations with precision.
PERFORMANC E DESCRIPTOR / STANDARD	PS.6a.	Express numerical answers with the degree of precision appropriate for the context of a situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.6b.	Represent numbers in an appropriate form according to the context of the situation.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.7.	Identify and utilize structure and patterns.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7a.	Recognize complex mathematical objects as being composed of more than one simple object.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7b.	Recognize mathematical repetition in order to make generalizations.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7c.	Look for structures to interpret meaning and develop solution strategies.
STANDARD /	SC.9-	Probability and Statistics

STANDARD / COURSE	SC.9- 12.PS.	Probability and Statistics
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.SPM J.	Making Inferences and Justifying Conclusions
		Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the

E DESCRIPTOR .4. use of simulation models for random sampling. / STANDARD

	SC.9- 12.PS.	Probability and Statistics
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.SPID	Interpreting Data

PERFORMANC	PS.SPII
E DESCRIPTOR	4.
/ STANDARD	

ID. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

South Carolina Standards & Learning Mathematics Grade 10 - Adopted: 2015

Grade 10 - Adopted: 2015		
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1c.	Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1d.	Evaluate the success of an approach to solve a problem and refine it if necessary.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.2.	Reason both contextually and abstractly.
PERFORMANC E DESCRIPTOR / STANDARD	PS.2d.	Connect the meaning of mathematical operations to the context of a given situation.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3d.	Reflect on and provide thoughtful responses to the reasoning of others.

STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4d.	Evaluate the reasonableness of a model and refine if necessary.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.6.	Communicate mathematically and approach mathematical situations with precision.
PERFORMANC E DESCRIPTOR / STANDARD	PS.6a.	Express numerical answers with the degree of precision appropriate for the context of a situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.6b.	Represent numbers in an appropriate form according to the context of the situation.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.7.	Identify and utilize structure and patterns.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7a.	Recognize complex mathematical objects as being composed of more than one simple object.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7b.	Recognize mathematical repetition in order to make generalizations.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7c.	Look for structures to interpret meaning and develop solution strategies.

ST ANDARD / COURSE SC.9-12.PS.

Probability and Statistics

	KNOWLED AND SKILL ESSENTIA QUESTION	S/J.	Making Inferences and Justifying Conclusions
--	--	------	--

E DESCRIPTOR .4. / STANDARD

PERFORMANC PS.SPMJ Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

ST ANDARD / COURSE	SC.9- 12.PS.	Probability and Statistics
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.SPID	Interpreting Data
PERFORMANC	PS.SPID.	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population

E DESCRIPTOR 4. percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. / STANDARD

South Carolina Standards & Learning

Science

ST ANDARD / COURSE		Biology (LS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Ecosystems: Interactions, Energy, and Dynamics (LS2)
PERFORMANC E DESCRIPTOR / STANDARD	B-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANC E DESCRIPTOR / STANDARD	B-LS2-4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E DESCRIPTOR / STANDARD	B-LS2-5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
PERFORMANC E DESCRIPTOR / STANDARD	B-LS2-7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.
ST ANDARD / COURSE		Biology (LS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Biological Evolution: Unity and Diversity (LS4)
PERFORMANC E DESCRIPTOR / STANDARD	B-LS4-6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
ST ANDARD / COURSE		Physics (PS)

PERFORMANC P-PS4-2. Design, evaluate, and refine a solution for improving how digital devices store and transmit information. E DESCRIPTOR / STANDARD

ST ANDARD /
COURSEEarth and Space Science (ESS)KNOWLEDGE
AND SKILLS /
ESSENTIAL
QUESTIONEarth's Systems (ESS2)

STANDARD / COURSE		Earth and Space Science (ESS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Earth and Human Activity (ESS3)
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 1.	Construct an explanation based on evidence for how the availability of natural resources and occurrence of natural hazards have influenced human activity.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 2.	Evaluate competing design solutions that address the impacts of developing, managing, and using Earth's energy and mineral resources.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 3.	Use computational representation to illustrate the relationships among the management of Earth's resources, the sustainability of human populations, and biodiversity.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 7.	Create an argument, based on evidence that describes how changes in climate on Earth have affected human activity.

South Carolina Standards & Learning Science

STANDARD / COURSE		Biology (LS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Ecosystems: Interactions, Energy, and Dynamics (LS2)

PERFORMANC E DESCRIPTOR / STANDARD	B-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
PERFORMANC E DESCRIPTOR / STANDARD	B-LS2-4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
PERFORMANC E DESCRIPTOR / STANDARD	B-LS2-5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
	B-LS2-7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem

E DESCRIPTOR / STANDARD

health.

ST ANDARD / COURSE Biology (LS) Biological Evolution: Unity and Diversity (LS4) KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION

PERFORMANC B-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. E DESCRIPTOR / STANDARD

STANDARD / COURSE	Physics (PS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Waves and Their Applications in Technologies for Information Transfer (PS4)

P-PS4-2. Design, evaluate, and refine a solution for improving how digital devices store and transmit information. PERFORMANC E DESCRIPTOR

/ STANDARD

STANDARD / COURSE		Earth and Space Science (ESS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Earth's Systems (ESS2)
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS2- 4.	Use a model to describe how causes of short and long-term variations in the flow of energy into and out of Earth's systems result in changes to climate.

ST ANDARD / COURSE	Earth and Space Science (ESS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Earth and Human Activity (ESS3)

PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 1.	Construct an explanation based on evidence for how the availability of natural resources and occurrence of natural hazards have influenced human activity.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 2.	Evaluate competing design solutions that address the impacts of developing, managing, and using Earth's energy and mineral resources.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 3.	Use computational representation to illustrate the relationships among the management of Earth's resources, the sustainability of human populations, and biodiversity.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
PERFORMANC E DESCRIPTOR / STANDARD	E-ESS3- 7.	Create an argument, based on evidence that describes how changes in climate on Earth have affected human activity.

South Carolina Standards & Learning Technology Education

ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	3	Recognize, define, and analyze computational problems.
GRADE LEVEL EXAMPLE / STAGE	3.a.	Recognize when it is appropriate to solve a problem computationally.
GRADE LEVEL EXAMPLE / STAGE	3.b.	Make sense of computational problems and persevere in solving them.
GRADE LEVEL EXAMPLE / STAGE	3.c.	Relate computational problems to prior knowledge.
GRADE LEVEL EXAMPLE / STAGE	3.d.	Recognize that there may be multiple approaches to solving a problem.
GRADE LEVEL EXAMPLE / STAGE	3.e.	Approach problem solving iteratively, using a cyclical process.
STANDARD / COURSE		Process Standards

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.b.	Recognize when to use the same solution for multiple problems.

GRADE LEVEL 4.c. Test computational artifacts systematically by considering multiple scenarios and using test cases. EXAMPLE / STAGE

ST ANDARD / COURSE	Process Standards
KNOWLEDGE AND SKILLS / ESSENT IAL QUESTION	A computer science literate student can:
PERFORMANC E DESCRIPT OR / ST ANDARD	Communicate about computing.

GRADE LEVEL 5.a. Select and use appropriate technological tools to convey solutions to computing problems. EXAMPLE / STAGE

STANDARD / COURSE		Computing Systems
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1:	Examine how hardware and software contribute to computing devices solving relevant problems.
PERFORMANC E DESCRIPTOR / STANDARD		Level 2

GRADE LEVEL	HS2.CS.1	Investigate how a problem is systematically solved through the selection and integration of hardware and software
EXAMPLE /	.1.	components.
STAGE		

ST ANDARD / COURSE		Computing Systems
KNOWLEDGE AND SKILLS / ESSENT IAL QUESTION	Standar d 1:	Examine how hardware and software contribute to computing devices solving relevant problems.
PERFORMANC E DESCRIPTOR / STANDARD		Level 4

GRADE LEVELHS4.CS.1Develop a solution to a given problem using appropriate hardware and software (e.g., sensor devices, Wi-FiEXAMPLE /.1.capabilities, specialized displays, runtime modules, operating systems, application programming interfaces (APIs)).STAGE

ST ANDARD / COURSE		Data and Analysis
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3:	Create various ways to visually represent data.
PERFORMANC E DESCRIPT OR / ST ANDARD		Level 3

STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1:	Design algorithms that can be adapted to express an idea or solve a problem.
PERFORMANC E DESCRIPTOR / ST ANDARD		Level 1

GRADE LEVELHS1.AP.1Create flowcharts and/or pseudocode to express a problem or idea as an algorithm.EXAMPLE /.1.

STAGE

STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1:	Design algorithms that can be adapted to express an idea or solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD		Level 2

GRADE LEVEL	HS2.AP.1	Create algorithms to solve computational problems that have an application in the real world (e.g., local community,
EXAMPLE /	.1.	church, civic organization, school, home life).
STAGE		

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENT IAL QUESTION	Standar d 4:	Plan, build, test, refine, and document programs using text-based coding languages to solve problems with varying degrees of difficulty.
PERFORMANC E DESCRIPTOR / STANDARD		Level 3

 GRADE LEVEL
 HS3.AP.4
 Develop a systematic solution that incorporates licensed resources.

 EXAMPLE /
 .4.

 STAGE

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4:	Plan, build, test, refine, and document programs using text-based coding languages to solve problems with varying degrees of difficulty.
PERFORMANC E DESCRIPT OR / ST ANDARD		Level 4

 GRADE LEVEL
 HS4.AP.4
 Implement version control to track program refinements.

 EXAMPLE /
 .2.

 STAGE

STANDARD / COURSE		Impact of Computing
KNOWLEDGE AND SKILLS / ESSENT IAL QUESTION	Standar d 3:	Understand the importance of access and equity in computing.
PERFORMANC E DESCRIPTOR / STANDARD		Level 1

GRADE LEVELHS1.IC.3.Identify the advantages and disadvantages of diverse perspectives and backgrounds when solving computationalEXAMPLE /3.problems.STAGE

South Carolina Standards & Learning Technology Education

ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	3	Recognize, define, and analyze computational problems.
GRADE LEVEL EXAMPLE / STAGE	3.a.	Recognize when it is appropriate to solve a problem computationally.
GRADE LEVEL EXAMPLE / STAGE	3.b.	Make sense of computational problems and persevere in solving them.
GRADE LEVEL EXAMPLE / STAGE	3.c.	Relate computational problems to prior knowledge.

GRADE LEVEL EXAMPLE / STAGE	3.d.	Recognize that there may be multiple approaches to solving a problem.
GRADE LEVEL EXAMPLE / STAGE	3.e.	Approach problem solving iteratively, using a cyclical process.
ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.b.	Recognize when to use the same solution for multiple problems.
GRADE LEVEL EXAMPLE / STAGE	4.c.	Test computational artifacts systematically by considering multiple scenarios and using test cases.
ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPT OR / ST ANDARD	5	Communicate about computing.
GRADE LEVEL EXAMPLE / STAGE	5.a.	Select and use appropriate technological tools to convey solutions to computing problems.
ST ANDARD / COURSE		Computing Systems
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1:	Examine how hardware and software contribute to computing devices solving relevant problems.
PERFORMANC E DESCRIPTOR / STANDARD		Level 2
GRADE LEVEL EXAMPLE / STAGE	HS2.CS.1 .1.	Investigate how a problem is systematically solved through the selection and integration of hardware and software components.
ST ANDARD / COURSE		Computing Systems

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1:	Examine how hardware and software contribute to computing devices solving relevant problems.
PERFORMANC E DESCRIPTOR / STANDARD		Level 4

GRADE LEVEL EXAMPLE / STAGE

.1.

HS4.CS.1 Develop a solution to a given problem using appropriate hardware and software (e.g., sensor devices, Wi-Fi capabilities, specialized displays, runtime modules, operating systems, application programming interfaces (APIs)).

STANDARD / COURSE		Data and Analysis
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3:	Create various ways to visually represent data.
PERFORMANC E DESCRIPT OR / ST ANDARD		Level 3

GRADE LEVEL HS3.DA.3 Evaluate possible computational models for data visualizations that aid in solving a variety of problems. EXAMPLE / .2.

SI	AGE	
	/ UCL	

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENT IAL QUESTION	Standar d 1:	Design algorithms that can be adapted to express an idea or solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD		Level 1

GRADE LEVEL HS1.AP.1 Create flowcharts and/or pseudocode to express a problem or idea as an algorithm. EXAMPLE / .1.

STAGE

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1:	Design algorithms that can be adapted to express an idea or solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD		Level 2

HS2.AP.1 Create algorithms to solve computational problems that have an application in the real world (e.g., local community, GRADE LEVEL EXAMPLE / .1. church, civic organization, school, home life). STAGE

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4:	Plan, build, test, refine, and document programs using text-based coding languages to solve problems with varying degrees of difficulty.
PERFORMANC E DESCRIPT OR / ST ANDARD		Level 3

GRADE LEVEL HS3.AP.4 Develop a systematic solution that incorporates licensed resources. EXAMPLE / .4.

STAGE

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4:	Plan, build, test, refine, and document programs using text-based coding languages to solve problems with varying degrees of difficulty.
PERFORMANC E DESCRIPTOR / STANDARD		Level 4

EXAMPLE / .2.

GRADE LEVEL HS4.AP.4 Implement version control to track program refinements.

STAGE

ST ANDARD / COURSE		Impact of Computing
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3:	Understand the importance of access and equity in computing.
PERFORMANC E DESCRIPTOR / ST ANDARD		Level 1

GRADE LEVEL	HS1.IC.3.	Identify the advantages and disadvantages of diverse perspectives and backgrounds when solving computational
EXAMPLE /	3.	problems.
STAGE		

South Dakota Content Standards Mathematics

GOAL/STRAND		Standards for Mathematical Practice
INDICATOR/BE NCHMARK	1	Make sense of problems and persevere in solving them.
INDICATOR/BE NCHMARK	2	Reason abstractly and quantitatively.

INDICATOR/BE NCHMARK	3	Construct viable arguments and critique the reasoning of others.
INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	6	Attend to precision.
INDICATOR/BE NCHMARK	7	Look for and make use of structure.
INDICATOR/BE NCHMARK	8	Look for and express regularity in repeated reasoning.

South Dakota Content Standards Mathematics

GOAL/STRAND		Standards for Mathematical Practice
INDICATOR/BE NCHMARK	1	Make sense of problems and persevere in solving them.
INDICATOR/BE NCHMARK	2	Reason abstractly and quantitatively.
INDICATOR/BE NCHMARK	3	Construct viable arguments and critique the reasoning of others.
INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	6	Attend to precision.
INDICATOR/BE NCHMARK	7	Look for and make use of structure.
INDICATOR/BE NCHMARK	8	Look for and express regularity in repeated reasoning.
		South Dakota Content Standards
		Science
		Grade 9 - Adopted: 2015

GOAL/STRAND	SD.9- 12.PSS.	High School Physical Science Standards
INDICATOR/BE NCHMARK	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information. (SEP: 1; DCI: PS4.A; CCC: Stability/Change, Technology)
GOAL/STRAND	SD.9- 12.LSS.	High School Life Science Standards
INDICATOR/BE NCHMARK	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. (SEP: 5; DCI: LS2.A, LS2.C; CCC: Scale/Prop.)
-------------------------	------------------	---
INDICATOR/BE NCHMARK	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. (SEP: 5; DCI: LS2.B; CCC: Energy/Matter)
INDICATOR/BE NCHMARK	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. (SEP: 2; DCI: LS2.B, PS3.D; CCC: Systems)
INDICATOR/BE NCHMARK	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. (SEP: 6; DCI: LS2.C, LS4.D, ETS1.B; CCC: Stability/Change)
INDICATOR/BE NCHMARK	HS-LS4- 6.	Use a simulation to research and analyze possible solutions for the adverse impacts of human activity on biodiversity. (SEP: 5; DCI: LS4.C, LS4.D, ETS1.B; CCC: Cause/Effect)
GOAL/STRAND	SD.9- 12.ESS.	High School Earth and Space Science Standards
INDICATOR/BE NCHMARK	HS- ESS2-3.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (SEP: 2; DCI: ESS2.A, ESS2.B, PS4.A; CCC: Energy/Matter, Technology)
INDICATOR/BE NCHMARK	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. (SEP: 6; DCI: ESS3.A, ESS3.B ; CCC: Cause/Effect, Technology)
INDICATOR/BE NCHMARK	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. (SEP: 7; DCI: ESS3.A, ETS1.B; CCC: Technology)
INDICATOR/BE NCHMARK	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. (SEP: 5; DCI: ESS3.C; CCC: Stability/Change, Technology)
INDICATOR/BE NCHMARK	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. (SEP: 5; DCI: ESS2.D, ESS3.D; CCC: Systems)
		Grade 9 - Adopted: 2010
GOAL/STRAND	SD.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Key Ideas and Details
STANDARD	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
GOAL/STRAND	SD.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Craft and Structure
STANDARD	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.

STANDARD	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
GOAL/ST RAND	SD.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Integration of Knowledge and Ideas
STANDARD	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
GOAL/STRAND	SD.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Range of Reading and Level of Text Complexity
STANDARD	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
GOAL/ST RAND	SD.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/BE NCHMARK		Text Types and Purposes
STANDARD	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SUPPORTING SKILLS	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
GOAL/ST RAND	SD.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Production and Distribution of Writing
STANDARD	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD		

South Dakota Content Standards

Science

Grade 10 - Adopted: 2015

GOAL/STRAND	SD.9- 12.PSS.	High School Physical Science Standards
INDICATOR/BE NCHMARK	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information. (SEP: 1; DCI: PS4.A; CCC: Stability/Change, Technology)
GOAL/STRAND	SD.9- 12.LSS.	High School Life Science Standards

INDICATOR/BE NCHMARK	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. (SEP: 5; DCI: LS2.B; CCC: Energy/Matter)
INDICATOR/BE NCHMARK	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. (SEP: 2; DCI: LS2.B, PS3.D; CCC: Systems)
INDICATOR/BE NCHMARK	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. (SEP: 6; DCI: LS2.C, LS4.D, ETS1.B; CCC: Stability/Change)
INDICATOR/BE NCHMARK	HS-LS4- 6.	Use a simulation to research and analyze possible solutions for the adverse impacts of human activity on biodiversity. (SEP: 5; DCI: LS4.C, LS4.D, ETS1.B; CCC: Cause/Effect)
GOAL/STRAND	SD.9- 12.ESS.	High School Earth and Space Science Standards
INDICATOR/BE NCHMARK	HS- ESS2-3.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (SEP: 2; DCI: ESS2.A, ESS2.B, PS4.A; CCC: Energy/Matter, Technology)
INDICATOR/BE NCHMARK	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. (SEP: 6; DCI: ESS3.A, ESS3.B ; CCC: Cause/Effect, Technology)
INDICATOR/BE NCHMARK	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. (SEP: 7; DCI: ESS3.A, ETS1.B; CCC: Technology)
INDICATOR/BE NCHMARK	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. (SEP: 5; DCI: ESS3.C; CCC: Stability/Change, Technology)
INDICATOR/BE NCHMARK	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. (SEP: 5; DCI: ESS2.D, ESS3.D; CCC: Systems) Grade 10 - Adopted: 2010
GOAL/STRAND	SD.RST.9	Reading Standards for Literacy in Science and Technical Subjects
	-10.	
INDICATOR/B ENCHMARK		Key Ideas and Details
STANDARD	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STANDARD	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
GOAL/STRAND	SD.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Craft and Structure
STANDARD	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
STANDARD	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

GOAL/ST RAND	SD.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Integration of Knowledge and Ideas
STANDARD	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
GOAL/STRAND	SD.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Range of Reading and Level of Text Complexity
STANDARD	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
GOAL/STRAND	SD.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/BE NCHMARK		Text Types and Purposes
STANDARD	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SUPPORTING SKILLS	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
GOAL/STRAND	SD.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Production and Distribution of Writing
STANDARD	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

South Dakota Content Standards

Technology Education

Grade 9 - Adopted: 2015

GOAL/STRAND	SD.ET.	Educational Technology
INDICATOR/BE NCHMARK	ET.CT.	9-12 Grade Critical Thinking, Problem Solving, and Decision Making
STANDARD	ET.CT.2	Students demonstrate the design process through problem solving.
SUPPORTING SKILLS	9- 12.ET.CT.2 .1.	Compare and contrast methods for problem-solving and decision-making.
SUPPORTING SKILLS	9- 12.ET.CT.2 .2.	Formulate a technological solution using data-driven decision making.

South Dakota Content Standards

Technology Education

Grade 10 - Adopted: 2015

GOAL/STRAND	SD.ET.	Educational Technology
INDICATOR/BE NCHMARK	ET.CT.	9-12 Grade Critical Thinking, Problem Solving, and Decision Making
STANDARD	ET.CT.2	Students demonstrate the design process through problem solving.
SUPPORTING SKILLS	9- 12.ET.CT.2 .1.	Compare and contrast methods for problem-solving and decision-making.
SUPPORTING SKILLS	9- 12.ET.CT.2 .2.	Formulate a technological solution using data-driven decision making.

Tennessee Academic Standards

Mathematics

Grade 9 - Adopted: 2021

		Glaue 3 - Aubpieu. 2021
STRAND / STANDARD / COURSE		Standards for Mathematical Practice
Conceptual Strand / Guiding Question	1	Make sense of problems and persevere in solving them.
Conceptual Strand / Guiding Question	2	Reason abstractly and quantitatively.
Conceptual Strand / Guiding Question	3	Construct viable arguments and critique the reasoning of others.
Conceptual Strand / Guiding Question	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	6	Attend to precision.
Conceptual Strand / Guiding Question	7	Look for and make use of structure.

CONCEPTUAL	8
STRAND /	
GUIDING	
QUESTION	

Look for and express regularity in repeated reasoning.

STRAND / STANDARD / COURSE		Algebra I A1
CONCEPTUAL STRAND / GUIDING QUESTION	A1.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	В.	Interpret functions that arise in applications in terms of the context.

LEARNINGA1.F.IF.B.Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aEXPECTATION6.specified interval. Estimate and interpret the rate of change from a graph.

STRAND / STANDARD / COURSE		Algebra I A1
CONCEPTUAL STRAND / GUIDING QUESTION	A1.S.ID.	Statistics and Probability – Interpreting Categorical and Quantitative Data (S.ID)
GUIDING QUESTION / LEARNING EXPECTATION	A1.S.ID. A.	Summarize, represent, and interpret data on a single count or measurement variable.

LEARNINGA1.S.ID.AUse measures of center to solve real-world and mathematical problems.EXPECTATION.1.

STRAND / STANDARD / COURSE		Algebra II A2
CONCEPTUAL STRAND / GUIDING QUESTION	A2.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	Α.	Interpret functions that arise in applications in terms of the context.

LEARNINGA2.F.IF.A.Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aEXPECTATION2.specified interval. Estimate and interpret the rate of change from a graph.

STRAND / STANDARD / COURSE		Integrated Math II M2
CONCEPTUAL STRAND / GUIDING QUESTION	M2.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	В.	Interpret functions that arise in applications in terms of the context.

LEARNINGM2.F.IF.B.Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aEXPECTATION5.specified interval. Estimate and interpret the rate of change from a graph.

STRAND / STANDARD / COURSE		Integrated Math III M3
CONCEPTUAL STRAND / GUIDING QUESTION	M3.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	В.	Interpret functions that arise in applications in terms of the context.

LEARNING M EXPECTATION 4.

M3.F.IF.B. Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over aspecified interval. Estimate and interpret the rate of change from a graph.

STRAND / STANDARD / COURSE		Integrated Math III M3
CONCEPTUAL STRAND / GUIDING QUESTION	M3.S.ID.	Statistics and Probability – Interpreting Categorical and Quantitative Data (S.ID)
GUIDING QUESTION / LEARNING EXPECTATION	M3.S.ID. A.	Summarize, represent, and interpret data on a single count or measurement variable.

LEARNINGM3.S.ID.AUse measures of center to solve real-world and mathematical problems.EXPECTATION.1.

Grade 9 - Adopted: 2022

STRAND / STANDARD / COURSE		Calculus C
CONCEPTUAL STRAND / GUIDING QUESTION	C.D.CD.	Derivatives – Understand the Concept of the Derivative (D.CD)
GUIDING QUESTION / LEARNING EXPECTATION	C.D.CD. B.	Understand the derivative at a point.

LEARNINGC.D.CD.BApproximate both the instantaneous rate of change and the average rate of change given a graph or table ofEXPECTATION.6.values.

Tennessee Academic Standards

Mathematics

Grade 10 - Adopted: 2021

STRAND / STANDARD / COURSE		Standards for Mathematical Practice
CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.

CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	6	Attend to precision.
CONCEPTUAL STRAND / GUIDING QUESTION	7	Look for and make use of structure.
CONCEPTUAL STRAND / GUIDING QUESTION	8	Look for and express regularity in repeated reasoning.

STRAND / STANDARD / COURSE		Algebra I A1
CONCEPTUAL STRAND / GUIDING QUESTION	A1.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	A1.F.IF. B.	Interpret functions that arise in applications in terms of the context.
LEARNING EXPECTATION	A1.F.IF.B. 6.	Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph.
STRAND / STANDARD / COURSE		Algebra I A1
CONCEPTUAL STRAND / GUIDING QUESTION	A1.S.ID.	Statistics and Probability – Interpreting Categorical and Quantitative Data (S.ID)
GUIDING QUESTION / LEARNING EXPECTATION	A1.S.ID. A.	Summarize, represent, and interpret data on a single count or measurement variable.
		I se measures of center to solve real-world and mathematical problems

LEARNINGA1.S.ID.AUse measures of center to solve real-world and mathematical problems.EXPECTATION.1.

STRAND / STANDARD / COURSE		Algebra II A2
CONCEPTUAL STRAND / GUIDING QUESTION	A2.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	A2.F.IF. A.	Interpret functions that arise in applications in terms of the context.

LEARNING EXPECTATION

2.

5.

A2.F.IF.A. Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph.

STRAND / STANDARD / COURSE		Integrated Math II M2
CONCEPTUAL STRAND / GUIDING QUESTION	M2.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	M2.F.IF. B.	Interpret functions that arise in applications in terms of the context.

LEARNING EXPECTATION M2.F.IF.B. Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph.

STRAND / STANDARD / COURSE		Integrated Math III M3
CONCEPTUAL STRAND / GUIDING QUESTION	M3.F.IF.	Functions – Interpreting Functions (F.IF)
GUIDING QUESTION / LEARNING EXPECTATION	M3.F.IF. B.	Interpret functions that arise in applications in terms of the context.

M3.F.IF.B. Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a LEARNING EXPECTATION specified interval. Estimate and interpret the rate of change from a graph. 4.

STRAND / STANDARD / COURSE		Integrated Math III M3
CONCEPTUAL STRAND / GUIDING QUESTION	M3.S.ID.	Statistics and Probability – Interpreting Categorical and Quantitative Data (S.ID)
GUIDING QUESTION / LEARNING EXPECTATION	M3.S.ID. A.	Summarize, represent, and interpret data on a single count or measurement variable.

LEARNING M3.S.ID.A Use measures of center to solve real-world and mathematical problems. EXPECTATION .1.

STRAND / STANDARD / COURSE		Calculus C
CONCEPTUAL STRAND / GUIDING QUESTION	C.D.CD.	Derivatives – Understand the Concept of the Derivative (D.CD)
GUIDING QUESTION / LEARNING EXPECTATION	В.	Understand the derivative at a point.

LEARNING C.D.CD.B Approximate both the instantaneous rate of change and the average rate of change given a graph or table of EXPECTATION 6. values.

Tennessee Academic Standards Science

Grade 9 - Adopted: 2016

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO1.LS 3	Ecosystems: Interactions, Energy, and Dynamics

LEARNINGBIO1.LS2Create a model tracking carbon atoms between inorganic and organic molecules in an ecosystem. Explain humanEXPECTATION.2.impacts on climate based on this model.

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO1.LS 4	Ecosystems: Interactions, Energy, and Dynamics

LEARNINGBIO1.LS2Analyze through research the cycling of matter in our biosphere and explain how biogeochemical cycles are criticalEXPECTATION.3.for ecosystem function.

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO1.LS 4.	Biological Change: Unity and Diversity

LEARNING	BIO1.LS4	Identify ecosystem services and assess the role of biodiversity in support of these services. Analyze the role human
EXPECTATION	.3.	activities have on disruption of these services.

STRAND / STANDARD / COURSE	TN.BIOII.	Biology II (BIO2)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO2.ET S.	Engineering, Technology, and Applications of Science (ETS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO2.ET S2.	Links Among Engineering, Technology, Science, and Society
LEARNING EXPECTATION	BIO2.ETS 2.3.	Create a timeline depicting how humans have employed engineering and technology to maximize use of microorganisms, plants, and animals for various purposes. Choose one specific example and construct an argument supporting or opposing the use of engineering or technology in this instance.
STRAND / STANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ESS.ES S2.	Earth's Systems
LEARNING EXPECTATION	ESS.ESS 2.1.	Given an environmental disaster, analyze its effect upon the geosphere, hydrosphere, atmosphere, and/or biosphere, including sphere-to-sphere interactions. Analysis should conclude with an identification of future research to improve our ability to predict such interactions.
LEARNING EXPECTATION	ESS.ESS 2.10.	Construct a model which shows the interactions between processes of the hydrologic cycle and the greenhouse effect.
LEARNING EXPECTATION	ESS.ESS 2.11.	Obtain, evaluate, and communicate information about human or natural threats to Tennessee.
LEARNING EXPECTATION	ESS.ESS 2.16.	Design a mathematical model of Earth's energy budget showing how the electromagnetic radiation from the sun in watts/ m2 is reflected, absorbed, stored, redistributed among the atmosphere, ocean, and land systems, and reradiated back into space. The model should provide a means to predict how changes in greenhouse gases could affect Earth's temperatures.
LEARNING EXPECTATION	ESS.ESS 2.17.	Analyze the multiple sources of energy that provide power in the state of Tennessee and compare them to each other and to an alternative energy source. The analysis should include their functional components (such as infrastructure cost, on-going costs, safety, and reliability), and their social, cultural, and environmental impacts (including emissions of greenhouse gases).
LEARNING EXPECTATION	ESS.ESS 2.18.	Identify the organisms that are major drivers in the global carbon cycle and trace how greenhouse gases are continually moved through the carbon reservoirs and fluxes represented by the ocean, land, life, and atmosphere.
STRAND / STANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)

CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ESS.ES S3.	Earth and Human Activity

LEARNINGESS.ESSObtain, evaluate, and communicate information on how natural resource availability, natural hazard occurrences, andEXPECTATION3.2.climatic changes impact individuals and society.

STRAND / STANDARD / COURSE	TN.ECO.	Ecology (ECO)
CONCEPTUAL STRAND / GUIDING QUESTION	ECO.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	ECO.LS 2.	Ecosystems: Interactions, Energy, and Dynamics
LEARNING EXPECTATION	ECO.LS2. 4.	Compare patterns of stratification and zonation in various terrestrial and aquatic ecosystems. Construct an argument regarding the importance of these patterns in ecosystem diversity.
LEARNING EXPECTATION	ECO.LS2. 7.	Use models to explain relationships among biogeochemical cycles (water, carbon, nitrogen, phosphorus).
LEARNING EXPECTATION	ECO.LS2. 8.	Create a diagram tracing carbon through the processes of photosynthesis and respiration. Use the diagram to construct an explanation for the importance of photosynthesis and respiration in the carbon cycle.
LEARNING EXPECTATION	ECO.LS2. 10.	Plan and carry out an investigation measuring species diversity (richness and evenness) and density in a local ecosystem.
STRAND / STANDARD / COURSE	TN.ECO.	Ecology (ECO)
CONCEPTUAL STRAND / GUIDING QUESTION	ECO.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	ECO.LS 4.	Biological Change: Unity and Diversity
LEARNING EXPECTATION	ECO.LS4 .7.	Research and evaluate the effectiveness of strategies for maintenance of biodiversity.

STRAND / STANDARD / COURSE	TN.ECO.	Ecology (ECO)
CONCEPTUAL STRAND / GUIDING QUESTION	ECO.ES S.	Earth and Space Sciences (ESS)

GUIDING QUESTION / LEARNING EXPECTATION	ECO.ES S3.	Earth and Human Activity
LEARNING EXPECTATION	ECO.ESS 3.2.	Construct an argument in support of protection of native species. Develop responses to anticipated counterarguments.
LEARNING EXPECTATION	ECO.ESS 3.3.	Engage in argument from evidence regarding the impacts of human activity on climate change. Design solutions to address these impacts.
STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.LS	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.L S2.	Ecosystems: Interactions, Energy, and Dynamics
LEARNING EXPECTATION	EVSC.LS 2.4.	Compare and contrast production (photosynthesis, chemosynthesis) and respiratory (aerobic respiration, anaerobic respiration, consumption, decomposition) processes responsible for the cycling of matter and flow of energy through an ecosystem. Using evidence, construct an argument regarding the importance of homeostasis in maintaining these processes in ecosystems.
LEARNING EXPECTATION	EVSC.LS 2.6.	Evaluate the interdependence among major biogeochemical cycles (water, carbon, nitrogen, phosphorus) in an ecosystem and recognize the importance each cycle has in maintaining ecosystem stability.
STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.LS	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.L S4.	Biological Change: Unity and Diversity
LEARNING EXPECTATION	EVSC.LS 4.2.	Justify claims with scientific evidence that changes in environmental conditions lead to speciation and extinction.
LEARNING EXPECTATION	EVSC.LS 4.3.	Evaluate the impact of habitat fragmentation and destruction, invasive species, overharvesting, pollution, and climate change on biodiversity (genetic, species, and ecosystem).

STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.E SS.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.E SS3.	Earth and Human Activity

LEARNING EXPECTATION	EVSC.ES S3.1.	Research Earth's natural resources (renewable and nonrenewable resources). Construct an argument from evidence supporting the claim that a particular type of resource is important for humans.
LEARNING EXPECTATION	EVSC.ES S3.4.	Gather, organize, analyze, and present data on current land use trends by humans. Based on analysis, predict future trends.
LEARNING EXPECTATION	EVSC.ES S3.5.	Plan and carry out an investigation examining best management practices in water usage, agriculture, forestry, urban/suburban development, mining, or fishing and communicate findings.
LEARNING EXPECTATION	EVSC.ES S3.9.	Evaluate ecosystem services provided by forests ecosystems. Construct an explanation for human impact on these services.
LEARNING EXPECTATION	EVSC.ES S3.10.	Using scientific data, analyze effectiveness of conservation versus preservation efforts. Obtain and communicate information on organizations involved in protecting natural resources.
LEARNING EXPECTATION	EVSC.ES S3.13.	Analyze and interpret data on the effects of land, water, and air pollution on the environment and on human health. Propose solutions for minimizing pollution from specific sources.
LEARNING EXPECTATION	EVSC.ES S3.17.	Using mathematics and computational thinking, analyze data linking human activity to climate change. Design solutions to address human impacts on climate change.
STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.E TS.	Engineering, Technology, and Applications of Science (ETS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.E T S3.	Applications of Science
LEARNING EXPECTATION	EVSC.ET S3.1.	Plan and carry out an investigation of a local ecosystem to assess human impacts. Based on your findings, design and evaluate a solution to minimize impacts.
STRAND / STANDARD / COURSE	TN.GEO.	Geology (GEO)
CONCEPTUAL STRAND / GUIDING QUESTION	GEO.ES S.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	GEO.ES S2.	Earth's Systems

LEARNINGGEO.ESSDevelop a model that combines the rock cycle and the carbon cycle, which explains what leads up to and follows aEXPECTATION2.9.major volcanic eruption and its effect on carbon storage and fluxes.

STRAND / STANDARD / COURSE	TN.SCRE.	Scientific Research (SCRE)
CONCEPTUAL STRAND / GUIDING QUESTION	SCRE.E TS.	Engineering, Technology, and Applications of Science (ETS)

GUIDING QUESTION / LEARNING EXPECTATION	SCRE.E TS2.	Links Among Engineering, Technology, Science, and Society
LEARNING EXPECTATION	SCRE.ET S2.1.	Explore the impact of technology on social, political, or economic systems.
LEARNING EXPECTATION	SCRE.ET S2.2.	Describe the dynamic interplay among engineering, technology, and applied science.
LEARNING EXPECTATION	SCRE.ET S2.3.	Identify the most appropriate scientific instruments and/or computer programs for different experiments and research, and learn to use, care for, and maintain them, gather data, and analyze results.
LEARNING EXPECTATION	SCRE.ET S2.4.	Engage in evidence-based arguments through the scientific method of investigation to understand the effective role that scientific discoveries played in the progression of humankind.

Tennessee Academic Standards

Science

Grade 10 - Adopted: 2016

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO1.LS 3	Ecosystems: Interactions, Energy, and Dynamics

LEARNINGBIO1.LS2Create a model tracking carbon atoms between inorganic and organic molecules in an ecosystem. Explain humanEXPECTATION.2.impacts on climate based on this model.

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO1.LS 4	Ecosystems: Interactions, Energy, and Dynamics
LEARNING EXPECTATION	BIO1.LS2 .3.	Analyze through research the cycling of matter in our biosphere and explain how biogeochemical cycles are critical for ecosystem function.

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)

GUIDING	BIO1.LS	Biological Change: Unity and Diversity
QUESTION / LEARNING	4.	
EXPECTATION		

LEARNING EXPECTATION .3.

BIO1.LS4 Identify ecosystem services and assess the role of biodiversity in support of these services. Analyze the role human activities have on disruption of these services.

STRAND / STANDARD / COURSE	TN.BIOII.	Biology II (BIO2)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO2.ET S.	Engineering, Technology, and Applications of Science (ETS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO2.ET S2.	Links Among Engineering, Technology, Science, and Society

LEARNING EXPECTATION

2.3.

BIO2.ETS Create a timeline depicting how humans have employed engineering and technology to maximize use of microorganisms, plants, and animals for various purposes. Choose one specific example and construct an argument supporting or opposing the use of engineering or technology in this instance.

STRAND / STANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ESS.ES S2.	Earth's Systems
LEARNING EXPECTATION	ESS.ESS 2.1.	Given an environmental disaster, analyze its effect upon the geosphere, hydrosphere, atmosphere, and/or biosphere, including sphere-to-sphere interactions. Analysis should conclude with an identification of future research to improve our ability to predict such interactions.
LEARNING EXPECTATION	ESS.ESS 2.10.	Construct a model which shows the interactions between processes of the hydrologic cycle and the greenhouse effect.
LEARNING EXPECTATION	ESS.ESS 2.11.	Obtain, evaluate, and communicate information about human or natural threats to Tennessee.
LEARNING EXPECTATION	ESS.ESS 2.16.	Design a mathematical model of Earth's energy budget showing how the electromagnetic radiation from the sun in watts/ m2 is reflected, absorbed, stored, redistributed among the atmosphere, ocean, and land systems, and reradiated back into space. The model should provide a means to predict how changes in greenhouse gases could affect Earth's temperatures.
LEARNING EXPECTATION	ESS.ESS 2.17.	Analyze the multiple sources of energy that provide power in the state of Tennessee and compare them to each other and to an alternative energy source. The analysis should include their functional components (such as infrastructure cost, on-going costs, safety, and reliability), and their social, cultural, and environmental impacts (including emissions of greenhouse gases).
LEARNING EXPECTATION	ESS.ESS 2.18.	Identify the organisms that are major drivers in the global carbon cycle and trace how greenhouse gases are continually moved through the carbon reservoirs and fluxes represented by the ocean, land, life, and atmosphere.

STRAND / STANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ESS.ES S3.	Earth and Human Activity

LEARNINGESS.ESSObtain, evaluate, and communicate information on how natural resource availability, natural hazard occurrences, andEXPECTATION3.2.climatic changes impact individuals and society.

STRAND / STANDARD / COURSE	TN.ECO.	Ecology (ECO)
CONCEPTUAL STRAND / GUIDING QUESTION	ECO.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	ECO.LS 2.	Ecosystems: Interactions, Energy, and Dynamics
LEARNING EXPECTATION	ECO.LS2. 4.	Compare patterns of stratification and zonation in various terrestrial and aquatic ecosystems. Construct an argument regarding the importance of these patterns in ecosystem diversity.
LEARNING EXPECTATION	ECO.LS2. 7.	Use models to explain relationships among biogeochemical cycles (water, carbon, nitrogen, phosphorus).
LEARNING EXPECTATION	ECO.LS2. 8.	Create a diagram tracing carbon through the processes of photosynthesis and respiration. Use the diagram to construct an explanation for the importance of photosynthesis and respiration in the carbon cycle.
LEARNING EXPECTATION	ECO.LS2. 10.	Plan and carry out an investigation measuring species diversity (richness and evenness) and density in a local ecosystem.
STRAND / STANDARD / COURSE	TN.ECO.	Ecology (ECO)
CONCEPTUAL STRAND / GUIDING QUESTION	ECO.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	ECO.LS 4.	Biological Change: Unity and Diversity

LEARNINGECO.LS4Research and evaluate the effectiveness of strategies for maintenance of biodiversity.EXPECTATION.7.

N.ECO. Ec	ology (ECO)			

CONCEPTUAL STRAND / GUIDING QUESTION	ECO.ES S.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ECO.ES S3.	Earth and Human Activity
LEARNING EXPECTATION	ECO.ESS 3.2.	Construct an argument in support of protection of native species. Develop responses to anticipated counterarguments.
LEARNING EXPECTATION	ECO.ESS 3.3.	Engage in argument from evidence regarding the impacts of human activity on climate change. Design solutions to address these impacts.
STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.LS	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.L S2.	Ecosystems: Interactions, Energy, and Dynamics
LEARNING EXPECTATION	EVSC.LS 2.4.	Compare and contrast production (photosynthesis, chemosynthesis) and respiratory (aerobic respiration, anaerobic respiration, consumption, decomposition) processes responsible for the cycling of matter and flow of energy through an ecosystem. Using evidence, construct an argument regarding the importance of homeostasis in maintaining these processes in ecosystems.
LEARNING EXPECTATION	EVSC.LS 2.6.	Evaluate the interdependence among major biogeochemical cycles (water, carbon, nitrogen, phosphorus) in an ecosystem and recognize the importance each cycle has in maintaining ecosystem stability.
STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.LS	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.L S4.	Biological Change: Unity and Diversity
LEARNING EXPECTATION	EVSC.LS 4.2.	Justify claims with scientific evidence that changes in environmental conditions lead to speciation and extinction.
LEARNING EXPECTATION	EVSC.LS 4.3.	Evaluate the impact of habitat fragmentation and destruction, invasive species, overharvesting, pollution, and climate change on biodiversity (genetic, species, and ecosystem).
STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.E SS.	Earth and Space Sciences (ESS)

GUIDING QUESTION / LEARNING EXPECTATION	EVSC.E SS3.	Earth and Human Activity
LEARNING EXPECTATION	EVSC.ES S3.1.	Research Earth's natural resources (renewable and nonrenewable resources). Construct an argument from evidence supporting the claim that a particular type of resource is important for humans.
LEARNING EXPECTATION	EVSC.ES S3.4.	Gather, organize, analyze, and present data on current land use trends by humans. Based on analysis, predict future trends.
LEARNING EXPECTATION	EVSC.ES S3.5.	Plan and carry out an investigation examining best management practices in water usage, agriculture, forestry, urban/suburban development, mining, or fishing and communicate findings.
LEARNING EXPECTATION	EVSC.ES S3.9.	Evaluate ecosystem services provided by forests ecosystems. Construct an explanation for human impact on these services.
LEARNING EXPECTATION	EVSC.ES S3.10.	Using scientific data, analyze effectiveness of conservation versus preservation efforts. Obtain and communicate information on organizations involved in protecting natural resources.
LEARNING EXPECTATION	EVSC.ES S3.13.	Analyze and interpret data on the effects of land, water, and air pollution on the environment and on human health. Propose solutions for minimizing pollution from specific sources.
LEARNING EXPECTATION	EVSC.ES S3.17.	Using mathematics and computational thinking, analyze data linking human activity to climate change. Design solutions to address human impacts on climate change.
STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.E TS.	Engineering, Technology, and Applications of Science (ETS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.E TS3.	Applications of Science
LEARNING EXPECTATION	EVSC.ET S3.1.	Plan and carry out an investigation of a local ecosystem to assess human impacts. Based on your findings, design and evaluate a solution to minimize impacts.
STRAND / STANDARD / COURSE	TN.GEO.	Geology (GEO)

COURSE		
CONCEPTUAL STRAND / GUIDING QUESTION	GEO.ES S.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	S2.	Earth's Systems

LEARNINGGEO.ESSDevelop a model that combines the rock cycle and the carbon cycle, which explains what leads up to and follows aEXPECTATION2.9.major volcanic eruption and its effect on carbon storage and fluxes.

CONCEPTUAL STRAND / GUIDING QUESTION	SCRE.E TS.	Engineering, Technology, and Applications of Science (ETS)
GUIDING QUESTION / LEARNING EXPECTATION	SCRE.E TS2.	Links Among Engineering, Technology, Science, and Society
LEARNING EXPECTATION	SCRE.ET S2.1.	Explore the impact of technology on social, political, or economic systems.
LEARNING EXPECTATION	SCRE.ET S2.2.	Describe the dynamic interplay among engineering, technology, and applied science.
LEARNING EXPECTATION	SCRE.ET S2.3.	Identify the most appropriate scientific instruments and/or computer programs for different experiments and research, and learn to use, care for, and maintain them, gather data, and analyze results.
LEARNING EXPECTATION	SCRE.ET S2.4.	Engage in evidence-based arguments through the scientific method of investigation to understand the effective role that scientific discoveries played in the progression of humankind.

Tennessee Academic Standards Technology Education Grade 9 - Adopted: 2022

STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards	
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards	
GUIDING QUESTION / LEARNING EXPECTATION	CS.AT.	Algorithmic Thinking	
LEARNING EXPECTATION	CS.AT.3.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.	
LEARNING EXPECTATION	CS.AT.4.	Use effective communication and accurate computer science terminology to explain problem solving when completing a task.	
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards	
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards	
GUIDING QUESTION / LEARNING EXPECTATION	CS.PC.	Programming Concepts	

LEARNING C

CS.PC.2. Develop a plan to manage and assign data values of different types (strings, numeric, character, integer, and date) to a variable

Tennessee Academic Standards

Technology Education

Grade 10 - Adopted: 2022			
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards	
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards	
GUIDING QUESTION / LEARNING EXPECTATION	CS.AT.	Algorithmic Thinking	
LEARNING EXPECTATION	CS.AT.3.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.	
LEARNING EXPECTATION	CS.AT.4.	Use effective communication and accurate computer science terminology to explain problem solving when completing a task.	
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards	
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards	
GUIDING QUESTION / LEARNING EXPECTATION	CS.PC.	Programming Concepts	
LEARNING EXPECTATION	CS.PC.2.	Develop a plan to manage and assign data values of different types (strings, numeric, character, integer, and date) to a variable	
		Texas Essential Knowledge and Skills (TEKS)	
		Mathematics	
		Grade 9 - Adopted: 2012	

TEKS	111.39.	Algebra I, Adopted 2012 (One Credit).
STUDENT EXPECTATION		Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.39.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.39.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.39.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.39.	Algebra I, Adopted 2012 (One Credit).

STUDENT EXPECTATION	111.39.c .3.	Linear functions, equations, and inequalities. The student applies the mathematical process standards when using graphs of linear functions, key features, and related transformations to represent in multiple ways and solve, with and without technology, equations, inequalities, and systems of equations. The student is expected to:
GRADE LEVEL EXPECTATION	111.39.c. 3.B.	Calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems.
TEKS	111.40.	Algebra II, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.40. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.40.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.40.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.40.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.41.	Geometry, Adopted 2012 (One Credit).
STUDENT EXPECTATION	111.41. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.41.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.41.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.41.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.42.	Precalculus, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.42. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.42.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.42.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.42.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.43.	Mathematical Models with Applications, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.43. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

GRADE LEVEL EXPECTATION	111.43.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.43.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.43.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
текз	111.43.	Mathematical Models with Applications, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.43. c.9.	Mathematical modeling in social sciences. The student applies mathematical processes and mathematical models to analyze data as it applies to social sciences. The student is expected to:
GRADE LEVEL EXPECTATION	111.43.c. 9.B.	Analyze numerical data using measures of central tendency (mean, median, and mode)and variability (range, interquartile range or IQR, and standard deviation) in order to make inferences with normal distributions.
текз	111.44.	Advanced Quantitative Reasoning, Adopted 2012 (One-Half to One Credit)
STUDENT EXPECTATION	111.44. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.44.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.44.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.44.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.45.	Independent Study in Mathematics, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.45. c.	Knowledge and Skills: Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.45.c. 2.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.45.c. 3.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.45.c. 6	Analyze mathematical relationships to connect and communicate mathematical ideas.
		Grade 9 - Adopted: 2013
TEKS	111.46.	Discrete Mathematics for Problem Solving, Adopted 2013 (One-Half to One Credit).
STUDENT EXPECTATION	111.46. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.46.c. 1.A.	Apply mathematics to problems arising in everyday life, society, and the workplace.

GRADE LEVEL EXPECTATION	111.46.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.46.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.46.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
		Grade 9 - Adopted: 2015
TEKS	111.47.	Statistics, Adopted 2015 (One Credit)
STUDENT EXPECTATION	111.47. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.47.c. 1.A.	Apply mathematics to problems arising in everyday life, society, and the workplace.
GRADE LEVEL EXPECTATION	111.47.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.47.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.47.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.48.	Algebraic Reasoning, Adopted 2015 (One Credit).
STUDENT EXPECTATION	111.48. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.48.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.48.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.48.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
		Texas Essential Knowledge and Skills (TEKS) Mathematics Grade 10 - Adopted: 2012
TEKS	111.39.	Algebra I, Adopted 2012 (One Credit).
STUDENT EXPECTATION	111.39.c .1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.39.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.

GRADE LEVEL EXPECTATION	111.39.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.39.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.39.	Algebra I, Adopted 2012 (One Credit).
STUDENT EXPECTATION	111.39.c .3.	Linear functions, equations, and inequalities. The student applies the mathematical process standards when using graphs of linear functions, key features, and related transformations to represent in multiple ways and solve, with and without technology, equations, inequalities, and systems of equations. The student is expected to:
GRADE LEVEL EXPECTATION	111.39.c. 3.B.	Calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems.
TEKS	111.40.	Algebra II, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.40. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.40.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.40.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.40.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.41.	Geometry, Adopted 2012 (One Credit).
TEKS STUDENT EXPECTATION	111.41.	Geometry, Adopted 2012 (One Credit). Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
STUDENT	111.41.	Mathematical process standards. The student uses mathematical processes to acquire and
ST UDENT EXPECT AT ION	111.41. c.1. 111.41.c.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of
ST UDENT EXPECT AT ION GRADE LEVEL GRADE LEVEL	111.41. c.1. 111.41.c. 1.B. 111.41.c. 1.C.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques,
ST UDENT EXPECT AT IONGRADE LEVEL EXPECTATIONGRADE LEVEL EXPECTATIONGRADE LEVEL	111.41. c.1. 111.41.c. 1.B. 111.41.c. 1.C. 111.41.c. 111.41.c.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
ST UDENT EXPECT AT ION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION	111.41. c.1. 111.41.c. 1.B. 111.41.c. 1.C. 111.41.c. 1.F. 111.42. 111.42.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems. Analyze mathematical relationships to connect and communicate mathematical ideas.
ST UDENT EXPECT ATIONGRADE LEVEL EXPECTATIONGRADE LEVEL EXPECTATIONGRADE LEVEL EXPECTATIONTEKS ST UDENT	111.41. c.1. 111.41.c. 1.B. 111.41.c. 1.C. 111.41.c. 1.F. 111.42. 111.42.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems. Analyze mathematical relationships to connect and communicate mathematical ideas. Precalculus, Adopted 2012 (One-Half to One Credit). Mathematical process standards. The student uses mathematical processes to acquire and

текз	111.43.	Mathematical Models with Applications, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.43. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.43.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.43.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.43.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.43.	Mathematical Models with Applications, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.43. c.9.	Mathematical modeling in social sciences. The student applies mathematical processes and mathematical models to analyze data as it applies to social sciences. The student is expected to:
GRADE LEVEL EXPECTATION	111.43.c. 9.B.	Analyze numerical data using measures of central tendency (mean, median, and mode)and variability (range, interquartile range or IQR, and standard deviation) in order to make inferences with normal distributions.
TEKS	111.44.	Advanced Quantitative Reasoning, Adopted 2012 (One-Half to One Credit)
STUDENT EXPECTATION	111.44. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.44.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.44.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.44.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
текз	111.45.	Independent Study in Mathematics, Adopted 2012 (One-Half to One Credit).
STUDENT EXPECTATION	111.45. c.	Knowledge and Skills: Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.45.c. 2.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.45.c. 3.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.45.c. 6	Analyze mathematical relationships to connect and communicate mathematical ideas.

TEKS	111.46.	Discrete Mathematics for Problem Solving, Adopted 2013 (One-Half to One Credit).
STUDENT EXPECTATION	111.46. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.46.c. 1.A.	Apply mathematics to problems arising in everyday life, society, and the workplace.
GRADE LEVEL EXPECTATION	111.46.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.46.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.46.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
		Grade 10 - Adopted: 2015
текз	111.47.	Statistics, Adopted 2015 (One Credit)
STUDENT EXPECTATION	111.47. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.47.c. 1.A.	Apply mathematics to problems arising in everyday life, society, and the workplace.
GRADE LEVEL EXPECTATION	111.47.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.47.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.47.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.
TEKS	111.48.	Algebraic Reasoning, Adopted 2015 (One Credit).
STUDENT EXPECTATION	111.48. c.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.48.c. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.48.c. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.48.c. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.

Texas Essential Knowledge and Skills (TEKS) Science Grade 9 - Adopted: 2017

TEKS		Biology (One Credit), Adopted 2017 – The provisions of §§112.34, 112.35, 112.38, and 112.39 of this subchapter adopted in 2017 shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	-	Knowledge and skills.
GRADE LEVEL EXPECTATION	-	Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:

INDICATOR

.3.D

§112.34.c evaluate the impact of scientific research on society and the environment

TEKS§112.34Biology (One Credit), Adopted 2017 - The provisions of §§112.34, 112.35, 112.38, and 112.39 of this
subchapter adopted in 2017 shall be implemented by school districts beginning with the 2018-2019STUDENT
EXPECTATION§112.34.Knowledge and skills.GRADE LEVEL
EXPECTATION§112.34Science concepts. The student knows that interdependence and interactions occur within an
environmental system. The student is expected to:

INDICATOR §112.34.c describe the flow of matter through the carbon and nitrogen cycles and explain the consequences of disrupting these .12.D cycles

Texas Essential Knowledge and Skills (TEKS)

Science

Grade 10 - Adopted: 2017	
--	--

TEKS	§112.34	Biology (One Credit), Adopted 2017 – The provisions of §§112.34, 112.35, 112.38, and 112.39 of this subchapter adopted in 2017 shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.34. c	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.34 .c.3	Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:
INDICATOR	§112.34.c .3.D	evaluate the impact of scientific research on society and the environment
TEKS	§112.34	Biology (One Credit), Adopted 2017 – The provisions of §§112.34, 112.35, 112.38, and 112.39 of this subchapter adopted in 2017 shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.34. c	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.34 .c.12	Science concepts. The student knows that interdependence and interactions occur within an environmental system. The student is expected to:
INDICATOR	§112.34.c .12.D	describe the flow of matter through the carbon and nitrogen cycles and explain the consequences of disrupting these cycles
текз	§112.32	Aquatic Science, Beginning with School Year 2010-2011 (One Credit).
STUDENT EXPECTATION	§112.32. c	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.32. c.6	Science concepts. The student knows the role of cycles in an aquatic environment. The student is expected to:

INDICATOR

§112.32.c identify the role of carbon, nitrogen, water, and nutrient cycles in an aquatic environment, including upwellings and.6.A turnovers

Texas Essential Knowledge and Skills (TEKS)

Technology Education

Grade 9 - Adopted: 2011

TEKS	§126.32.	Fundamentals of Computer Science (One-Half to One Credit)
STUDENT EXPECTATION	§126.32. (1)	Creativity and innovation. The student develops products and generates new understanding by extending existing knowledge. The student is expected to:
GRADE LEVEL EXPECTATION	§126.32. (1)(D)	Create algorithms for the solution of various problems.
TEKS	§126.32.	Fundamentals of Computer Science (One-Half to One Credit)
STUDENT EXPECTATION	§126.32. (4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.32. (4)(D)	Read and define a problem's description, purpose, and goals.
TEKS	§126.33.	Computer Science I (One-Half to One Credit)
STUDENT EXPECTATION	§126.33. (2)	Communication and collaboration. The student communicates and collaborates with peers to contribute to his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.33. (2)(D)	Write programs with proper programming style to enhance the readability and functionality of the code by using meaningful descriptive identifiers, internal comments, white space, spacing, indentation, and a standardized program style.
TEKS	§126.33.	Computer Science I (One-Half to One Credit)
STUDENT EXPECTATION	§126.33. (4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.33. (4)(A)	Use program design problem-solving strategies to create program solutions.
GRADE LEVEL EXPECTATION	§126.33. (4)(B)	Define and specify the purpose and goals of solving a problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(C)	Identify the subtasks needed to solve a problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(D)	Identify the data types and objects needed to solve a problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(E)	Identify reusable components from existing code.
GRADE LEVEL EXPECTATION	§126.33. (4)(F)	Design a solution to a problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(G)	Code a solution from a program design.

GRADE LEVEL EXPECTATION	§126.33. (4)(H)	Identify and debug errors.
GRADE LEVEL EXPECTATION	§126.33. (4)(l)	Test program solutions with appropriate valid and invalid test data for correctness.
GRADE LEVEL EXPECTATION	§126.33. (4)(J)	Debug and solve problems using error messages, reference materials, language documentation, and effective strategies.
GRADE LEVEL EXPECTATION	§126.33. (4)(K)	Explore common algorithms, including finding greatest common divisor, finding the biggest number out of three, finding primes, making change, and finding the average.
GRADE LEVEL EXPECTATION	§126.33. (4)(L)	Analyze and modify existing code to improve the underlying algorithm.
GRADE LEVEL EXPECTATION	§126.33. (4)(M)	Create program solutions that exhibit robust behavior by understanding, avoiding, and preventing runtime errors, including division by zero and type mismatch.
GRADE LEVEL EXPECTATION	§126.33. (4)(N)	Select the most appropriate algorithm for a defined problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(O)	Demonstrate proficiency in the use of the arithmetic operators to create mathematical expressions, including addition, subtraction, multiplication, real division, integer division, and modulus division.
GRADE LEVEL EXPECTATION	§126.33. (4)(P)	Create program solutions to problems using available mathematics libraries, including absolute value, round, power, square, and square root.
GRADE LEVEL EXPECTATION	§126.33. (4)(Q)	Develop program solutions that use assignment.
GRADE LEVEL EXPECTATION	§126.33. (4)(R)	Develop sequential algorithms to solve non-branching and non-iterative problems.
GRADE LEVEL EXPECTATION	§126.33. (4)(S)	Develop algorithms to decision-making problems using branching control statements.
GRADE LEVEL EXPECTATION	§126.33. (4)(T)	Develop iterative algorithms and code programs to solve practical problems.
GRADE LEVEL EXPECTATION	§126.33. (4)(U)	Demonstrate proficiency in the use of the relational operators.
GRADE LEVEL EXPECTATION	§126.33. (4)(V)	Demonstrate proficiency in the use of the logical operators.
GRADE LEVEL EXPECTATION	§126.33. (4)(W)	Generate and use random numbers.
TEKS	§126.34.	Computer Science II (One Credit)
STUDENT EXPECTATION	§126.34 .(1)	Creativity and innovation. The student develops products and generates new understandings by extending existing knowledge. The student is expected to:

GRADE LEVEL EXPECTATION	§126.34. (1)(G)	Choose, identify, and use the appropriate abstract data type, advanced data structure, and supporting algorithms to properly represent the data in a program problem solution.
TEKS	§126.34.	Computer Science II (One Credit)
STUDENT EXPECTATION	§126.34 .(2)	Communication and collaboration. The student communicates and collaborates with peers to contribute to his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.34. (2)(D)	Write programs and communicate with proper programming style to enhance the readability and functionality of the code by using meaningful descriptive identifiers, internal comments, white space, indentation, and a standardized program style.
текѕ	§126.34.	Computer Science II (One Credit)
STUDENT EXPECTATION	§126.34 .(4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.34. (4)(G)	Design, construct, evaluate, and compare search algorithms, including linear searching and binary searching.
GRADE LEVEL EXPECTATION	§126.34. (4)(H)	Identify, describe, design, create, evaluate, and compare standard sorting algorithms, including selection sort, bubble sort, insertion sort, and merge sort.
GRADE LEVEL EXPECTATION	§126.34. (4)(l)	Measure time/space efficiency of various sorting algorithms.
GRADE LEVEL EXPECTATION	§126.34. (4)(J)	Compare and contrast search and sort algorithms, including linear, quadratic, and recursive strategies, for time/space efficiency.
GRADE LEVEL EXPECTATION	§126.34. (4)(K)	Analyze algorithms using "big-O" notation for best, average, and worst-case data patterns.
GRADE LEVEL EXPECTATION	§126.34. (4)(L)	Develop algorithms to solve various problems, including factoring, summing a series, finding the roots of a quadratic equation, and generating Fibonacci numbers.
GRADE LEVEL EXPECTATION	§126.34. (4)(O)	Compare and contrast algorithm efficiency by using informal runtime comparisons, exact calculation of statement execution counts, and theoretical efficiency values using "big-O" notation, including worst-case, best-case, and average-case time/space analysis.
TEKS	§126.35.	Computer Science III (One Credit)
STUDENT EXPECTATION	§126.35. (1)	Creativity and innovation. The student develops products and generates new understandings by extending existing knowledge. The student is expected to:
GRADE LEVEL EXPECTATION	§126.35. (1)(F)	Identify, describe, design, create, evaluate, and compare standard sorting algorithms that perform sorting operations on data structures, including quick sort and heap sort.
текз	§126.35.	Computer Science III (One Credit)
STUDENT EXPECTATION	§126.35. (3)	Research and information fluency. The student locates, analyzes, processes, and organizes data. The student is expected to:
GRADE LEVEL EXPECTATION	§126.35. (3)(J)	Write and modify text file data.
TEKS	§126.35.	Computer Science III (One Credit)

STUDENT EXPECTATION	§126.35. (4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.35. (4)(A)	Develop choice algorithms using selection control statements, including break, label, and continue.
GRADE LEVEL EXPECTATION	§126.35. (4)(l)	Explore common algorithms, including matrix addition and multiplication, fractals, Towers of Hanoi, and magic square.
текз	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(1)	Creativity and innovation. The student develops products and generates new understanding by extending existing knowledge. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (1)(C)	Use the design process to construct a robot.
GRADE LEVEL EXPECTATION	§126.40. (1)(D)	Refine the design of a robot.
GRADE LEVEL EXPECTATION	§126.40. (1)(E)	Build robots of simple, moderate, and advanced complexity.
GRADE LEVEL EXPECTATION	§126.40. (1)(F)	Improve a robot design to meet a specified need.
TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(2)	Communication and collaboration. The student communicates and collaborates with peers to contribute to his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL	§126.40.	Demonstrate an understanding of and implement design teams.
EXPECTATION	(2)(A)	
EXPECTATION GRADE LEVEL EXPECTATION		Use design teams to solve problems.
GRADE LEVEL	§126.40. (2)(B)	Use design teams to solve problems. Serve as a team leader and a team member.
GRADE LEVEL EXPECTATION GRADE LEVEL	§126.40. (2)(B) §126.40. (2)(C)	
GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL	\$126.40. (2)(B) \$126.40. (2)(C) \$126.40.	Serve as a team leader and a team member.
GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL GRADE LEVEL	\$126.40. (2)(B) \$126.40. (2)(C) \$126.40. (2)(D) \$126.40. (2)(E)	Serve as a team leader and a team member. Describe a problem and identify design specifications.
GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL GRADE LEVEL	\$126.40. (2)(B) \$126.40. (2)(C) \$126.40. (2)(D) \$126.40. (2)(E) \$126.40. (2)(F)	Serve as a team leader and a team member. Describe a problem and identify design specifications. Design a solution to a problem and share a solution through various media.

TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(3)	Research and information fluency. The student locates, analyzes, processes, and organizes data. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (3)(A)	Test and evaluate a robot design.
GRADE LEVEL EXPECTATION	§126.40. (3)(B)	Implement position tracking to complete assigned robot tasks.
GRADE LEVEL EXPECTATION	§126.40. (3)(C)	Develop solution systems and implement systems analysis.
GRADE LEVEL EXPECTATION	§126.40. (3)(D)	Modify a robot to respond to a change in specifications.
GRADE LEVEL EXPECTATION	§126.40. (3)(E)	Implement a system to identify and track all components of a robot.
TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (4)(G)	Apply decision-making strategies when developing solutions.
TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(6)	Technology operations and concepts. The student understands technology concepts, systems, and operations as they apply to computer science. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (6)(C)	Use software applications to simulate robotic behavior, present design concepts, and test solution strategies.
GRADE LEVEL EXPECTATION	§126.40. (6)(T)	Troubleshoot and maintain robotic systems and subsystems.
TEKS	§126.45.	Digital Video and Audio Design (One Credit)
STUDENT EXPECTATION	§126.45. (4)	Creativity and innovation. The student understands design systems. The student is expected to analyze and summarize the history and evolution of audio and video production fields.
текз	§126.46.	Web Communications (One-Half Credit)
STUDENT EXPECTATION	§126.46 .(2)	Communication and collaboration. The student uses digital technology to work collaboratively toward his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.46. (2)(D)	Solve problems using critical-thinking strategies.
текз	§126.48.	Web Game Development (One Credit)
STUDENT EXPECTATION	§126.48. (6)	Technology operations and concepts. The student demonstrates a sound understanding of technology concepts, systems, and operations. The student is expected to:

GRADE LEVEL EXPECTATION	§126.48 .(6)(B)	Create a fully functional online game that includes:
INDICATOR	§126.48. (6)(B) (iii)	Physics, including center of mass, collision detection, lighting, shading, perspective, anatomy, motion blur, lens flare, and reflections.
текз	§126.49.	Independent Study in Technology Applications (One-Half to One Credit)
STUDENT EXPECTATION	§126.49 .(1)	Creativity and innovation. The student demonstrates creative thinking, constructs knowledge, and develops innovative products and processes using technology. The student is expected to:
GRADE LEVEL EXPECTATION	§126.49. (1)(H)	Identify and solve problems, individually and with input from peers and professionals, using research methods and advanced creativity and innovation skills used in a selected profession or discipline.
TEKS	§126.49.	Independent Study in Technology Applications (One-Half to One Credit)
STUDENT EXPECTATION	§126.49 .(2)	Communication and collaboration. The student uses digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning experience of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.49. (2)(G)	Collaborate with others to identify a problem to be solved, hypotheses, and strategies to accomplish a task.
текз	§126.49.	Independent Study in Technology Applications (One-Half to One Credit)
STUDENT EXPECTATION	§126.49 .(4)	Critical thinking, problem solving, and decision making. The student uses critical-thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. The student is expected to:
GRADE LEVEL EXPECTATION	§126.49. (4)(C)	Demonstrate creative-thinking and problem-solving skills.
текз	§126.50.	Independent Study in Evolving/Emerging Technologies (One-Half to One Credit)
STUDENT EXPECTATION	§126.50. (1)	Creativity and innovation. The student demonstrates creative thinking, constructs knowledge, and develops innovative products and processes using technology. The student is expected to:
GRADE LEVEL EXPECTATION	§126.50. (1)(H)	Identify and solve problems, individually and with input from peers and professionals, using research methods and advanced creativity and innovation skills used in a selected profession or discipline.
текз	§126.50.	Independent Study in Evolving/Emerging Technologies (One-Half to One Credit)
STUDENT EXPECTATION	§126.50. (4)	Critical thinking, problem solving, and decision making. The student uses critical-thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. The student is expected to:
GRADE LEVEL EXPECTATION	§126.50. (4)(C)	Demonstrate creative-thinking and problem-solving skills.
		Grade 9 - Adopted: 2019
TEKS		Digital Forensics (one credit), Adopted 2019
STUDENT EXPECTATION	§126.36. (1)	Employability Skills. The student identifies necessary skills for career development and employment opportunities. The student is expected to:
GRADE LEVEL EXPECTATION	§126.36. (1)(H)	solve problems and think critically.
текз	§126.51.	Foundations of Cybersecurity (One Credit), Adopted 2019

STUDENT EXPECTATION	§126.51. (1)	Employability skills. The student demonstrates necessary skills for career development and successful completion of course outcomes. The student is expected to:
GRADE LEVEL EXPECTATION	§126.51. (1)(C)	solve problems and think critically;
TEKS	§126.52.	Cybersecurity Capstone (One Credit), Adopted 2019
STUDENT EXPECTATION	§126.52. (1)	Employability skills. The student demonstrates necessary skills for career development and successful completion of course outcomes. The student is expected to:
GRADE LEVEL EXPECTATION	§126.52. (1)(C)	solve problems and think critically;
		Texas Essential Knowledge and Skills (TEKS) Technology Education Grade 10 - Adopted: 2011
TEKS	§126.32.	Fundamentals of Computer Science (One-Half to One Credit)
STUDENT EXPECTATION	§126.32. (1)	Creativity and innovation. The student develops products and generates new understanding by extending existing knowledge. The student is expected to:
GRADE LEVEL EXPECTATION	§126.32. (1)(D)	Create algorithms for the solution of various problems.
TEKS	§126.32.	Fundamentals of Computer Science (One-Half to One Credit)
STUDENT EXPECTATION	§126.32. (4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.32. (4)(D)	Read and define a problem's description, purpose, and goals.
TEKS	§126.33.	Computer Science I (One-Half to One Credit)
STUDENT EXPECTATION	§126.33. (2)	Communication and collaboration. The student communicates and collaborates with peers to contribute to his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.33. (2)(D)	Write programs with proper programming style to enhance the readability and functionality of the code by using meaningful descriptive identifiers, internal comments, white space, spacing, indentation, and a standardized program style.
TEKS	§126.33.	Computer Science I (One-Half to One Credit)
STUDENT EXPECTATION	§126.33. (4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.33. (4)(A)	Use program design problem-solving strategies to create program solutions.
GRADE LEVEL EXPECTATION	§126.33. (4)(B)	Define and specify the purpose and goals of solving a problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(C)	Identify the subtasks needed to solve a problem.

GRADE LEVEL EXPECTATION	§126.33. (4)(D)	Identify the data types and objects needed to solve a problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(E)	Identify reusable components from existing code.
GRADE LEVEL EXPECTATION	§126.33. (4)(F)	Design a solution to a problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(G)	Code a solution from a program design.
GRADE LEVEL EXPECTATION	§126.33. (4)(H)	Identify and debug errors.
GRADE LEVEL EXPECTATION	§126.33. (4)(l)	Test program solutions with appropriate valid and invalid test data for correctness.
GRADE LEVEL EXPECTATION	§126.33. (4)(J)	Debug and solve problems using error messages, reference materials, language documentation, and effective strategies.
GRADE LEVEL EXPECTATION	§126.33. (4)(K)	Explore common algorithms, including finding greatest common divisor, finding the biggest number out of three, finding primes, making change, and finding the average.
GRADE LEVEL EXPECTATION	§126.33. (4)(L)	Analyze and modify existing code to improve the underlying algorithm.
GRADE LEVEL EXPECTATION	§126.33. (4)(M)	Create program solutions that exhibit robust behavior by understanding, avoiding, and preventing runtime errors, including division by zero and type mismatch.
GRADE LEVEL EXPECTATION	§126.33. (4)(N)	Select the most appropriate algorithm for a defined problem.
GRADE LEVEL EXPECTATION	§126.33. (4)(O)	Demonstrate proficiency in the use of the arithmetic operators to create mathematical expressions, including addition, subtraction, multiplication, real division, integer division, and modulus division.
GRADE LEVEL EXPECTATION	§126.33. (4)(P)	Create program solutions to problems using available mathematics libraries, including absolute value, round, power, square, and square root.
GRADE LEVEL EXPECTATION	§126.33. (4)(Q)	Develop program solutions that use assignment.
GRADE LEVEL EXPECTATION	§126.33. (4)(R)	Develop sequential algorithms to solve non-branching and non-iterative problems.
GRADE LEVEL EXPECTATION	§126.33. (4)(S)	Develop algorithms to decision-making problems using branching control statements.
GRADE LEVEL EXPECTATION	§126.33. (4)(T)	Develop iterative algorithms and code programs to solve practical problems.
GRADE LEVEL EXPECTATION	§126.33. (4)(U)	Demonstrate proficiency in the use of the relational operators.
----------------------------	--------------------	--
GRADE LEVEL EXPECTATION	§126.33. (4)(V)	Demonstrate proficiency in the use of the logical operators.
GRADE LEVEL EXPECTATION	§126.33. (4)(W)	Generate and use random numbers.
TEKS	§126.34.	Computer Science II (One Credit)
STUDENT EXPECTATION	§126.34 .(1)	Creativity and innovation. The student develops products and generates new understandings by extending existing knowledge. The student is expected to:
GRADE LEVEL EXPECTATION	§126.34. (1)(G)	Choose, identify, and use the appropriate abstract data type, advanced data structure, and supporting algorithms to properly represent the data in a program problem solution.
TEKS	§126.34.	Computer Science II (One Credit)
STUDENT EXPECTATION	§126.34 .(2)	Communication and collaboration. The student communicates and collaborates with peers to contribute to his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.34. (2)(D)	Write programs and communicate with proper programming style to enhance the readability and functionality of the code by using meaningful descriptive identifiers, internal comments, white space, indentation, and a standardized program style.
TEKS	§126.34.	Computer Science II (One Credit)
STUDENT EXPECTATION	§126.34 .(4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.34. (4)(G)	Design, construct, evaluate, and compare search algorithms, including linear searching and binary searching.
GRADE LEVEL EXPECTATION	§126.34. (4)(H)	Identify, describe, design, create, evaluate, and compare standard sorting algorithms, including selection sort, bubble sort, insertion sort, and merge sort.
GRADE LEVEL EXPECTATION	§126.34. (4)(l)	Measure time/space efficiency of various sorting algorithms.
GRADE LEVEL EXPECTATION	§126.34. (4)(J)	Compare and contrast search and sort algorithms, including linear, quadratic, and recursive strategies, for time/space efficiency.
GRADE LEVEL EXPECTATION	§126.34. (4)(K)	Analyze algorithms using "big-O" notation for best, average, and worst-case data patterns.
GRADE LEVEL EXPECTATION	§126.34. (4)(L)	Develop algorithms to solve various problems, including factoring, summing a series, finding the roots of a quadratic equation, and generating Fibonacci numbers.
GRADE LEVEL EXPECTATION	§126.34. (4)(O)	Compare and contrast algorithm efficiency by using informal runtime comparisons, exact calculation of statement execution counts, and theoretical efficiency values using "big-O" notation, including worst-case, best-case, and average-case time/space analysis.
текз	§126.35.	Computer Science III (One Credit)

STUDENT EXPECTATION	§126.35. (1)	Creativity and innovation. The student develops products and generates new understandings by extending existing knowledge. The student is expected to:
GRADE LEVEL EXPECTATION	§126.35. (1)(F)	Identify, describe, design, create, evaluate, and compare standard sorting algorithms that perform sorting operations on data structures, including quick sort and heap sort.
текз	§126.35.	Computer Science III (One Credit)
STUDENT EXPECTATION	§126.35. (3)	Research and information fluency. The student locates, analyzes, processes, and organizes data. The student is expected to:
GRADE LEVEL EXPECTATION	§126.35. (3)(J)	Write and modify text file data.
текз	§126.35.	Computer Science III (One Credit)
STUDENT EXPECTATION	§126.35. (4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.35. (4)(A)	Develop choice algorithms using selection control statements, including break, label, and continue.
GRADE LEVEL EXPECTATION	§126.35. (4)(l)	Explore common algorithms, including matrix addition and multiplication, fractals, Towers of Hanoi, and magic square.
TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(1)	Creativity and innovation. The student develops products and generates new understanding by extending existing knowledge. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (1)(C)	Use the design process to construct a robot.
GRADE LEVEL EXPECTATION	§126.40. (1)(D)	Refine the design of a robot.
GRADE LEVEL EXPECTATION	§126.40. (1)(E)	Build robots of simple, moderate, and advanced complexity.
GRADE LEVEL EXPECTATION	§126.40. (1)(F)	Improve a robot design to meet a specified need.
текз	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(2)	Communication and collaboration. The student communicates and collaborates with peers to contribute to his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (2)(A)	Demonstrate an understanding of and implement design teams.
GRADE LEVEL EXPECTATION	§126.40. (2)(B)	Use design teams to solve problems.
GRADE LEVEL EXPECTATION	§126.40. (2)(C)	Serve as a team leader and a team member.

GRADE LEVEL EXPECTATION	§126.40. (2)(D)	Describe a problem and identify design specifications.
GRADE LEVEL EXPECTATION	§126.40. (2)(E)	Design a solution to a problem and share a solution through various media.
GRADE LEVEL EXPECTATION	§126.40. (2)(F)	Document prototypes, adjustments, and corrections in the design process.
GRADE LEVEL EXPECTATION	§126.40. (2)(G)	Document a final design and solution.
GRADE LEVEL EXPECTATION	§126.40. (2)(H)	Present a final design, testing results, and solution.
TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(3)	Research and information fluency. The student locates, analyzes, processes, and organizes data. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (3)(A)	Test and evaluate a robot design.
GRADE LEVEL EXPECTATION	§126.40. (3)(B)	Implement position tracking to complete assigned robot tasks.
GRADE LEVEL EXPECTATION	§126.40. (3)(C)	Develop solution systems and implement systems analysis.
GRADE LEVEL EXPECTATION	§126.40. (3)(D)	Modify a robot to respond to a change in specifications.
GRADE LEVEL EXPECTATION	§126.40. (3)(E)	Implement a system to identify and track all components of a robot.
TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(4)	Critical thinking, problem solving, and decision making. The student uses appropriate strategies to analyze problems and design algorithms. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (4)(G)	Apply decision-making strategies when developing solutions.
TEKS	§126.40.	Robotics Programming and Design (One-Half to One Credit)
STUDENT EXPECTATION	§126.40 .(6)	Technology operations and concepts. The student understands technology concepts, systems, and operations as they apply to computer science. The student is expected to:
GRADE LEVEL EXPECTATION	§126.40. (6)(C)	Use software applications to simulate robotic behavior, present design concepts, and test solution strategies.
GRADE LEVEL EXPECTATION	§126.40. (6)(T)	Troubleshoot and maintain robotic systems and subsystems.

TEKS	§126.45.	Digital Video and Audio Design (One Credit)
STUDENT EXPECTATION	§126.45. (4)	Creativity and innovation. The student understands design systems. The student is expected to analyze and summarize the history and evolution of audio and video production fields.
текз	§126.46.	Web Communications (One-Half Credit)
STUDENT EXPECTATION	§126.46 .(2)	Communication and collaboration. The student uses digital technology to work collaboratively toward his or her own learning and the learning of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.46. (2)(D)	Solve problems using critical-thinking strategies.
текз	§126.48.	Web Game Development (One Credit)
STUDENT EXPECTATION	§126.48. (6)	Technology operations and concepts. The student demonstrates a sound understanding of technology concepts, systems, and operations. The student is expected to:
GRADE LEVEL EXPECTATION	§126.48 .(6)(B)	Create a fully functional online game that includes:
INDICATOR	§126.48. (6)(B) (iii)	Physics, including center of mass, collision detection, lighting, shading, perspective, anatomy, motion blur, lens flare, and reflections.
TEKS	§126.49.	Independent Study in Technology Applications (One-Half to One Credit)
STUDENT EXPECTATION	§126.49 .(1)	Creativity and innovation. The student demonstrates creative thinking, constructs knowledge, and develops innovative products and processes using technology. The student is expected to:
GRADE LEVEL EXPECTATION	§126.49. (1)(H)	Identify and solve problems, individually and with input from peers and professionals, using research methods and advanced creativity and innovation skills used in a selected profession or discipline.
текз	§126.49.	Independent Study in Technology Applications (One-Half to One Credit)
STUDENT EXPECTATION	§126.49 .(2)	Communication and collaboration. The student uses digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning experience of others. The student is expected to:
GRADE LEVEL EXPECTATION	§126.49. (2)(G)	Collaborate with others to identify a problem to be solved, hypotheses, and strategies to accomplish a task.
TEKS	§126.49.	Independent Study in Technology Applications (One-Half to One Credit)
STUDENT EXPECTATION	§126.49 .(4)	Critical thinking, problem solving, and decision making. The student uses critical-thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. The student is expected to:
GRADE LEVEL EXPECTATION	§126.49. (4)(C)	Demonstrate creative-thinking and problem-solving skills.
TEKS	§126.50.	Independent Study in Evolving/Emerging Technologies (One-Half to One Credit)
STUDENT EXPECTATION	§126.50. (1)	Creativity and innovation. The student demonstrates creative thinking, constructs knowledge, and develops innovative products and processes using technology. The student is expected to:
GRADE LEVEL EXPECTATION	§126.50. (1)(H)	Identify and solve problems, individually and with input from peers and professionals, using research methods and advanced creativity and innovation skills used in a selected profession or discipline.
TEKS	§126.50.	Independent Study in Evolving/Emerging Technologies (One-Half to One Credit)

§126.50.	Critical thinking, problem solving, and decision making. The student uses critical-thinking skills to
(4)	plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. The student is expected to:
§126.50.	Demonstrate creative-thinking and problem-solving skills.
(4)(C)	
	Grade 10 - Adopted: 2019
§126.36.	Digital Forensics (one credit), Adopted 2019
§126.36. (1)	Employability Skills. The student identifies necessary skills for career development and employment opportunities. The student is expected to:
§126.36.	solve problems and think critically.
(1)(H)	
§126.51.	Foundations of Cybersecurity (One Credit), Adopted 2019
§126.51. (1)	Employability skills. The student demonstrates necessary skills for career development and successful completion of course outcomes. The student is expected to:
§126.51.	solve problems and think critically;
(1)(C)	
§126.52.	Cybersecurity Capstone (One Credit), Adopted 2019
§126.52. (1)	Employability skills. The student demonstrates necessary skills for career development and successful completion of course outcomes. The student is expected to:
	(4) §126.50. (4)(C) §126.36. (1) §126.36. (1)(H) §126.51. (1)(C) §126.51. (1)(C)

Utah Core Standards Mathematics

Grade 9 - Adopted: 2016

ST ANDARD / AREA OF LEARNING	UT.SI.	SECONDARY MATHEMATICS I
OBJECTIVE / STRAND	SI.MP.	MATHEMATICAL PRACTICES (MP)
INDICATOR / CLUSTER	SI.MP.1.	Make sense of problems and persevere in solving them.
INDICATOR / CLUSTER	SI.MP.2.	Reason abstractly and quantitatively.
INDICATOR / CLUSTER	SI.MP.3.	Construct viable arguments and critique the reasoning of others.
INDICATOR / CLUSTER	SI.MP.4.	Model with mathematics.
INDICATOR / CLUSTER	SI.MP.6.	Attend to precision.

INDICATOR /	SI.MP.7.	Look for and make use of structure.
CLUSTER		

INDICATOR / SI.MP.8. Look for and express regularity in repeated reasoning. CLUSTER

ST ANDARD / AREA OF LEARNING	UT.SI.	SECONDARY MATHEMATICS I
OBJECTIVE / STRAND	SI.F.IF.	FUNCTIONS—Interpreting Linear and Exponential Functions (F.IF)
INDICATOR / CLUSTER		Understand the concept of a linear or exponential function and use function notation. Recognize arithmetic and geometric sequences as examples of linear and exponential functions (Standards F.IF.1–3). Interpret linear or exponential functions that arise in applications in terms of a context (Standards F.IF.4–6). Analyze linear or exponential functions using different representations (Standards F.IF.7,9).

EXPECTATION /SI.F.IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aSTANDARDspecified interval. Estimate the rate of change from a graph.

ST ANDARD / AREA OF LEARNING	UT.SI.	SECONDARY MATHEMATICS I
OBJECTIVE / STRAND	SI.S.ID.	STATISTICS AND PROBABILITY—Interpreting Categorical and Quantitative Data (S.ID)
INDICATOR / CLUSTER		Summarize, represent, and interpret data on a single count or measurement variable (Standards S.ID.1–3). Summarize, represent, and interpret data on two categorical and quantitative variables (Standard S.ID.6). Interpret linear models building on students' work with linear relationships, and introduce the correlation coefficient (Standards S.ID.7–9).

EXPECTATION /SI.S.ID.2.Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spreadSTANDARD(interquartile range, standard deviation) of two or more different data sets.

ST ANDARD / AREA OF LEARNING	UT.SII.	SECONDARY MATHEMATICS II
OBJECTIVE / STRAND	SII.MP.	MATHEMATICAL PRACTICES (MP)
INDICATOR / CLUSTER	SII.MP.1.	Make sense of problems and persevere in solving them.
INDICATOR / CLUSTER	SII.MP.2.	Reason abstractly and quantitatively.
INDICATOR / CLUSTER	SII.MP.3.	Construct viable arguments and critique the reasoning of others.
INDICATOR / CLUSTER	SII.MP.4.	Model with mathematics.
INDICATOR / CLUSTER	SII.MP.6.	Attend to precision
INDICATOR / CLUSTER	SII.MP.7.	Look for and make use of structure.

INDICATOR / CLUSTER SII.MP.8. Look for and express regularity in repeated reasoning.

ST ANDARD / AREA OF LEARNING	UT.SII.	SECONDARY MATHEMATICS II
OBJECTIVE / STRAND	SII.F.IF.	FUNCTIONS—Interpret Functions (F.IF)
INDICATOR / CLUSTER		Interpret quadratic functions that arise in applications in terms of a context (Standards F.IF.4–6). Analyze functions using different representations (Standards F.IF.7–9).

EXPECTATION /SII.F.IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aSTANDARDspecified interval. Estimate the rate of change from a graph.

ST ANDARD / AREA OF LEARNING	UT.SIII.	SECONDARY MATHEMATICS III
OBJECTIVE / STRAND	SIII.MP.	MATHEMATICAL PRACTICES (MP)
INDICATOR / CLUSTER		The Standards for Mathematical Practice in Secondary Mathematics III describe mathematical habits of mind that teachers should seek to develop in their students. Students become mathematically proficient in engaging with mathematical content and concepts as they learn, experience, and apply these skills and attitudes (Standards MP.1–8).
EXPECTATION / STANDARD	SIII.MP.1.	Make sense of problems and persevere in solving them.
EXPECTATION / STANDARD	SIII.MP.2.	Reason abstractly and quantitatively
EXPECTATION / STANDARD	SIII.MP.3.	Construct viable arguments and critique the reasoning of others.
EXPECTATION / STANDARD	SIII.MP.4.	Model with mathematics.
EXPECTATION / STANDARD	SIII.MP.6.	Attend to precision.
EXPECTATION / STANDARD	SIII.MP.7.	Look for and make use of structure.
EXPECTATION / STANDARD	SIII.MP.8.	Look for and express regularity in repeated reasoning.
ST ANDARD / AREA OF LEARNING	UT.SIII.	SECONDARY MATHEMATICS III
OBJECTIVE / STRAND	SIII.F.IF.	FUNCTIONS—Interpreting Functions (F.IF)
INDICATOR / CLUSTER		Interpret functions that arise in applications in terms of a context. Analyze functions using different representations.
EXPECTATION / STANDARD	SIII.F.IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

ST ANDARD / AREA OF LEARNING	UT.P.	PRECALCULUS
OBJECTIVE / STRAND	P.MP.	MATHEMATICAL PRACTICES (P.MP)
INDICATOR / CLUSTER	P.MP.1.	Make sense of problems and persevere in solving them.
INDICATOR / CLUSTER	P.MP.2.	Reason abstractly and quantitatively.
INDICATOR / CLUSTER	P.MP.3.	Construct viable arguments and critique the reasoning of others.
INDICATOR / CLUSTER	P.MP.4.	Model with mathematics.
INDICATOR / CLUSTER	P.MP.6.	Attend to precision.
INDICATOR / CLUSTER	P.MP.7.	Look for and make use of structure.
INDICATOR / CLUSTER	P.MP.8.	Look for and express regularity in repeated reasoning.

Utah Core Standards Mathematics Grade 10 - Adopted: 2016

ST ANDARD / AREA OF LEARNING	UT.SI.	SECONDARY MATHEMATICS I
OBJECTIVE / STRAND	SI.MP.	MATHEMATICAL PRACTICES (MP)
INDICATOR / CLUSTER	SI.MP.1.	Make sense of problems and persevere in solving them.
INDICATOR / CLUSTER	SI.MP.2.	Reason abstractly and quantitatively.
INDICATOR / CLUSTER	SI.MP.3.	Construct viable arguments and critique the reasoning of others.
INDICATOR / CLUSTER	SI.MP.4.	Model with mathematics.
INDICATOR / CLUSTER	SI.MP.6.	Attend to precision.
INDICATOR / CLUSTER	SI.MP.7.	Look for and make use of structure.

INDICATOR / CLUSTER

SI.MP.8. Look for and express regularity in repeated reasoning.

ST ANDARD / AREA OF LEARNING	UT.SI.	SECONDARY MATHEMATICS I
OBJECTIVE / STRAND	SI.F.IF.	FUNCTIONS—Interpreting Linear and Exponential Functions (F.IF)
INDICATOR / CLUSTER		Understand the concept of a linear or exponential function and use function notation. Recognize arithmetic and geometric sequences as examples of linear and exponential functions (Standards F.IF.1–3). Interpret linear or exponential functions that arise in applications in terms of a context (Standards F.IF.4–6). Analyze linear or exponential functions using different representations (Standards F.IF.7,9).

EXPECTATION /	SI.F.IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
STANDARD		specified interval. Estimate the rate of change from a graph.

ST ANDARD / AREA OF LEARNING	UT.SI.	SECONDARY MATHEMATICS I
OBJECTIVE / STRAND	SI.S.ID.	STATISTICS AND PROBABILITY—Interpreting Categorical and Quantitative Data (S.ID)
INDICATOR / CLUSTER		Summarize, represent, and interpret data on a single count or measurement variable (Standards S.ID.1–3). Summarize, represent, and interpret data on two categorical and quantitative variables (Standard S.ID.6). Interpret linear models building on students' work with linear relationships, and introduce the correlation coefficient (Standards S.ID.7–9).

STANDARD

EXPECTATION / SI.S.ID.2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

ST ANDARD / AREA OF LEARNING	UT.SII.	SECONDARY MATHEMATICS II
OBJECTIVE / STRAND	SII.MP.	MATHEMATICAL PRACTICES (MP)
INDICATOR / CLUSTER	SII.MP.1.	Make sense of problems and persevere in solving them.
INDICATOR / CLUSTER	SII.MP.2.	Reason abstractly and quantitatively.
INDICATOR / CLUSTER	SII.MP.3.	Construct viable arguments and critique the reasoning of others.
INDICATOR / CLUSTER	SII.MP.4.	Model with mathematics.
INDICATOR / CLUSTER	SII.MP.6.	Attend to precision
INDICATOR / CLUSTER	SII.MP.7.	Look for and make use of structure.
INDICATOR / CLUSTER	SII.MP.8.	Look for and express regularity in repeated reasoning.

STANDARD /	UT.SII.	SECONDARY MATHEMATICS II
AREA OF LEARNING		
OBJECTIVE / STRAND	SII.F.IF.	FUNCTIONS—Interpret Functions (F.IF)
INDICATOR / CLUSTER		Interpret quadratic functions that arise in applications in terms of a context (Standards F.IF.4–6). Analyze functions using different representations (Standards F.IF.7–9).
EXPECTATION / STANDARD	SII.F.IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
ST ANDARD / AREA OF LEARNING	UT.SIII.	SECONDARY MATHEMATICS III
OBJECTIVE / STRAND	SIII.MP.	MATHEMATICAL PRACTICES (MP)
INDICATOR / CLUSTER		The Standards for Mathematical Practice in Secondary Mathematics III describe mathematical habits of mind that teachers should seek to develop in their students. Students become mathematically proficient in engaging with mathematical content and concepts as they learn, experience, and apply these skills and attitudes (Standards MP.1–8).
EXPECTATION / STANDARD	SIII.MP.1.	Make sense of problems and persevere in solving them.
EXPECTATION / STANDARD	SIII.MP.2.	Reason abstractly and quantitatively
EXPECTATION / STANDARD	SIII.MP.3.	Construct viable arguments and critique the reasoning of others.
EXPECTATION / STANDARD	SIII.MP.4.	Model with mathematics.
EXPECTATION / STANDARD	SIII.MP.6.	Attend to precision.
EXPECTATION / STANDARD	SIII.MP.7.	Look for and make use of structure.
EXPECTATION / STANDARD	SIII.MP.8.	Look for and express regularity in repeated reasoning.
STANDARD / AREA OF LEARNING	UT.SIII.	SECONDARY MATHEMATICS III
OBJECTIVE / STRAND	SIII.F.IF.	FUNCTIONS—Interpreting Functions (F.IF)
INDICATOR / CLUSTER		Interpret functions that arise in applications in terms of a context. Analyze functions using different representations.
EXPECTATION /	SIII.F.IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

EXPECTATION /SIII.F.IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aSTANDARDspecified interval. Estimate the rate of change from a graph.

ST ANDARD / AREA OF LEARNING	UT.P.	PRECALCULUS
OBJECTIVE / STRAND	P.MP.	MATHEMATICAL PRACTICES (P.MP)
INDICATOR / CLUSTER	P.MP.1.	Make sense of problems and persevere in solving them.
INDICATOR / CLUSTER	P.MP.2.	Reason abstractly and quantitatively.
INDICATOR / CLUSTER	P.MP.3.	Construct viable arguments and critique the reasoning of others.
INDICATOR / CLUSTER	P.MP.4.	Model with mathematics.
INDICATOR / CLUSTER	P.MP.6.	Attend to precision.
INDICATOR / CLUSTER	P.MP.7.	Look for and make use of structure.
INDICATOR / CLUSTER	P.MP.8.	Look for and express regularity in repeated reasoning.

Utah Core Standards Science

Grade 9 - A	Adopted: 2019
--------------------	---------------

ST ANDARD / AREA OF LEARNING		SEEd - Biology (2019)
OBJECTIVE / STRAND	Strand BIO.1:	INTERACTIONS WITH ORGANISMS AND THE ENVIRONMENT
INDICATOR / CLUSTER		The cycling of matter and flow of energy are part of a complex system of interactions within an ecosystem. Through these interactions, an ecosystem can sustain relatively stable numbers and types of organisms. A stable ecosystem is capable of recovering from moderate biological and physical changes. Extreme changes may have significant impact on an ecosystem's carrying capacity and biodiversity, altering the ecosystem. Human activities can lead to significant impacts on an ecosystem.
EXPECTATION / STANDARD	Standard BIO.1.2.	Develop and use a model to explain cycling of matter and flow of energy among organisms in an ecosystem. Emphasize the movement of matter and energy through the different living organisms in an ecosystem. Examples of models could include food chains, food webs, energy pyramids or pyramids of biomass. (LS2.B)
EXPECTATION / STANDARD	Standard BIO.1.3.	Analyze and interpret data to determine the effects of photosynthesis and cellular respiration on the scale and proportion of carbon reservoirs in the carbon cycle. Emphasize the cycling of carbon through the biosphere, atmosphere, hydrosphere, and geosphere and how changes to various reservoirs impact ecosystems. Examples of changes to the scale and proportion of reservoirs could include deforestation, fossil fuel combustion, or ocean uptake of carbon dioxide. (PS3.D, LS1.C, LS2.B)
EXPECTATION / STANDARD	Standard BIO.1.5.	Design a solution that reduces the impact caused by human activities on the environment and biodiversity. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data to make improvements from iteratively testing solutions, and optimize a solution. Examples of human activities could include building dams, pollution, deforestation, or introduction of invasive species. (LS2.C, LS4.D, ETS1.A, ETS1.B, ETS1.C)

ST ANDARD / AREA OF LEARNING		SEEd - Biology (2019)
OBJECTIVE / STRAND	Strand BIO.2:	STRUCTURE AND FUNCTION OF LIFE
INDICATOR / CLUSTER		Living cells are composed of chemical elements and molecules that form macromolecules. The macromolecules in a cell function to carry out important reactions that allow cycling of matter and flow of energy within and between organisms. All organisms are made of one or more cells. The structure and function of a cell determines the cell's role in an organism. Multicellular organisms have systems of tissues and organs that work together to meet the needs of the whole organism. Cells grow, divide, and function in order to accomplish essential life processes. Feedback systems help organisms maintain homeostasis.

EXPECTATION /StandardDevelop and use a model to illustrate the cycling of matter and flow of energy through living things by the processesSTANDARDBIO.2.3.of photosynthesis and cellular respiration. Emphasize how the products of one reaction are the reactants of the other
and how the energy transfers in these reactions. (PS3.D, LS1.C, LS2.B)

ST ANDARD / AREA OF LEARNING		SEEd - Chemistry (2019)
OBJECTIVE / STRAND	Strand CHEM.3:	ST ABILITY AND CHANGE IN CHEMICAL SYSTEMS
INDICATOR / CLUSTER		Conservation of matter describes the cycling of matter and the use of resources. In both chemical and physical changes, the total number of each type of atom is conserved. When substances are combined, they may interact with each other to form a solution. The proportion of substances in a solution can be represented with concentration. In a chemical change, the atoms are rearranged by breaking and forming bonds to create different molecules, which may have different properties. Chemical processes can be understood in terms of the collisions of molecules and the rearrangements of atoms. The rate at which chemical processes occur can be modified. In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. Chemists can control and design chemical systems to create desirable results, although sometimes there are also unintended consequences.

 EXPECTATION /
 Standard
 Obtain, evaluate, and communicate information regarding the effects of designed chemicals in a complex real-world

 STANDARD
 CHEM.3.8.
 system. Emphasize the role of chemistry in solving problems, while acknowledging unintended consequences.

 Examples could include ozone depletion and restoration, DDT, development of medicines, the preservation of historical artifacts, or use of bisphenol-A in plastic manufacturing. (PS1.A)

ST ANDARD / AREA OF LEARNING		SEEd - Earth and Space Science (2019)
OBJECTIVE / STRAND	Strand ESS.3:	SYSTEM INTERACTIONS: ATMOSPHERE, HYDROSPHERE, AND GEOSPHERE
INDICATOR / CLUSTER		The abundance of liquid water on Earth's surface and its unique properties are central to the planet's dynamics and system interactions. The foundation for Earth's global weather and climate systems is electromagnetic radiation from the Sun. The ocean exerts a major influence on weather and climate by absorbing energy from the Sun, releasing it over time, and globally redistributing it through ocean currents. Changes in the atmosphere due to human activity increase carbon dioxide concentrations and thus affect climate. Current scientific models predict that future average global temperatures will continue to rise, although regional climate changes will be complex and varied.
EXPECTATION / STANDARD	Standard ESS.3.3.	Construct an explanation for how energy from the Sun drives atmospheric processes and how atmospheric currents transport matter and transfer energy. Emphasize how energy from the Sun is reflected, absorbed, or scattered; how the greenhouse effect contributes to atmospheric energy; and how uneven heating of Earth's atmosphere combined with the Coriolis effect creates an atmospheric circulation system. (PS3.A, ESS1.B, ESS2.A, ESS2.D)
EXPECTATION / STANDARD	Standard ESS.3.5.	Develop and use a quantitative model to describe the cycling of carbon among Earth's systems. Emphasize each of Earth's systems (hydrosphere, atmosphere, geosphere, and biosphere) and how the movement of carbon from one system to another can result in changes to the system(s). Examples could include more carbon absorbed in the oceans leading to ocean acidification or more carbon present in the atmosphere leading to a stronger greenhouse effect. (LS2.B, ESS2.D, ESS3.D)

ST ANDARD / AREA OF LEARNING		SEEd - Earth and Space Science (2019)
OBJECTIVE / STRAND	Strand ESS.4:	ST ABILITY AND CHANGE IN NATURAL RESOURCES
INDICATOR / CLUSTER		Humans depend on Earth's systems for many different resources, including air, water, minerals, metals, and energy. Resource availability has guided the development of human society and is constantly changing due to societal needs. Natural hazards and other geologic events have shaped the course of human history. The sustainability of human societies, and the biodiversity that supports them, requires responsible management of natural resources. Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that reduce ecosystem degradation. They also evaluate solutions to resolve complex global and localized problems that contain inherent social, cultural, and environmental impacts in an effort to improve the quality of life for all.
EXPECTATION / STANDARD	Standard ESS.4.1.	Construct an explanation for how the availability of natural resources, the occurrence of natural hazards, and changes in climate affect human activity. Examples of natural resources could include access to fresh water, clean air, or regions of fertile soils. Examples of factors that affect human activity could include that rising sea levels cause humans to move farther from the coast or that humans build railroads to transport mineral resources from one location to another. (ESS3.A, ESS3.B)
EXPECTATION / STANDARD	Standard ESS.4.2.	Use computational thinking to explain the relationships between the sustainability of natural resources and biodiversity within Earth systems. Emphasize the importance of responsible stewardship of Earth's resources. Examples of factors related to sustainability could include costs of resource extraction, per-capita consumption, waste management, agricultural efficiency, or levels of conservation. Examples of natural resources could include minerals, water, or energy resources. (ESS3.A)
EXPECTATION / STANDARD	Standard ESS.4.3.	Evaluate design solutions for developing, managing, and utilizing energy and mineral resources based on cost- benefit ratios on large and small scales. Define the problem, identify criteria and constraints, analyze available data on proposed solutions, and determine an optimal solution. Emphasize the conservation, recycling, and reuse of resources where possible and minimizing impact where it is not possible. Examples of large-scale solutions could include developing best practices for agricultural soil use or mining and production of conventional, unconventional, or renewable energy resources. Examples of small-scale solutions could include mulching lawn clippings or adding biomass to gardens. (ESS3.A, ETS1.A, ETS1.B, ETS1.C)
EXPECTATION / STANDARD	Standard ESS.4.4.	Evaluate design solutions for a major global or local environmental problem based on one of Earth's systems. Define the problem, identify criteria and constraints, analyze available data on proposed solutions, and determine an optimal solution. Examples of major global or local problems could include water pollution or availability, air pollution, deforestation, or energy production. (ESS3.C, ETS1.A, ETS1.B, ETS1.C)
ST ANDARD / AREA OF LEARNING		SEEd - Physics (2019)
OBJECTIVE / STRAND	Strand PHYS.4:	WAVES
INDICATOR / CLUSTER		Waves transfer energy through oscillations of fields or matter. The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it passes. Waves produce interference as they overlap but they emerge unaffected by each other. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. Electromagnetic radiation can be modeled as a wave of changing electric and magnetic fields or as particles called photons. When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy. Because waves depend upon the properties of fields and the predictable transformation of energy, they can be used to interpret the nature of matter and its energy. Waves are utilized to transmit information both in analog and digital forms.

STANDARD

EXPECTATION / Standard Ask questions and construct an explanation about the stability of digital transmission and storage of information and PHYS.4.4. their impacts on society. Emphasize the stability of digital signals and the discrete nature of information transmission. Examples of stability and instability could include that digital information can be stored in computer memory, is transferred easily, copied and shared rapidly can be easily deleted, has limited fidelity based on sampling rates, or is vulnerable to security breaches and theft. (PS4.A)

ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Key Ideas and Details
INDICATOR / CLUSTER	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
INDICATOR / CLUSTER	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Craft and Structure
INDICATOR / CLUSTER	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
INDICATOR / CLUSTER	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Integration of Knowledge and Ideas
INDICATOR / CLUSTER	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Range of Reading and Level of Text Complexity
INDICATOR / CLUSTER	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Text Types and Purposes
INDICATOR / CLUSTER	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / STANDARD	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects

OBJECTIVE / STRAND		Production and Distribution of Writing
INDICATOR / CLUSTER	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / CLUSTER	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Utah Core Standards

Science

Grade 10	 Adopted 	2019
-----------------	-----------------------------	------

ST ANDARD / AREA OF LEARNING		SEEd - Biology (2019)
OBJECTIVE / STRAND	Strand BIO.1:	INTERACTIONS WITH ORGANISMS AND THE ENVIRONMENT
INDICATOR / CLUSTER		The cycling of matter and flow of energy are part of a complex system of interactions within an ecosystem. Through these interactions, an ecosystem can sustain relatively stable numbers and types of organisms. A stable ecosystem is capable of recovering from moderate biological and physical changes. Extreme changes may have significant impact on an ecosystem's carrying capacity and biodiversity, altering the ecosystem. Human activities can lead to significant impacts on an ecosystem.
EXPECTATION / STANDARD	Standard BIO.1.2.	Develop and use a model to explain cycling of matter and flow of energy among organisms in an ecosystem. Emphasize the movement of matter and energy through the different living organisms in an ecosystem. Examples of models could include food chains, food webs, energy pyramids or pyramids of biomass. (LS2.B)
EXPECTATION / STANDARD	Standard BIO.1.3.	Analyze and interpret data to determine the effects of photosynthesis and cellular respiration on the scale and proportion of carbon reservoirs in the carbon cycle. Emphasize the cycling of carbon through the biosphere, atmosphere, hydrosphere, and geosphere and how changes to various reservoirs impact ecosystems. Examples of changes to the scale and proportion of reservoirs could include deforestation, fossil fuel combustion, or ocean uptake of carbon dioxide. (PS3.D, LS1.C, LS2.B)
EXPECTATION / STANDARD	Standard BIO.1.5.	Design a solution that reduces the impact caused by human activities on the environment and biodiversity. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data to make improvements from iteratively testing solutions, and optimize a solution. Examples of human activities could include building dams, pollution, deforestation, or introduction of invasive species. (LS2.C, LS4.D, ETS1.A, ETS1.B, ETS1.C)
ST ANDARD / AREA OF LEARNING		SEEd - Biology (2019)
OBJECTIVE / STRAND	Strand BIO.2:	STRUCTURE AND FUNCTION OF LIFE
INDICATOR / CLUSTER		Living cells are composed of chemical elements and molecules that form macromolecules. The macromolecules in a cell function to carry out important reactions that allow cycling of matter and flow of energy within and between organisms. All organisms are made of one or more cells. The structure and function of a cell determines the cell's role in an organism. Multicellular organisms have systems of tissues and organs that work together to meet the needs of the whole organism. Cells grow, divide, and function in order to accomplish essential life processes. Feedback systems help organisms maintain homeostasis.
EXPECTATION / STANDARD	Standard BIO.2.3.	Develop and use a model to illustrate the cycling of matter and flow of energy through living things by the processes of photosynthesis and cellular respiration. Emphasize how the products of one reaction are the reactants of the other and how the energy transfers in these reactions. (PS3.D, LS1.C, LS2.B)
ST ANDARD / AREA OF LEARNING		SEEd - Chemistry (2019)

OBJECTIVE / STRAND	Strand CHEM.3:	ST ABILITY AND CHANGE IN CHEMICAL SYSTEMS
INDICATOR / CLUSTER		Conservation of matter describes the cycling of matter and the use of resources. In both chemical and physical changes, the total number of each type of atom is conserved. When substances are combined, they may interact with each other to form a solution. The proportion of substances in a solution can be represented with concentration. In a chemical change, the atoms are rearranged by breaking and forming bonds to create different molecules, which may have different properties. Chemical processes can be understood in terms of the collisions of molecules and the rearrangements of atoms. The rate at which chemical processes occur can be modified. In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. Chemists can control and design chemical systems to create desirable results, although sometimes there are also unintended consequences.

EXPECTATION / Standard Obtain, evaluate, and communicate information regarding the effects of designed chemicals in a complex real-world STANDARD CHEM.3.8. System. Emphasize the role of chemistry in solving problems, while acknowledging unintended consequences. Examples could include ozone depletion and restoration, DDT, development of medicines, the preservation of historical artifacts, or use of bisphenol-A in plastic manufacturing. (PS1.A)

	SEEd - Earth and Space Science (2019)
Strand ESS.3:	SYSTEM INTERACTIONS: ATMOSPHERE, HYDROSPHERE, AND GEOSPHERE
	The abundance of liquid water on Earth's surface and its unique properties are central to the planet's dynamics and system interactions. The foundation for Earth's global weather and climate systems is electromagnetic radiation from the Sun. The ocean exerts a major influence on weather and climate by absorbing energy from the Sun, releasing it over time, and globally redistributing it through ocean currents. Changes in the atmosphere due to human activity increase carbon dioxide concentrations and thus affect climate. Current scientific models predict that future average global temperatures will continue to rise, although regional climate changes will be complex and varied.
Standard ESS.3.3.	Construct an explanation for how energy from the Sun drives atmospheric processes and how atmospheric currents transport matter and transfer energy. Emphasize how energy from the Sun is reflected, absorbed, or scattered; how the greenhouse effect contributes to atmospheric energy; and how uneven heating of Earth's atmosphere combined with the Coriolis effect creates an atmospheric circulation system. (PS3.A, ESS1.B, ESS2.A, ESS2.D)
Standard ESS.3.5.	Develop and use a quantitative model to describe the cycling of carbon among Earth's systems. Emphasize each of Earth's systems (hydrosphere, atmosphere, geosphere, and biosphere) and how the movement of carbon from one system to another can result in changes to the system(s). Examples could include more carbon absorbed in the oceans leading to ocean acidification or more carbon present in the atmosphere leading to a stronger greenhouse effect. (LS2.B, ESS2.D, ESS3.D)
	Standard ESS.3.3.

ST ANDARD / AREA OF LEARNING		SEEd - Earth and Space Science (2019)
OBJECTIVE / STRAND	Strand ESS.4:	STABILITY AND CHANGE IN NATURAL RESOURCES
INDICATOR / CLUSTER		Humans depend on Earth's systems for many different resources, including air, water, minerals, metals, and energy. Resource availability has guided the development of human society and is constantly changing due to societal needs. Natural hazards and other geologic events have shaped the course of human history. The sustainability of human societies, and the biodiversity that supports them, requires responsible management of natural resources. Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that reduce ecosystem degradation. They also evaluate solutions to resolve complex global and localized problems that contain inherent social, cultural, and environmental impacts in an effort to improve the quality of life for all.

EXPECTATION / Standard STANDARD ESS.4.1.

Standard Construct an explanation for how the availability of natural resources, the occurrence of natural hazards, and ESS.4.1. changes in climate affect human activity. Examples of natural resources could include access to fresh water, clean air, or regions of fertile soils. Examples of factors that affect human activity could include that rising sea levels cause humans to move farther from the coast or that humans build railroads to transport mineral resources from one location to another. (ESS3.A, ESS3.B)

EXPECTATION / STANDARD	Standard ESS.4.2.	Use computational thinking to explain the relationships between the sustainability of natural resources and biodiversity within Earth systems. Emphasize the importance of responsible stewardship of Earth's resources. Examples of factors related to sustainability could include costs of resource extraction, per-capita consumption, waste management, agricultural efficiency, or levels of conservation. Examples of natural resources could include minerals, water, or energy resources.
EXPECTATION / STANDARD	Standard ESS.4.3.	Evaluate design solutions for developing, managing, and utilizing energy and mineral resources based on cost- benefit ratios on large and small scales. Define the problem, identify criteria and constraints, analyze available data on proposed solutions, and determine an optimal solution. Emphasize the conservation, recycling, and reuse of resources where possible and minimizing impact where it is not possible. Examples of large-scale solutions could include developing best practices for agricultural soil use or mining and production of conventional, unconventional, or renewable energy resources. Examples of small-scale solutions could include mulching lawn clippings or adding biomass to gardens. (ESS3.A, ETS1.A, ETS1.B, ETS1.C)
EXPECTATION / STANDARD	Standard ESS.4.4.	Evaluate design solutions for a major global or local environmental problem based on one of Earth's systems. Define the problem, identify criteria and constraints, analyze available data on proposed solutions, and determine an optimal solution. Examples of major global or local problems could include water pollution or availability, air

ST ANDARD / AREA OF LEARNING		SEEd - Physics (2019)
OBJECTIVE / STRAND	Strand PHYS.4:	WAVES
INDICATOR / CLUSTER		Waves transfer energy through oscillations of fields or matter. The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it passes. Waves produce interference as they overlap but they emerge unaffected by each other. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. Electromagnetic radiation can be modeled as a wave of changing electric and magnetic fields or as particles called photons. When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy. Because waves depend upon the properties of fields and the predictable transformation of energy, they can be used to interpret the nature of matter and its energy. Waves are utilized to transmit information both in analog and digital forms.

pollution, deforestation, or energy production. (ESS3.C, ETS1.A, ETS1.B, ETS1.C)

EXPECTATION / Standard Ask questions and construct an explanation about the stability of digital transmission and storage of information and STANDARD PHYS.4.4. their impacts on society. Emphasize the stability of digital signals and the discrete nature of information transmission. Examples of stability and instability could include that digital information can be stored in computer memory, is transferred easily, copied and shared rapidly can be easily deleted, has limited fidelity based on sampling rates, or is vulnerable to security breaches and theft. (PS4.A)

		Grade 10 - Adopted: 2013
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Key Ideas and Details
INDICATOR / CLUSTER	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
INDICATOR / CLUSTER	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects

OBJECTIVE /

STRAND

Craft and Structure

INDICATOR / CLUSTER	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
INDICATOR / CLUSTER	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Integration of Knowledge and Ideas
INDICATOR / CLUSTER	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Range of Reading and Level of Text Complexity
INDICATOR / CLUSTER	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Text Types and Purposes
INDICATOR / CLUSTER	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / STANDARD	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Production and Distribution of Writing
INDICATOR / CLUSTER	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / CLUSTER	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Utah Core Standards Technology Education Grade 9 - Adopted: 2019
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards

OBJECTIVE / STRAND

Core Concepts

INDICATOR / CLUSTER	Data and Analysis (DA):
EXPECTATION / STANDARD	Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be

analyzed to better understand the world and make more accurate predictions.

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Algorithms and Programming (AP):

EXPECTATION / STANDARD An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 2:	Collaborating Around Computing
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:

INDICATOR

2

Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Practices

INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
INDICATOR	3	Evaluate whether it is appropriate and feasible to solve a problem computationally.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 4:	Developing and Using Abstractions
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	3	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
INDICATOR	2	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Systematically test computational artifacts by considering all scenarios and using test cases.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Computing Systems (CS):

INDICATOR / CLUSTER	Standar d 9/10.CS. 3.	Develop guidelines that communicate systematic troubleshooting strategies that others can use to identify and fix errors. (Practice 6. Testing and Refining Computational Artifacts.)
EXPECTATION / STANDARD		Students will develop strategies for troubleshooting and fixing problems and/or errors in a system. Examples of complex troubleshooting strategies include resolving connectivity problems, adjusting system configurations and settings, ensuring hardware and software compatibility, and transferring data from one device to another. Students could create a flow chart, a job aid for a help desk employee, or an expert system. For example, students will design a solution to a space exploration challenge by breaking it down into smaller, more manageable problems that can be solved through the structure and function of a device. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data to make improvements from iteratively testing solutions, and optimize a solution. Examples of problems could include, cosmic radiation exposure, transportation on other planets or moons, or supplying energy to space travelers.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 1.	Design algorithms to solve computational problems using a combination of original and existing algorithms (Practice 3. Recognizing and Defining Computational Problems; Practice 4: Developing and Using Abstractions)

EXPECTATION / STANDARD

Students will create algorithms that combine existing algorithms with their original program to complete a certain task. For example, students could use the formula for energy of motion to construct a device that converts one form of energy into another form of energy to solve a complex real-life problem.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 3.	Decompose problems into multiple smaller problems through systematic analysis, using constructs (such as procedures, modules, functions, methods, and/or classes). (Practice 3. Recognizing and Defining Computational Problems)

EXPECTATION / STANDARD	Students will break down a big or complex problem and split it into smaller, easier-to-manage components. For example, students will find roots of polynomials by factoring them into smaller components and then solving for each factor.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 4.	Create computational artifacts using modular design. (Practice 5: Creating Computational Artifacts)

EXPECTATION /Students will create a computational artifact to solve a complex problem by breaking down the problems intoSTANDARDsmaller, easier-to-manage components. For example, students can solve a complex math problem using the order
of operations.

STANDARD /	Utah 6-12 Computer Science Standards
AREA OF	
LEARNING	

OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 7.	Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility. (Practice 6: Testing and Refining Computational Artifacts)
EXPECTATION / STANDARD		Students will evaluate how computational artifacts can be developed, tested, and edited repeatedly to improve performance, ease of use, reliability, and/or accessibility. For example, students will use the scientific method to design an air powered rocket to land hit a target from a specific distance. This could also be a great opportunity to introduce Moore's Law.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE /		Algorithms and Programming (AP):

STRAND		
INDICATOR / CLUSTER	Standar d 9/10.AP. 8.	Design and develop computational artifacts using collaborative tools. (Practice 2: Collaborating Around Computing; Practice 7: Communicating About Computing)

EXPECTATION / STANDARD

Students will use collaborative tools to design and develop computational artifacts as a team. For example, students can collaborate on a presentation using cloud-based applications (Office 365, Google suite, etc.) to complete the design and development process of a project.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 9.	Create documentation (pseudocode) that communicates the design of the solution to a complex problem using text, graphics, and/or demonstrations. (Practice 7: Communicating About Computing)

EXPECTATION / STANDARD

Students will design solutions to problems and document these solutions—using pseudocode, flowcharts, and other means--so that they can be implemented by either the student or someone else. During and after implementation, comments and additional documentation can facilitate future maintenance of that process. For example, students will create an outline for an essay before starting on the rough draft.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Impacts of Computing (IC):
INDICATOR / CLUSTER	Standar d 9/10.IC.3	Identify solutions to problems in other content areas using established algorithms. (Practice 1: Fostering an Inclusive Computing Culture; Practice 2: Collaborating Around Computing)

EXPECTATION / STANDARD

Students will develop solutions to problems that can relate to other subject areas. They will create and analyze a step-by-step process and apply it to a problem relevant to cross-curricular subjects. For example, students can examine the steps involved in solving a quadratic equation.

Utah Core Standards Technology Education Grade 10 - Adopted: 2019

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Data and Analysis (DA):

EXPECTATION / STANDARD Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be analyzed to better understand the world and make more accurate predictions.

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Algorithms and Programming (AP):

EXPECTATION / STANDARD

An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 2:	Collaborating Around Computing
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
	_	

INDICATOR 2

Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems
EXPECT AT ION / ST AND ARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
INDICATOR	3	Evaluate whether it is appropriate and feasible to solve a problem computationally.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 4:	Developing and Using Abstractions
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	3	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts

 INDICATOR
 1
 Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

INDICATOR 2 Create a computational artifact for practical intent, personal expression, or to address a societal issue.

By the end of Grade 12, students should be able to:

EXPECTATION

/ ST AND ARD

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECT AT ION / ST AND ARD		By the end of Grade 12, students should be able to:

INDICATOR 1 Systematically test computational artifacts by considering all scenarios and using test cases.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Computing Systems (CS):
INDICATOR / CLUSTER	Standar d 9/10.CS. 3.	Develop guidelines that communicate systematic troubleshooting strategies that others can use to identify and fix errors. (Practice 6. Testing and Refining Computational Artifacts.)

EXPECTATION / STANDARD

Students will develop strategies for troubleshooting and fixing problems and/or errors in a system. Examples of complex troubleshooting strategies include resolving connectivity problems, adjusting system configurations and settings, ensuring hardware and software compatibility, and transferring data from one device to another. Students could create a flow chart, a job aid for a help desk employee, or an expert system. For example, students will design a solution to a space exploration challenge by breaking it down into smaller, more manageable problems that can be solved through the structure and function of a device. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data to make improvements from iteratively testing solutions, and optimize a solution. Examples of problems could include, cosmic radiation exposure, transportation on other planets or moons, or supplying energy to space travelers.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 1.	Design algorithms to solve computational problems using a combination of original and existing algorithms (Practice 3. Recognizing and Defining Computational Problems; Practice 4: Developing and Using Abstractions)

EXPECTATION / STANDARD Students will create algorithms that combine existing algorithms with their original program to complete a certain task. For example, students could use the formula for energy of motion to construct a device that converts one form of energy into another form of energy to solve a complex real-life problem.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 3.	Decompose problems into multiple smaller problems through systematic analysis, using constructs (such as procedures, modules, functions, methods, and/or classes). (Practice 3. Recognizing and Defining Computational Problems)

EXPECTATION / STANDARD

Students will break down a big or complex problem and split it into smaller, easier-to-manage components. For example, students will find roots of polynomials by factoring them into smaller components and then solving for each factor.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 4.	Create computational artifacts using modular design. (Practice 5: Creating Computational Artifacts)

EXPECTATION / STANDARD

Students will create a computational artifact to solve a complex problem by breaking down the problems into smaller, easier-to-manage components. For example, students can solve a complex math problem using the order of operations.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 7.	Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility. (Practice 6: Testing and Refining Computational Artifacts)

EXPECTATION / STANDARD

Students will evaluate how computational artifacts can be developed, tested, and edited repeatedly to improve performance, ease of use, reliability, and/or accessibility. For example, students will use the scientific method to design an air powered rocket to land hit a target from a specific distance. This could also be a great opportunity to introduce Moore's Law.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 8.	Design and develop computational artifacts using collaborative tools. (Practice 2: Collaborating Around Computing; Practice 7: Communicating About Computing)

EXPECTATION / STANDARD

Students will use collaborative tools to design and develop computational artifacts as a team. For example, students can collaborate on a presentation using cloud-based applications (Office 365, Google suite, etc.) to complete the design and development process of a project.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 9/10.AP. 9.	Create documentation (pseudocode) that communicates the design of the solution to a complex problem using text, graphics, and/or demonstrations. (Practice 7: Communicating About Computing)

EXPECTATION / STANDARD Students will design solutions to problems and document these solutions—using pseudocode, flowcharts, and other means--so that they can be implemented by either the student or someone else. During and after implementation, comments and additional documentation can facilitate future maintenance of that process. For example, students will create an outline for an essay before starting on the rough draft.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Impacts of Computing (IC):
INDICATOR / CLUSTER	Standar d 9/10.IC.3	Identify solutions to problems in other content areas using established algorithms. (Practice 1: Fostering an Inclusive Computing Culture; Practice 2: Collaborating Around Computing)

Students will develop solutions to problems that can relate to other subject areas. They will create and analyze a step-by-step process and apply it to a problem relevant to cross-curricular subjects. For example, students can examine the steps involved in solving a quadratic equation.

Vermont Content Standards Mathematics Grade 9 - Adopted: 2010 (CCSS)

		Grade 9 - Adopted: 2010 (CCSS)
STANDARD / STRAND	VT.MP.	Mathematical Practices
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.6.	Attend to precision.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
STANDARD /	VT.F.	Functions

STANDARD / STRAND	VT.F.	Functions
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Interpret functions that arise in applications in terms of the context.

GRADE LEVEL	F-IF.6.
EXPECTATION	

EXPECTATION

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Vermont Content Standards Mathematics Grade 10 - Adopted: 2010 (CCSS)

		Grade 10 - Adopted: 2010 (CCSS)
ST ANDARD / ST RAND	VT.MP.	Mathematical Practices
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.6.	Attend to precision.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
STANDARD / STRAND	VT.F.	Functions

STANDARD / STRAND	VT.F.	Functions
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Interpret functions that arise in applications in terms of the context.
GRADE LEVEL	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

specified interval. Estimate the rate of change from a graph.

Vermont Content Standards

Science

Grade 9 - Adopted: 2014

STANDARD / STRAND	VT.HS- PS.	PHYSICAL SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:

GRADE LEVELHS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.EXPECTATION2.

STANDARD / STRAND	VT.HS- LS.	LIFE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GRADE LEVEL EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
GRADE LEVEL EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GRADE LEVEL EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

STANDARD / STRAND	VT.HS- LS.	LIFE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS-LS4.	Biological Evolution: Unity and Diversity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:

GRADE LEVELHS-LS4-Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.EXPECTATION6.

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	HS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
GRADE LEVEL EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STANDARD / STRAND	VT.HS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	HS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
GRADE LEVEL EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GRADE LEVEL EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
GRADE LEVEL EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
ST ANDARD / ST RAND	VT.HS- ETS.	ENGINEERING DESIGN
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS- ET S1.	Engineering Design
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GRADE LEVEL EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Grade 9 - Adopted: 2010

ST ANDARD / ST RAND	VT.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STANDARD / STRAND	VT.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
STANDARD / STRAND	VT.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
ST ANDARD / ST RAND	VT.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION / KNOWLEDGE	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

AND SKILL

STANDARD / STRAND	VT.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
STANDARD / STRAND	VT.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Vermont Content Standards Science Grade 10 - Adopted: 2014

STANDARD / STRAND	VT.HS- PS.	PHYSICAL SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:

GRADE LEVELHS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.EXPECTATION2.

	VT.HS- LS.	LIFE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:

GRADE LEVEL EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GRADE LEVEL EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
GRADE LEVEL EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GRADE LEVEL EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
ST ANDARD / ST RAND	VT.HS- LS.	LIFE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS-LS4.	Biological Evolution: Unity and Diversity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
STANDARD / STRAND	VT.HS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	HS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
GRADE LEVEL EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
STANDARD / STRAND	VT.HS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL	HS-	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural

GRADE LEVELHS-Construct an explanation based on evidence for how the availability of natural resources, occurrence of nationEXPECTATIONESS3-1.hazards, and changes in climate have influenced human activity.

GRADE LEVEL HS- EXPECTATION ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GRADE LEVEL HS- EXPECTATION ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

GRADE LEVELHS-Use a computational representation to illustrate the relationships among Earth systems and how those relationshipsEXPECTATIONESS3-6.are being modified due to human activity.

STANDARD / STRAND	VT.HS- ETS.	ENGINEERING DESIGN
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	HS- ET S1.	Engineering Design
GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GRADE LEVEL EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

STANDARD / STRAND	VT.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
STANDARD /	VT.RST.9	Reading Standards for Literacy in Science and Technical Subjects

STRAND	-10.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Craft and Structure

GRADE LEVEL RST.9-EXPECTATION / 10.4. KNOWLEDGE AND SKILL Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.

GRADE LEVELRST.9-Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
force, friction, reaction force, energy).KNOWLEDGE
AND SKILLAnalyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
force, friction, reaction force, energy).

STANDARD / STRAND	VT.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Integration of Knowledge and Ideas
GRADE LEVEL	RST.9-	Compare and contrast findings presented in a text to those from other sources (including their own experiments),

EXPECTATION / 10.9. noting when the findings support or contradict previous explanations or accounts. KNOWLEDGE AND SKILL

ST ANDARD / ST RAND	VT.RST.9 -10.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION /	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

KNOWLEDGE

AND SKILL

AND SKILL

ST ANDARD / ST RAND	VT.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVELWHST.9-Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a styleEXPECTATION10.2(d)appropriate to the discipline and context as well as to the expertise of likely readers.

	VT.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / KNOWLEDGE		Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Vermont Content Standards Technology Education Grade 9 - Adopted: 2017
STANDARD / STRAND	ISTE-S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
STANDARD / STRAND	ISTE-S.4	. Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ST ANDARD / ST RAND	ISTE-S.5.	. Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Vermont Content Standards Technology Education Grade 10 - Adopted: 2017
ST ANDARD / ST RAND	ISTE-S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
---	------------------------------	---
STANDARD / STRAND	ISTE-S.4	. Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STANDARD / STRAND	ISTE-S.5	. Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
	ISTE-S.5. ISTE- S.5.a.	
ST RAND ESSENTIAL KNOWLEDGE AND SKILL /	ISTE-	problems in ways that leverage the power of technological methods to develop and test solutions. Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract

Mathematics

Grade 9 - Adopted: 2016

STRAND / TOPIC	VA.A.	Algebra I
ST ANDARD / ST RAND		Functions
INDICATOR / STANDARD	A.7.	The student will investigate and analyze linear and quadratic function families and their characteristics both algebraically and graphically, including
INDICATOR	A.7.f.	Connections between and among multiple representations of functions using verbal descriptions, tables, equations, and graphs.

STRAND / TOPIC	VA.AFDA.	Algebra, Functions, and Data Analysis
STANDARD / STRAND		Algebra and Functions
INDICATOR / STANDARD	AFDA.1.	The student will investigate and analyze linear, quadratic, exponential, and logarithmic function families and their characteristics. Key concepts include

INDICATOR

AFDA.1.g Connections between and among multiple representations of functions using verbal descriptions, tables, equations, and graphs.

STRAND / TOPIC	VA.AFDA.	Algebra, Functions, and Data Analysis
STANDARD / STRAND		Algebra and Functions
INDICATOR /	AFDA.4.	The student will use multiple representations of functions for analysis, interpretation, and prediction.

STANDARD

STRAND / VA.AII. Algebra II TOPIC STANDARD / Functions STRAND INDICATOR / AII.7. The student will investigate and analyze linear, quadratic, absolute value, square root, cube root, rational, polynomial, exponential, and logarithmic function families algebraically and graphically. Key **STANDARD** concepts include INDICATOR All.7.g. Connections between and among multiple representations of functions using verbal descriptions, tables, equations, and graphs.

STRAND / TOPIC	VA.PS.	Probability and Statistics
ST ANDARD / ST RAND		Descriptive Statistics
INDICATOR / STANDARD	PS.2.	The student will analyze numerical characteristics of univariate data sets to describe patterns and departures from patterns, using mean, median, mode, variance, standard deviation, interquartile range, range, and outliers.

STRAND / TOPIC	VA.PS.	Probability and Statistics
STANDARD / STRAND		Probability
INDICATOR / STANDARD	PS.15.	The student will identify random variables as independent or dependent and determine the mean and standard deviations for random variables and sums and differences of independent random variables.

Virginia Standards of Learning

Mathematics

Grade 10 - Adopted: 2016		
STRAND / TOPIC	VA.A.	Algebra I
STANDARD / STRAND		Functions
INDICATOR / STANDARD	A.7.	The student will investigate and analyze linear and quadratic function families and their characteristics both algebraically and graphically, including
INDICATOR	A.7.f.	Connections between and among multiple representations of functions using verbal descriptions, tables, equations, and graphs.
STRAND /	VA.AFDA.	Algebra, Functions, and Data Analysis

STANDARD / STRAND		Algebra and Functions
INDICATOR / STANDARD	AFDA.1.	The student will investigate and analyze linear, quadratic, exponential, and logarithmic function families and their characteristics. Key concepts include
INDICATOR	AFDA.1.g	Connections between and among multiple representations of functions using verbal descriptions, tables, equations, and graphs.
STRAND / TOPIC	VA.AFDA.	Algebra, Functions, and Data Analysis
STANDARD / STRAND		Algebra and Functions
INDICATOR / STANDARD	AFDA.4.	The student will use multiple representations of functions for analysis, interpretation, and prediction.
STRAND / TOPIC	VA.AII.	Algebra II
STANDARD / STRAND		Functions
INDICATOR / STANDARD	AII.7.	The student will investigate and analyze linear, quadratic, absolute value, square root, cube root, rational, polynomial, exponential, and logarithmic function families algebraically and graphically. Key concepts include
INDICATOR	All.7.g.	Connections between and among multiple representations of functions using verbal descriptions, tables, equations, and graphs.
STRAND / TOPIC	VA.PS.	Probability and Statistics
STANDARD / STRAND		Descriptive Statistics
INDICATOR / STANDARD	PS.2.	The student will analyze numerical characteristics of univariate data sets to describe patterns and departures from patterns, using mean, median, mode, variance, standard deviation, interquartile range, range, and outliers.
STRAND / TOPIC	VA.PS.	Probability and Statistics
STANDARD / STRAND		Probability
INDICATOR / STANDARD	PS.15.	The student will identify random variables as independent or dependent and determine the mean and standard deviations for random variables and sums and differences of independent random variables.

Science

Grade 9 - Adopted: 2018

STRAND / TOPIC		Biology
STANDARD / STRAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.b.	planning and carrying out investigations

INDICATOR

BIO.1.b.2. plan and conduct investigations or test design solutions in a safe and ethical manner including considerations of environmental, social, and personal effects

STRAND / TOPIC		Biology
ST ANDARD / ST RAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.c.	interpreting, analyzing, and evaluating data
INDICATOR	BIO.1.c.3.	use data in building and revising models, supporting an explanation for phenomena, or testing solutions to problems
INDICATOR	BIO.1.c.4.	analyze data using tools, technologies, and/or models to make valid and reliable scientific claims or determine an optimal design solution

STRAND / TOPIC		Biology
STANDARD / STRAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.d.	constructing and critiquing conclusions and explanations
INDICATOR	BIO.1.d.3.	apply scientific ideas, principles, and/or evidence to provide an explanation of phenomena and design solutions
INDICATOR	BIO.1.d.4.	compare and evaluate competing arguments or design solutions in light of currently accepted explanations and new scientific evidence

STRAND / TOPIC		Biology
ST ANDARD / ST RAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.e.	developing and using models
INDICATOR	BIO.1.e.1.	evaluate the merits and limitations of models
INDICATOR	BIO.1.e.2.	develop, revise, and/or use models based on evidence to illustrate or predict relationships
INDICATOR	BIO.1.e.3.	develop and/or use models to generate data to support explanations, predict phenomena, analyze systems, and/or solve problems

STRAND / TOPIC		Biology
ST ANDARD / ST RAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.f.	obtaining, evaluating, and communicating information
INDICATOR	BIO.1.f.3.	communicate scientific and/or technical information about phenomena in multiple formats

STRAND / TOPIC		Biology
STANDARD / STRAND	BIO.8.	The student will investigate and understand that there are dynamic equilibria within populations, communities, and ecosystems. Key ideas include:

INDICATOR / STANDARD	BIO.8.b.	nutrients cycle with energy flow through ecosystems;
INDICATOR / STANDARD	BIO.8.d.	natural events and human activities influence local and global ecosystems and may affect the flora and fauna of Virginia.
STRAND / TOPIC		Earth Science
ST ANDARD / ST RAND	ES.6.	The student will investigate and understand that resource use is complex. Key ideas include:
INDICATOR / STANDARD	ES.6.a.	global resource use has environmental liabilities and benefits;
INDICATOR / STANDARD	ES.6.c.	use of Virginia resources has an effect on the environment and the economy;

STRAND / TOPIC		Earth Science
STANDARD / STRAND	ES.11.	The student will investigate and understand that the atmosphere is a complex, dynamic system and is subject to long-and short-term variations. Key ideas include:
INDICATOR / STANDARD	ES.11.b.	biologic and geologic interactions over long and short time spans change the atmospheric composition;
INDICATOR / STANDARD	ES.11.c.	natural events and human actions may stress atmospheric regulation mechanisms;
INDICATOR / STANDARD	ES.11.d.	human actions, including economic and policy decisions, affect the atmosphere.

STRAND / TOPIC		Earth Science
ST ANDARD / ST RAND	ES.12.	The student will investigate and understand that Earth's weather and climate are the result of the interaction of the sun's energy with the atmosphere, oceans, and the land. Key ideas include:
INDICATOR / STANDARD	ES.12.e.	changes in the atmosphere and the oceans due to natural and human activity affect global climate.

Science

Grade 10 - Adopted: 2018

Glade 10 - Adopted. 2016			
STRAND / TOPIC		Biology	
ST ANDARD / ST RAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:	
INDICATOR / STANDARD	BIO.1.b.	planning and carrying out investigations	
INDICATOR	BIO.1.b.2.	plan and conduct investigations or test design solutions in a safe and ethical manner including considerations of	

environmental, social, and personal effects

STRAND / TOPIC		Biology
STANDARD / STRAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.c.	interpreting, analyzing, and evaluating data
INDICATOR	BIO.1.c.3.	use data in building and revising models, supporting an explanation for phenomena, or testing solutions to problems
INDICATOR	BIO.1.c.4.	analyze data using tools, technologies, and/or models to make valid and reliable scientific claims or determine an optimal design solution

STRAND / TOPIC		Biology
STANDARD / STRAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.d.	constructing and critiquing conclusions and explanations
INDICATOR	BIO.1.d.3.	apply scientific ideas, principles, and/or evidence to provide an explanation of phenomena and design solutions
INDICATOR	BIO.1.d.4.	compare and evaluate competing arguments or design solutions in light of currently accepted explanations and new scientific evidence

STRAND / TOPIC		Biology
ST ANDARD / ST RAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.e.	developing and using models
INDICATOR	BIO.1.e.1.	evaluate the merits and limitations of models
INDICATOR	BIO.1.e.2.	develop, revise, and/or use models based on evidence to illustrate or predict relationships
INDICATOR	BIO.1.e.3.	develop and/or use models to generate data to support explanations, predict phenomena, analyze systems, and/or solve problems

STRAND / TOPIC		Biology
ST ANDARD / ST RAND	BIO.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	BIO.1.f.	obtaining, evaluating, and communicating information
INDICATOR	BIO.1.f.3.	communicate scientific and/or technical information about phenomena in multiple formats

STRAND / TOPIC		Biology
STANDARD / STRAND	BIO.8.	The student will investigate and understand that there are dynamic equilibria within populations, communities, and ecosystems. Key ideas include:

INDICATOR / STANDARD	BIO.8.b.	nutrients cycle with energy flow through ecosystems;
INDICATOR / STANDARD	BIO.8.d.	natural events and human activities influence local and global ecosystems and may affect the flora and fauna of Virginia.
STRAND / TOPIC		Earth Science
ST ANDARD / ST RAND	ES.6.	The student will investigate and understand that resource use is complex. Key ideas include:
INDICATOR / STANDARD	ES.6.a.	global resource use has environmental liabilities and benefits;
INDICATOR / STANDARD	ES.6.c.	use of Virginia resources has an effect on the environment and the economy;

STRAND / TOPIC		Earth Science
STANDARD / STRAND	ES.11.	The student will investigate and understand that the atmosphere is a complex, dynamic system and is subject to long-and short-term variations. Key ideas include:
INDICATOR / STANDARD	ES.11.b.	biologic and geologic interactions over long and short time spans change the atmospheric composition;
INDICATOR / STANDARD	ES.11.c.	natural events and human actions may stress atmospheric regulation mechanisms;
INDICATOR / STANDARD	ES.11.d.	human actions, including economic and policy decisions, affect the atmosphere.

STRAND / TOPIC		Earth Science
ST ANDARD / ST RAND	ES.12.	The student will investigate and understand that Earth's weather and climate are the result of the interaction of the sun's energy with the atmosphere, oceans, and the land. Key ideas include:
INDICATOR / STANDARD	ES.12.e.	changes in the atmosphere and the oceans due to natural and human activity affect global climate.

Technology Education

Grade 9 - Adopted: 2017

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.CSF.	Computer Science Foundations
INDICATOR / STANDARD		Algorithms and Programming
INDICATOR	CSF.14.	The student will design and iteratively develop programs for practical intent or personal expression, incorporating

feedback from users.

STANDARD / CS.CSF. Computer Science Foundations	
STRAND	
INDICATOR / Algorithms and Programming	
INDICATOR CSF.15. The student will design and implement algorithms using	

PROGRESS CSF.15.a Sequencing of instructions.

INDICATOR

.

STRAND / TOPIC	VA.CS.	Computer Science
ST ANDARD / ST RAND	CS.CSF.	Computer Science Foundations
INDICATOR / STANDARD		Algorithms and Programming

INDICATOR

CSF.20. The student will apply simple algorithms to a collection of data.

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.PRG.	Computer Science Programming
INDICATOR / STANDARD		Cybersecurity
	PRG 1	The student will describe and use best practices of program development that make some common flaws less likely

INDICATOR PRG.1. The student will describe and use best practices of program development that make some common flaws less likely and explain how this improves computer security.

STRAND / TOPIC	VA.CS.	Computer Science
ST ANDARD / ST RAND	CS.PRG.	Computer Science Programming
INDICATOR / STANDARD		Algorithms and Programming
INDICATOR	PRG.17.	The student will adapt classic algorithms for use in a particular context and analyze them for effectiveness and

efficiency.

Grade 9 - Adopted: 2020

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	KC.	Knowledge Constructor (KC)
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.
PROGRESS INDICATOR	KC.D.h.	Students use knowledge, information skills, and digital resources and tools to engage in public conversation and/or debate real-world issues.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems.
PROGRESS INDICATOR	ID.A.h.	Students autonomously select and use appropriate technologies in a design process to generate ideas, create, document, test, revise, and present innovative products or solve authentic problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.B.	Select and use appropriate technologies to plan and manage a design process that considers design constraints and calculated risks.
PROGRESS INDICATOR	ID.B.h.	Students autonomously select and use appropriate technologies to plan and manage a design process that identifies design constraints and trade-offs and weighs risks.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.
PROGRESS INDICATOR	ID.C.h.	Students autonomously select and use appropriate technologies in a cyclical design process to develop, test, and refine prototypes understanding the role of trial and error and setbacks as potential opportunities for improvement.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.D.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
PROGRESS INDICATOR	ID.D.h.	Students autonomously demonstrate an ability to persevere through difficulties and ambiguity in solving open-ended problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	СТ.	Computational Thinker (CT)

INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESS	CT.A.h.	Students demonstrate how to identify, explore, and solve a real-world problem using technology-assisted methods

TROOREOO	01.7 (.11.	Statends demonstrate now to rating, explore, and solve a real world problem using technology assisted methods
INDICATOR		such as data analysis, modeling, or algorithmic thinking.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	СТ.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.B.	Collect data or identify relevant data sets, use appropriate technologies to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
PROGRESS INDICATOR	CT.B.h.	Students use appropriate technologies to collect, organize, interpret, and analyze data sets to predict outcomes, draw conclusions, solve problems, and make evidence-based decisions.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.C.	Break problems into component parts, extract key information, and develop descriptive models, using technologies when appropriate, to understand complex systems or facilitate problem-solving.
PROGRESS	CT.C.h.	Students evaluate a task in terms of sub problems needed and make changes to address issues or changing task needs using technologies, when appropriate.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	CC.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.
PROGRESS INDICATOR	CC.B.h.	Students use multiple appropriate technologies to create new digital work or repurpose/remix other digital work into new digital works to support a point of view.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.

PROGRESS	
INDICATOR	

GC.D.h. Students use collaborative technologies to understand problems, investigate, and develop solutions related to local and global issues, and advocate for implementation of solutions.

Virginia Standards of Learning Technology Education Grade 10 - Adopted: 2017

STRAND / TOPIC	VA.CS.	Computer Science
ST ANDARD / ST RAND	CS.CSF.	Computer Science Foundations
INDICATOR / STANDARD		Algorithms and Programming

INDICATOR

CSF.14.

The student will design and iteratively develop programs for practical intent or personal expression, incorporating feedback from users.

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.CSF.	Computer Science Foundations
INDICATOR / STANDARD		Algorithms and Programming
INDICATOR	CSF.15.	The student will design and implement algorithms using
PROGRESS INDICATOR	CSF.15.a	Sequencing of instructions.

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.CSF.	Computer Science Foundations
INDICATOR / STANDARD		Algorithms and Programming

INDICATOR

CSF.20. The student will apply simple algorithms to a collection of data.

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.PRG.	Computer Science Programming
INDICATOR / STANDARD		Cybersecurity

INDICATOR

PRG.1. The student will describe and use best practices of program development that make some common flaws less likely and explain how this improves computer security.

STRAND / TOPIC	VA.CS.	Computer Science
ST ANDARD / ST RAND	CS.PRG.	Computer Science Programming
INDICATOR / STANDARD		Algorithms and Programming

INDICATOR

PRG.17. The student will adapt classic algorithms for use in a particular context and analyze them for effectiveness and efficiency.

	Grade 10 - Adopted: 2020		
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools	
ST ANDARD / ST RAND	KC.	Knowledge Constructor (KC)	
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.	
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.	
PROGRESS INDICATOR	KC.D.h.	Students use knowledge, information skills, and digital resources and tools to engage in public conversation and/or debate real-world issues.	

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems.
PROGRESS	ID.A.h.	Students autonomously select and use appropriate technologies in a design process to generate ideas, create, document, test, revise, and present innovative products or solve authentic problems.

STRAND / Digital Learning Integration Standards of Learning for Virginia Public Schools ΓΟΡΙΟ STANDARD / ID. Innovative Designer (ID) STRAND INDICATOR / Students use a variety of technologies, including assistive technologies, within a design process to STANDARD identify and solve problems by creating new, useful or imaginative solutions or iterations. INDICATOR ID.B. Select and use appropriate technologies to plan and manage a design process that considers design constraints and calculated risks. PROGRESS ID.B.h. Students autonomously select and use appropriate technologies to plan and manage a design process that identifies design constraints and trade-offs and weighs risks. INDICATOR

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.
PROGRESS INDICATOR	ID.C.h.	Students autonomously select and use appropriate technologies in a cyclical design process to develop, test, and refine prototypes understanding the role of trial and error and setbacks as potential opportunities for improvement.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.D.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
PROGRESS INDICATOR	ID.D.h.	Students autonomously demonstrate an ability to persevere through difficulties and ambiguity in solving open-ended problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	СТ.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESS	CT.A.h.	Students demonstrate how to identify, explore, and solve a real-world problem using technology-assisted methods such as data analysis, modeling, or algorithmic thinking.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.B.	Collect data or identify relevant data sets, use appropriate technologies to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
PROGRESS	CT.B.h.	Students use appropriate technologies to collect, organize, interpret, and analyze data sets to predict outcomes, draw conclusions, solve problems, and make evidence-based decisions.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	CT.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.C.	Break problems into component parts, extract key information, and develop descriptive models, using technologies when appropriate, to understand complex systems or facilitate problem-solving.
PROGRESS INDICATOR	CT.C.h.	Students evaluate a task in terms of sub problems needed and make changes to address issues or changing task needs using technologies, when appropriate.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools

ТОРІС		
ST ANDARD / ST RAND	CC.	Creative Communicator (CC)

INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.
PROGRESS INDICATOR	CC.B.h.	Students use multiple appropriate technologies to create new digital work or repurpose/remix other digital work into new digital works to support a point of view.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
PROGRESS INDICATOR	GC.D.h.	Students use collaborative technologies to understand problems, investigate, and develop solutions related to local and global issues, and advocate for implementation of solutions.

Washington DC Academic Standards

Mathematics

Grade 9 - Adopted: 2010

CONTENT STANDARD /	DC.CC.M P.	Mathematical Practices
STRAND / DISCIPLINE		
STANDARD / ESSENTIAL SKILL	MP-1.	Make sense of problems and persevere in solving them.
STANDARD / ESSENTIAL SKILL	MP-2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	MP-4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	MP-6.	Attend to precision.
STANDARD / ESSENTIAL SKILL	MP-7.	Look for and make use of structure.
STANDARD / ESSENTIAL SKILL	MP-8.	Look for and express regularity in repeated reasoning.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.F.	Functions
ST ANDARD / ESSENTIAL SKILL	F-IF.	Interpreting Functions
STUDENT EXPECTATION / ESSENTIAL SKILL		Interpret functions that arise in applications in terms of the context.

EXPECTATION F-IF.6.

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Washington DC Academic Standards Mathematics Grade 10 - Adopted: 2010

		Grade 10 - Adopted: 2010
CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.M P.	Mathematical Practices
STANDARD / ESSENTIAL SKILL	MP-1.	Make sense of problems and persevere in solving them.
STANDARD / ESSENTIAL SKILL	MP-2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	MP-3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	MP-4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	MP-6.	Attend to precision.
STANDARD / ESSENTIAL SKILL	MP-7.	Look for and make use of structure.
STANDARD / ESSENTIAL SKILL	MP-8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.F.	Functions
ST ANDARD / ESSENTIAL SKILL	F-IF.	Interpreting Functions

STUDENT EXPECTATION / ESSENTIAL SKILL		Interpret functions that arise in applications in terms of the context.
EXPECTATION	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Washington DC Academic Standards

Science

Grade 9 - Adopted: 2013	

CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- PS.	PHYSICAL SCIENCE
ST ANDARD / ESSENTIAL SKILL	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:

EXPECTATION HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. 2.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- LS.	LIFE SCIENCE
ST ANDARD / ESSENTIAL SKILL	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- LS.	LIFE SCIENCE
ST ANDARD / ESSENT IAL SKILL	HS-LS4.	Biological Evolution: Unity and Diversity

STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / ESSENT IAL SKILL	HS- ESS2.	Earth's Systems
ST UDENT EXPECT AT ION / ESSENT IAL SKILL		Students who demonstrate understanding can:
EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / ESSENT IAL SKILL	HS- ESS3.	Earth and Human Activity
ST UDENT EXPECT AT ION / ESSENT IAL SKILL		Students who demonstrate understanding can:
EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- ETS.	ENGINEERING DESIGN
ST ANDARD / ESSENT IAL SKILL	HS- ETS1.	Engineering Design

STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 9 - Adopted: 2010
CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Key Ideas and Details
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Craft and Structure

STUDENT9-Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in aEXPECTATION /10.RST.4.specific scientific or technical context relevant to grades 9-10 texts and topics.ESSENTIALSKILL

STUDENT9-Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,EXPECTATION /10.RST.5.force, friction, reaction force, energy).ESSENTIALSKILL

CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Integration of Knowledge and Ideas

STUDENT 9-Compare and contrast findings presented in a text to those from other sources (including their own experiments), EXPECTATION / 10.RST.9. noting when the findings support or contradict previous explanations or accounts. ESSENTIAL SKILL

CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Range of Reading and Level of Text Complexity
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.1 0.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Text Types and Purposes
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Production and Distribution of Writing
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.WHST. 6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
		Washington DC Academic Standards
		Science Grade 10 - Adopted: 2013
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- PS.	PHYSICAL SCIENCE

ST ANDARD / ESSENTIAL SKILL	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:

EXPECTATION

2.

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- LS.	LIFE SCIENCE	
ST ANDARD / ESSENT IAL SKILL	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics	
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:	
EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	
EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	
EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	
EXPECTATION	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.	
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- LS.	LIFE SCIENCE	
ST ANDARD / ESSENT IAL SKILL	HS-LS4.	Biological Evolution: Unity and Diversity	
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:	
EXPECTATION	HS-LS4- 6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- ESS.	EARTH AND SPACE SCIENCE	

	CIPLINE		
ES	ANDARD / SENTIAL ILL	HS- ESS2.	Earth's Systems

STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:	
EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.	
EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.	
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- ESS.	EARTH AND SPACE SCIENCE	
STANDARD / ESSENTIAL SKILL	HS- ESS3.	Earth and Human Activity	
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:	
EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	
EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.	
EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.	
EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.	
CONTENT STANDARD / STRAND / DISCIPLINE	DC.HS- ETS.		
STANDARD / ESSENTIAL SKILL	HS- ET S1.	Engineering Design	
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:	
EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	
EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	
EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	
		Grade 10 - Adopted: 2010	

CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Key Ideas and Details
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Craft and Structure
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Integration of Knowledge and Ideas
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.RST.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Range of Reading and Level of Text Complexity

STUDENT9-By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity bandEXPECTATION /10.RST.1independently and proficiently.ESSENTIAL0..SKILL..

CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Text Types and Purposes
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.WHS T.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	9- 10.WHST. 2.d.	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.9- 10.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Production and Distribution of Writing
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.WHST. 4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STUDENT EXPECTATION / ESSENTIAL SKILL	9- 10.WHST. 6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Washington State K-12 Learning Standards and Guidelines

Mathematics

Grade 9 - Adopted: 2011

EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.
BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.

BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.6.	Attend to precision.
BIG IDEA / CORE CONTENT	MP.7.	Look for and make use of structure.
BIG IDEA / CORE CONTENT	MP.8.	Look for and express regularity in repeated reasoning.

EALR	WA.F.	Functions
BIG IDEA / CORE CONTENT	F-IF.	Interpreting Functions
CORE CONTENT / CONTENT STANDARD		Interpret functions that arise in applications in terms of the context.
CONTENT STANDARD / PERFORMANCE EXPECTATION	F-IF.6.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Washington State K-12 Learning Standards and Guidelines Mathematics

Grade 10 - Adopted: 2011

EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.
BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.
BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.6.	Attend to precision.

BIG IDEA / CORE CONTENT	MP.7.	Look for and make use of structure.

BIG IDEA /	MP.8.	Look for and express regularity in repeated reasoning.
CORE		
CONTENT		

EALR	WA.F.	Functions
BIG IDEA / CORE CONTENT	F-IF.	Interpreting Functions
CORE CONTENT / CONTENT STANDARD		Interpret functions that arise in applications in terms of the context.

CONTENTF-IF.6.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
specified interval. Estimate the rate of change from a graph.PERFORMANCEEXPECTATION

Washington State K-12 Learning Standards and Guidelines

Science

Grade 9 - Adopted: 2014

EALR	WA.HS- PS.	PHYSICAL SCIENCE
BIG IDEA / CORE CONTENT	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENTHS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.STANDARD /2.PERFORMANCEEXPECTATION

EALRWA.HS-
LS.LIFE SCIENCEBIG IDEA /
CORE
CONTENTHS-LS2.Ecosystems: Interactions, Energy, and DynamicsCORE
CONTENT /
STANDARDStudents who demonstrate understanding can:

CONTENT HS-STANDARD / 2. PERFORMANCE EXPECTATION

HS-LS2-Use mathematical representations to support and revise explanations based on evidence about factors affecting2.biodiversity and populations in ecosystems of different scales.

CONTENT STANDARD / PERFORMANCE EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
CONTENT	HS-LS2-	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and

 CONTENT
 HS-LS2 Design, evaluate, and refine a solution for reducing the impacts of numan activities on the environment and STANDARD /

 STANDARD /
 7.
 biodiversity.

 PERFORMANCE
 EXPECTATION

EALR	WA.HS- LS.	LIFE SCIENCE
BIG IDEA / CORE CONTENT	HS-LS4.	Biological Evolution: Unity and Diversity
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

 CONTENT
 HS-LS4 Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

 STANDARD /
 6.

 PERFORMANCE
 EXPECTATION

EALR	WA.HS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	HS- ESS2.	Earth's Systems
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT	HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in
STANDARD /	ESS2-4.	climate.
PERFORMANCE		
EXPECTATION		

CONTENT	HS-	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,
STANDARD /	ESS2-6.	and biosphere.
PERFORMANCE		
EXPECTATION		

EALR	WA.HS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	HS- ESS3.	Earth and Human Activity
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
EALR	WA.HS- ETS.	ENGINEERING DESIGN
BIG IDEA / CORE CONTENT	HS- ET S1.	Engineering Design
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
		Grade 9 - Adopted: 2010
EALR	WA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Key Ideas and Details
CORE CONTENT / CONTENT	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.

STANDARD

CORE	RST.9-	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing
CONTENT /	10.3.	technical tasks attending to special cases or exceptions defined in the text.
CONTENT		
STANDARD		

EALR	WA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Craft and Structure
CORE CONTENT / CONTENT STANDARD	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
CORE CONTENT / CONTENT	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

STANDARD

EALR	WA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Integration of Knowledge and Ideas
CORE CONTENT / CONTENT STANDARD	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

EALR	WA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Range of Reading and Level of Text Complexity
CORE CONTENT / CONTENT STANDARD	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

EALR	WA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Text Types and Purposes
CORE CONTENT / CONTENT STANDARD	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CONTENT	WHST.9-	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style

STANDARD / 10.2(d) PERFORMANCE EXPECTATION

WHST.9- Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style10.2(d) appropriate to the discipline and context as well as to the expertise of likely readers.

EALR	WA.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Production and Distribution of Writing
CORE CONTENT / CONTENT STANDARD	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
CORE CONTENT / CONTENT STANDARD	WHST.9- 10.6.	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Washington State K-12 Learning Standards and Guidelines

Science

Grade 10 - Adopted: 2014

EALR	WA.HS- PS.	PHYSICAL SCIENCE
BIG IDEA / CORE CONTENT	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENTHS-PS4-Evaluate questions about the advantages of using a digital transmission and storage of information.STANDARD /2.PERFORMANCEEXPECTATION

EALR	WA.HS- LS.	LIFE SCIENCE
BIG IDEA / CORE CONTENT	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

CONTENT	HS-LS2-	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and
STANDARD /	7.	biodiversity.
PERFORMANCE		
EXPECTATION		

8	EALR	WA.HS- LS.	LIFE SCIENCE
	BIG IDEA / CORE CONTENT	HS-LS4.	Biological Evolution: Unity and Diversity
	CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENTHS-LS4-Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.STANDARD /6.PERFORMANCEEXPECTATION

EALR	WA.HS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	HS- ESS2.	Earth's Systems
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ESS2-6.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
EALR	WA.HS- ESS.	EARTH AND SPACE SCIENCE
EALR BIG IDEA / CORE CONTENT		EARTH AND SPACE SCIENCE Earth and Human Activity
BIG IDEA / CORE	ESS. HS-	
BIG IDEA / CORE CONTENT CORE CONTENT / CONTENT /	ESS. HS-	Earth and Human Activity

CONTENT HS-STANDARD / ESS3-3. PERFORMANCE EXPECTATION Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

CONTENT STANDARD / PERFORMANCE	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
EXPECTATION		

EALR	WA.HS- ET S.	
BIG IDEA / CORE CONTENT	HS- ETS1.	Engineering Design
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
CONTENT STANDARD / PERFORMANCE EXPECTATION	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Grade 10 - Adopted: 2010 EALR WA.RST. Reading Standards for Literacy in Science and Technical Subjects 9-10. **BIG IDEA / Key Ideas and Details** CORE CONTENT CORE RST.9-Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, CONTENT / 10.2. phenomenon, or concept; provide an accurate summary of the text. CONTENT STANDARD RST.9-CORE Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing CONTENT / 10.3. technical tasks attending to special cases or exceptions defined in the text. CONTENT STANDARD

EALR	WA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Craft and Structure

CORE CONTENT / CONTENT STANDARD	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.

CORE	RST.9-	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g.,
CONTENT /	10.5.	force, friction, reaction force, energy).
CONTENT		
STANDARD		
STANDARD		

EALR	WA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Integration of Knowledge and Ideas
CORE CONTENT / CONTENT STANDARD	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

EALR	WA.RST. 9-10.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Range of Reading and Level of Text Complexity
CORE CONTENT / CONTENT STANDARD	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

EALR	WA.WHST .9-10.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Text Types and Purposes
CORE CONTENT / CONTENT STANDARD	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CONTENT STANDARD / PERFORMANCE EXPECTATION	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.

EALR	WA.WHS T.9-10.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Production and Distribution of Writing
CORE CONTENT / CONTENT STANDARD	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

10.6.

WHST.9- Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Washington State K-12 Learning Standards and Guidelines Technology Education

Grade 9 - Adopted: 2018

EALR	WA.ET.9- 12.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	9-12.3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
CORE CONTENT / CONTENT STANDARD	9-12.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

EALR	WA.ET.9- 12.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	9-12.4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
CORE CONTENT / CONTENT STANDARD	9-12.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
CORE CONTENT /	9-12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT

STANDARD

EALR	WA.ET.9- 12.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	9-12.5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
CORE CONTENT / CONTENT STANDARD	9-12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
CORE CONTENT / CONTENT STANDARD	9-12.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
CORE CONTENT / CONTENT STANDARD	9-12.5.c.	Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.

CORE CONTENT / CONTENT STANDARD 9-12.5.d. Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 3A: 9-10
CORE CONTENT / CONTENT STANDARD	3A-AP.	Algorithms and Programming
CONTENT STANDARD / PERFORMANCE EXPECTATION	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. (P. 5.2)
CONTENT STANDARD / PERFORMANCE EXPECTATION	3A-AP- 16.	Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions. (P. 5.2)
EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 3A: 9-10

CORE CONTENT / CONTENT STANDARD	3A-IC.	Impacts of Computing
CONTENT STANDARD / PERFORMANCE EXPECTATION	3A-IC-25.	Test and refine computational artifacts to reduce bias and equity deficits. (P. 1.2)
CONTENT STANDARD /	3A-IC-26.	Demonstrate ways a given algorithm applies to problems across disciplines. (P. 3.1)

PERFORMANCE EXPECTATION

Washington State K-12 Learning Standards and Guidelines

Technology Education

Grade 10 - Adopted: 2018

EALR	WA.ET.9- 12.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	9-12.3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
CORE CONTENT / CONTENT STANDARD	9-12.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

EALR	WA.ET.9- 12.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	9-12.4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
CORE CONTENT / CONTENT STANDARD	9-12.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
CORE CONTENT / CONTENT STANDARD	9-12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
EALR	WA.ET.9- 12.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	9-12.5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
CORE CONTENT / CONTENT STANDARD	9-12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
CORE CONTENT / CONTENT STANDARD	9-12.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
CORE CONTENT / CONTENT STANDARD	9-12.5.c.	Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
CORE CONTENT / CONTENT STANDARD	9-12.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 3A: 9-10
CORE CONTENT / CONTENT STANDARD	3A-AP.	Algorithms and Programming
CONTENT STANDARD / PERFORMANCE	3A-AP- 13.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. (P. 5.2)

EXPECTATION

CONTENT	3A-AP-	Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a
STANDARD /	16.	societal issue by using events to initiate instructions. (P. 5.2)
PERFORMANCE		
EXPECTATION		

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 3A: 9-10
CORE CONTENT / CONTENT STANDARD	3A-IC.	Impacts of Computing
CONTENT STANDARD / PERFORMANCE EXPECTATION	3A-IC-25.	Test and refine computational artifacts to reduce bias and equity deficits. (P. 1.2)
CONTENT STANDARD /	3A-IC-26.	Demonstrate ways a given algorithm applies to problems across disciplines. (P. 3.1)

PERFORMANCE EXPECTATION

West Virginia College and Career Readiness Standards

Mathematics

Grade 9 - Adopted: 2016

CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	MHM3.	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / OBJECTIVE	MHM4.	Model with mathematics.
CONTENT STANDARD / OBJECTIVE	MHM6.	Attend to precision.
CONTENT STANDARD / OBJECTIVE	MHM7.	Look for and make use of structure.
CONTENT		

STANDARD /		
OBJECTIVE		

MHM8. Look for and express regularity in repeated reasoning.

CONTENT
STANDARD /
COURSEWV.M.1H
S.High School Mathematics ICONTENT
STANDARD /
OBJECTIVE /
EXPECTATIONLinear and Exponential RelationshipsOBJECTIVE /
EXPECTATIONInterpret functions that arise in applications in terms of a context.

GRADE LEVELM.1HS.17Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a
specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.2H S.	High School Mathematics II
CONTENT STANDARD / OBJECTIVE		Quadratic Functions and Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.

GRADE LEVEL EXPECTATION M.2HS.9. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.3H SLA.	High School Mathematics III LA
CONTENT STANDARD / OBJECTIVE		Mathematical Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.

GRADE LEVELM.3HSLA.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aEXPECTATION37.specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.3H STR.	High School Mathematics III TR (Technical Readiness)
CONTENT STANDARD / OBJECTIVE		Mathematical Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.
GRADE LEVEL EXPECTATION	M.3HSTR. 37.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

CONTENT	WV.M.A1	High School Algebra I
STANDARD /	HS.	
COURSE		
JUUNSL		

CONTENT STANDARD / OBJECTIVE	Linear and Exponential Relationships
OBJECTIVE / EXPECTATION	Interpret functions that arise in applications in terms of a context.

GRADE LEVELM.A1HS.2Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aEXPECTATION3.specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.A1 HS.	High School Algebra I
CONTENT STANDARD / OBJECTIVE		Quadratic Functions and Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.

GRADE LEVEL M.A EXPECTATION 53.

M.A1HS. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a53. specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.A2 HS.	High School Algebra II
CONTENT STANDARD / OBJECTIVE		Modeling with Functions
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.
GRADE LEVEL EXPECTATION	M.A2HS.2 9.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Note: Emphasize the selection of a model function

based on behavior of data and context.

West Virginia College and Career Readiness Standards

Mathematics

Grade 10 - Adopted: 2016

CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	MHM3.	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / OBJECTIVE	MHM4.	Model with mathematics.

CONTENT STANDARD / OBJECTIVE	MHM6.	Attend to precision.
CONTENT STANDARD / OBJECTIVE	MHM7.	Look for and make use of structure.
CONTENT STANDARD / OBJECTIVE	MHM8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / COURSE	WV.M.1H S.	High School Mathematics I
CONTENT STANDARD / OBJECTIVE		Linear and Exponential Relationships
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.
GRADE LEVEL EXPECTATION	M.1HS.17	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
CONTENT STANDARD / COURSE	WV.M.2H S.	High School Mathematics II
CONTENT STANDARD / OBJECTIVE		Quadratic Functions and Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.
GRADE LEVEL EXPECTATION	M.2HS.9.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.3H SLA.	High School Mathematics III LA
CONTENT STANDARD / OBJECTIVE		Mathematical Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.

GRADE LEVELM.3HSLA.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aEXPECTATION37.specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.3H STR.	High School Mathematics III TR (Technical Readiness)
CONTENT STANDARD / OBJECTIVE		Mathematical Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.

GRADE LEVELM.3HSTR.Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aEXPECTATION37.specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.A1 HS.	High School Algebra I
CONTENT STANDARD / OBJECTIVE		Linear and Exponential Relationships
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.

GRADE LEVELM.A1HS.2Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aEXPECTATION3.specified interval. Estimate the rate of change from a graph.

CONTENT STANDARD / COURSE	WV.M.A1 HS.	High School Algebra I
CONTENT STANDARD / OBJECTIVE		Quadratic Functions and Modeling
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.
GRADE LEVEL	M.A1HS.	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

EXPECTATION 53. specified interval. Estimate the rate of change from a graph.

	WV.M.A2 HS.	High School Algebra II
CONTENT STANDARD / OBJECTIVE		Modeling with Functions
OBJECTIVE / EXPECTATION		Interpret functions that arise in applications in terms of a context.

GRADE LEVELM.A2HS.2Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over aEXPECTATION9.specified interval. Estimate the rate of change from a graph. Note: Emphasize the selection of a model function
based on behavior of data and context.

West Virginia College and Career Readiness Standards

Science

Grade 9 - Adopted: 2021

CONTENT STANDARD / COURSE	Science Indicators Grades 9-12
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers

GRADE LEVEL EXPECTATION

Developing and using models

GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Obtaining, evaluating, and communicating information
CONTENT STANDARD / COURSE		Science Indicators Grades 9-12
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION		Science Connecting Concepts
GRADE LEVEL EXPECTATION		Investigating and explaining cause and effect
CONTENT STANDARD / COURSE		Science Indicators Grades 9-12
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION		Science Literacy
GRADE LEVEL EXPECTATION		Reading with understanding articles about science in the popular press and engaging in social conversation about the validity of the conclusions
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Earth's Systems
OBJECTIVE / EXPECTATION	S.ESS.8.	Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.
GRADE LEVEL EXPECTATION		examples could include:
INDICATOR	S.ESS.8. 2.b.	greenhouse gasses
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Earth's Systems

OBJECTIVE /
EXPECTATIONS.ESS.1Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere,
geosphere, and biosphere.

GRADE LEVELS.ESS.11. biogeochemical cyclesEXPECTATION1.

GRADE LEVEL EXPECTATION	S.ESS.11. 2.	carbon cycle
GRADE LEVEL EXPECTATION	S.ESS.11. 3.	carbon reservoirs
GRADE LEVEL EXPECTATION	S.ESS.11. 4.	carbon budget.
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Weather and Climate
OBJECTIVE / EXPECTATION	S.ESS.1 3.	Use a model to describe how variations in the flow of energy into and out of Earth systems result in changes in climate.
GRADE LEVEL EXPECTATION	S.ESS.13. 1.	changes in climate
GRADE LEVEL EXPECTATION	S.ESS.13. 6.	atmospheric composition.
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Human Sustainability
CONTENT STANDARD /	S.ESS.1 6.	Human Sustainability Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

CONTENT STANDARD / COURSE	Earth and Space Science
CONTENT STANDARD / OBJECTIVE	Human Sustainability
OBJECTIVE / EXPECTATION	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

GRADE LEVELS.ESS.17. consumptionEXPECTATION3.

GRADE LEVELS.ESS.17. new technology development.EXPECTATION4.

CONTENT STANDARD / COURSE

CONTENT STANDARD / OBJECTIVE		Human Sustainability
OBJECTIVE / EXPECTATION	S.ESS.1 8.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
GRADE LEVEL EXPECTATION	S.ESS.1 8.1.	data examples include:
INDICATOR	S.ESS.18 .1.b.	changes in biodiversity
INDICATOR	S.ESS.18 .1.c.	land use via aerial or satellite imaging
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Human Sustainability
OBJECTIVE / EXPECTATION	S.ESS.1 9.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
GRADE LEVEL EXPECTATION	S.ESS.19 .3.	cryosphere
GRADE LEVEL EXPECTATION	S.ESS.19 .5.	biosphere
GRADE LEVEL EXPECTATION	S.ESS.19 .6.	connection between carbon dioxide concentrations and photosynthetic biomass
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.ESS.2 0.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. In reference to:
INDICATOR	S.ESS.20 .1.	natural disasters
INDICATOR	S.ESS.20 .3.	resources
INDICATOR	S.ESS.20 .4.	climate change.
CONTENT STANDARD / COURSE		Biology

CONTENT STANDARD / OBJECTIVE	Biology/Life Science
OBJECTIVE / EXPECTATION	Matter and Energy in Organisms and Ecosystems

GRADE LEVELS.B.9.Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the
biosphere, atmosphere, hydrosphere, and geosphere.EXPECTATIONbiosphere, atmosphere, hydrosphere, and geosphere.

CONTENT STANDARD / COURSE		Biology
CONTENT STANDARD / OBJECTIVE		Biology/Life Science
OBJECTIVE / EXPECTATION		Interdependent Relationships in Ecosystems
GRADE LEVEL EXPECTATION	S.B.11.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GRADE LEVEL EXPECTATION	S.B.13.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
GRADE LEVEL EXPECTATION	S.B.14.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

CONTENT STANDARD / COURSE		Biology
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.B.23.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GRADE LEVEL EXPECTATION	S.B.24.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	S.B.25.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
GRADE LEVEL EXPECTATION	S.B.26.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains

OBJECTIVE / EXPECTATION		Compare and contrast the rate elements cycle through the ecosphere, describing natural and human influences on reaction rates:
----------------------------	--	--

GRADE LEVEL S.ENV.1.1 carbon

EXPECTATION .

CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.2.	Explain how the chemical components of biological and physical processes fit in the overall process of biogeochemical cycling such as photosynthesis, respiration, nitrogen fixation, or decomposition.

CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.6	Explain how technology has influenced the sustainability of natural resources over time:

GRADE LEVEL S.ENV.6. forestry practices EXPECTATION 1.

CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.9	Evaluate the leading causes of species decline and premature extinction:
GRADE LEVEL EXPECTATION	S.ENV.9. 1.	habitat destruction and degradation
GRADE LEVEL EXPECTATION	S.ENV.9. 4.	human population growth
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.10	Analyze biological diversity as it relates to the stability of an ecosystem.

EXPECTATION .

CONTENT	Environmental Science
STANDARD /	
COURSE	

CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.1 1.	Relate habitat changes to plant and animal populations and climate influences:
GRADE LEVEL EXPECTATION	S.ENV.11. 1.	variations in habitat size
GRADE LEVEL EXPECTATION	S.ENV.11. 2.	fragmentation
GRADE LEVEL EXPECTATION	S.ENV.11. 4.	albedo
GRADE LEVEL EXPECTATION	S.ENV.11. 5.	surface temperature.
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION		Debate climate change as it relates to natural forces, greenhouse gases, human changes in atmospheric concentrations of greenhouse gases, and relevant laws and treaties.
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.2 6.	Research and describe how communities have restored or protected ecosystems:
GRADE LEVEL EXPECTATION	S.ENV.26 .1.	remediation
GRADE LEVEL EXPECTATION	S.ENV.26 .2.	mitigation
GRADE LEVEL EXPECTATION	S.ENV.26 .3.	rehabilitation
GRADE LEVEL EXPECTATION	S.ENV.26 .4.	reclamation
GRADE LEVEL EXPECTATION	S.ENV.26 .5.	preservation.
CONTENT STANDARD / COURSE		Environmental Science

CONTENT STANDARD / OBJECTIVE	Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION	Engineering Design

GRADE LEVELS.ENV.28Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions thatEXPECTATION.account for societal needs and wants.

CONTENT STANDARD / COURSE		Forensic Science
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.FS.21.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL	S.FS.22.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a

GRADE LEVEL	S.FS.22.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a
EXPECTATION		range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and
		environmental impacts.

CONTENT STANDARD / COURSE		Human Anatomy and Physiology
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.HAP.26	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

GRADE LEVELS.HAP.27Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for aEXPECTATION.range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and
environmental impacts.

West Virginia College and Career Readiness Standards

Science

Grade 10 - Adopted: 2021

CONTENT STANDARD / COURSE	Science Indicators Grades 9-12
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers

GRADE LEVEL EXPECTATION Developing and using models

GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Obtaining, evaluating, and communicating information
CONTENT STANDARD / COURSE		Science Indicators Grades 9-12
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION		Science Connecting Concepts
GRADE LEVEL EXPECTATION		Investigating and explaining cause and effect
CONTENT STANDARD / COURSE		Science Indicators Grades 9-12
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION		Science Literacy
GRADE LEVEL EXPECTATION		Reading with understanding articles about science in the popular press and engaging in social conversation about the validity of the conclusions
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Earth's Systems
OBJECTIVE / EXPECTATION	S.ESS.8.	Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.
GRADE LEVEL EXPECTATION		examples could include:
INDICATOR	S.ESS.8. 2.b.	greenhouse gasses
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Earth's Systems
OBJECTIVE / EXPECTATION	S.ESS.1 1.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

GRADE LEVELS.ESS.11. biogeochemical cyclesEXPECTATION1.

GRADE LEVEL EXPECTATION	S.ESS.11. 2.	carbon cycle
GRADE LEVEL EXPECTATION	S.ESS.11. 3.	carbon reservoirs
GRADE LEVEL EXPECTATION	S.ESS.11. 4.	carbon budget.
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Weather and Climate
OBJECTIVE / EXPECTATION	S.ESS.1 3.	Use a model to describe how variations in the flow of energy into and out of Earth systems result in changes in climate.
GRADE LEVEL EXPECTATION	S.ESS.13. 1.	changes in climate
GRADE LEVEL EXPECTATION	S.ESS.13. 6.	atmospheric composition.
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Human Sustainability
OBJECTIVE / EXPECTATION	S.ESS.1 6.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
GRADE LEVEL EXPECTATION	S.ESS.16 .1.	conservation, reuse, recycling
CONTENT		Earth and Space Science

COURSE	
CONTENT Human Sustainability STANDARD / OBJECTIVE	
OBJECTIVE / EXPECTATIONS.ESS.1Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.	

GRADE LEVELS.ESS.17. consumptionEXPECTATION3.

GRADE LEVELS.ESS.17. new technology development.EXPECTATION4.

CONTENT	Earth and Space Science
STANDARD /	
COURSE	
o o o n o L	

CONTENT STANDARD / OBJECTIVE		Human Sustainability
OBJECTIVE / EXPECTATION	S.ESS.1 8.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
GRADE LEVEL EXPECT ATION	S.ESS.1 8.1.	data examples include:
INDICATOR	S.ESS.18 .1.b.	changes in biodiversity
INDICATOR	S.ESS.18 .1.c.	land use via aerial or satellite imaging
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Human Sustainability
OBJECTIVE / EXPECTATION	S.ESS.1 9.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
GRADE LEVEL EXPECTATION	S.ESS.19 .3.	cryosphere
GRADE LEVEL EXPECTATION	S.ESS.19 .5.	biosphere
GRADE LEVEL EXPECTATION	S.ESS.19 .6.	connection between carbon dioxide concentrations and photosynthetic biomass
CONTENT STANDARD / COURSE		Earth and Space Science
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECT ATION	S.ESS.2 0.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. In reference to:
INDICATOR	S.ESS.20 .1.	natural disasters
INDICATOR	S.ESS.20 .3.	resources
INDICATOR	S.ESS.20 .4.	climate change.
CONTENT STANDARD / COURSE		Biology

CONTENT STANDARD / OBJECTIVE	Biology/Life Science
OBJECTIVE / EXPECTATION	Matter and Energy in Organisms and Ecosystems

GRADE LEVELS.B.9.Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the
biosphere, atmosphere, hydrosphere, and geosphere.EXPECTATIONbiosphere, atmosphere, hydrosphere, and geosphere.

CONTENT STANDARD / COURSE		Biology
CONTENT STANDARD / OBJECTIVE		Biology/Life Science
OBJECTIVE / EXPECTATION		Interdependent Relationships in Ecosystems
GRADE LEVEL EXPECTATION	S.B.11.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GRADE LEVEL EXPECTATION	S.B.13.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
GRADE LEVEL EXPECTATION	S.B.14.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

CONTENT STANDARD / COURSE		Biology
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.B.23.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
GRADE LEVEL EXPECTATION	S.B.24.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL EXPECTATION	S.B.25.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
GRADE LEVEL EXPECTATION	S.B.26.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains

OBJECTIVE / EXPECTATION		Compare and contrast the rate elements cycle through the ecosphere, describing natural and human influences on reaction rates:
----------------------------	--	--

GRADE LEVEL S.ENV.1.1 carbon

EXPECTATION .

CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.2.	Explain how the chemical components of biological and physical processes fit in the overall process of biogeochemical cycling such as photosynthesis, respiration, nitrogen fixation, or decomposition.

CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.6	Explain how technology has influenced the sustainability of natural resources over time:

GRADE LEVEL S.ENV.6. forestry practices EXPECTATION 1.

CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.9	Evaluate the leading causes of species decline and premature extinction:
GRADE LEVEL EXPECTATION	S.ENV.9. 1.	habitat destruction and degradation
GRADE LEVEL EXPECTATION	S.ENV.9. 4.	human population growth
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.10	Analyze biological diversity as it relates to the stability of an ecosystem.

EXPECTATION .

CONTENT	Environmental Science
STANDARD /	
COURSE	

CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.1 1.	Relate habitat changes to plant and animal populations and climate influences:
GRADE LEVEL EXPECTATION	S.ENV.11. 1.	variations in habitat size
GRADE LEVEL EXPECTATION	S.ENV.11. 2.	fragmentation
GRADE LEVEL EXPECTATION	S.ENV.11. 4.	albedo
GRADE LEVEL EXPECTATION	S.ENV.11. 5.	surface temperature.
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.17	Debate climate change as it relates to natural forces, greenhouse gases, human changes in atmospheric concentrations of greenhouse gases, and relevant laws and treaties.
CONTENT STANDARD / COURSE		Environmental Science
CONTENT STANDARD / OBJECTIVE		Environmental Science/Life Science, Earth and Space Science, and Physical Science Domains
OBJECTIVE / EXPECTATION	S.ENV.2 6.	Research and describe how communities have restored or protected ecosystems:
GRADE LEVEL EXPECTATION	S.ENV.26 .1.	remediation
GRADE LEVEL EXPECTATION	S.ENV.26 .2.	mitigation
GRADE LEVEL EXPECTATION	S.ENV.26 .3.	rehabilitation
GRADE LEVEL EXPECTATION	S.ENV.26 .4.	reclamation
GRADE LEVEL EXPECTATION	S.ENV.26 .5.	preservation.
CONTENT STANDARD / COURSE		Environmental Science

CONTENT STANDARD / OBJECTIVE	Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION	Engineering Design

GRADE LEVELS.ENV.28Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions thatEXPECTATION.account for societal needs and wants.

CONTENT STANDARD / COURSE		Forensic Science
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.FS.21.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
GRADE LEVEL	S.FS.22.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a

GRADE LEVELS.FS.22.Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for aEXPECTATIONrange of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and
environmental impacts.

CONTENT STANDARD / COURSE		Human Anatomy and Physiology
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.HAP.26	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

GRADE LEVELS.HAP.27Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a
range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and
environmental impacts.

West Virginia College and Career Readiness Standards

Technology Education Grade 9 - Adopted: 2019

CONTENT
STANDARD /
COURSE2520.14.West Virginia College- and Career-Readiness Standards for Technology and Computer ScienceCONTENT
STANDARD /
OBJECTIVEComputer Science 9-12OBJECTIVE /
EXPECTATIONData and Information

GRADE LEVEL CS.9- Create computational models for simulating real-world system. EXPECTATION 12.7.

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 9-12
OBJECTIVE / EXPECTATION		Impacts of Computing
GRADE LEVEL EXPECTATION	CS.9- 12.13.	Test and refine computational artifacts to reduce bias and equity deficits.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science in the Modern World
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.MW.3.	Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.
GRADE LEVEL EXPECTATION	CS.MW.8	Use modeling and simulation to represent and understand natural phenomena.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
STANDARD /	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science Computer Science in the Modern World
STANDARD / COURSE CONTENT STANDARD /	2520.14.	
STANDARD / COURSE CONTENT STANDARD / OBJECTIVE OBJECTIVE /		Computer Science in the Modern World
CONTENT STANDARD / STANDARD / OBJECTIVE OBJECTIVE / EXPECTATION GRADE LEVEL	CS.MW.2 2.	Computer Science in the Modern World Programming and Algorithms
STANDARD / COURSE CONTENT STANDARD / OBJECTIVE OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION CONTENT STANDARD /	CS.MW.2 2.	Computer Science in the Modern World Programming and Algorithms Describe a variety of programming languages available to solve problems and develop systems.
STANDARD / COURSE CONTENT STANDARD / OBJECTIVE OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION CONTENT STANDARD / COURSE CONTENT STANDARD /	CS.MW.2 2.	Computer Science in the Modern World Programming and Algorithms Describe a variety of programming languages available to solve problems and develop systems. West Virginia College- and Career-Readiness Standards for Technology and Computer Science
STANDARD / COURSE CONTENT STANDARD / OBJECTIVE OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION CONTENT STANDARD / COURSE CONTENT STANDARD / OBJECTIVE /	CS.MW.2 2.	Computer Science in the Modern World Programming and Algorithms Describe a variety of programming languages available to solve problems and develop systems. West Virginia College- and Career-Readiness Standards for Technology and Computer Science Computer Science & Mathematics

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science

CONTENT STANDARD / OBJECTIVE		Computer Science & Mathematics
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION		Create and evaluate algorithms to solve problems.
INDICATOR	CS.M.11.	Utilize modeling and simulation techniques to represent and understand natural phenomena.
INDICATOR	CS.M.13.	Manipulate formulas and equations and apply them to algorithm development.
INDICATOR	CS.M.15.	Write algorithms to solve mathematical problems using formulas, equations, and functions.
INDICATOR	CS.M.16.	Implement conditional statements that include if/then, if/then/else, case statements, and Boolean logic, in the design of algorithms.
CONTENT ST ANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.GIS.1.	Demonstrate an understanding of the basics of cartography.
GRADE LEVEL EXPECTATION	CS.GIS.2.	Demonstrate a basic proficiency in map reading; an understanding of scale; an understanding of the power of analysis; and an understanding of the history of map creation and use.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.GIS.9.	Use a web-based GIS to answer questions about the earth and the environment.
GRADE LEVEL EXPECTATION	CS.GIS.1 0.	Demonstrate basic proficiency in map creation, including adding layers, adding additional data, changing data symbology, configuring pop-up, saving and sharing maps.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Programming and Algorithms

GRADE LEVEL EXPECTATION		Use geospatial technology to explore and investigate environmental problems such as:
INDICATOR	CS.GIS.1 1.a.	resource management
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.GIS. 12.	Use geospatial technology to explore and investigate rural and urban issues such as:
INDICATOR	CS.GIS.1 2.a.	urban planning
INDICATOR	CS.GIS.1 2.b.	transportation
INDICATOR	CS.GIS.1 2.c.	logistics
INDICATOR	CS.GIS.1 2.d.	emergency planning to calculate emergency response times in the event of a natural disaster.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
STANDARD /	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science Introduction to Geographic Information Systems
ST ANDARD / COURSE CONTENT ST ANDARD /	2520.14.	
ST ANDARD / COURSE CONTENT ST ANDARD / OBJECTIVE OBJECTIVE /		Introduction to Geographic Information Systems
CONTENT STANDARD / OBJECTIVE OBJECTIVE / EXPECTATION GRADE LEVEL	CS.GIS.1 3.	Introduction to Geographic Information Systems Programming and Algorithms
ST ANDARD / COURSE CONTENT ST ANDARD / OBJECTIVE OBJECTIVE / EXPECT ATION GRADE LEVEL EXPECTATION	CS.GIS.1 3. CS.GIS.1 4.	Introduction to Geographic Information Systems Programming and Algorithms Explore uses of geospatial technology by law enforcement to map, visualize, and analyze crime incident patterns.
ST ANDARD / COURSE CONTENT ST ANDARD / OBJECTIVE OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL GRADE LEVEL	CS.GIS.1 3. CS.GIS.1 4. CS.GIS.1 5.	Introduction to Geographic Information Systems Programming and Algorithms Explore uses of geospatial technology by law enforcement to map, visualize, and analyze crime incident patterns. Use geospatial technology to explore and investigate business problems related to asset management.
ST ANDARD / COURSE CONTENT ST ANDARD / OBJECTIVE OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION CONTENT ST ANDARD /	CS.GIS.1 3. CS.GIS.1 4. CS.GIS.1 5.	Introduction to Geographic Information Systems Programming and Algorithms Explore uses of geospatial technology by law enforcement to map, visualize, and analyze crime incident patterns. Use geospatial technology to explore and investigate business problems related to asset management. Use geospatial technology to explore and investigate problems related to medical geography and epidemiology.

West Virginia College and Career Readiness Standards

Technology Education

Grade 10 - Adopted: 2019

		Grade 10 - Adopted: 2019
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 9-12
OBJECTIVE / EXPECTATION		Data and Information
GRADE LEVEL EXPECTATION	CS.9- 12.7.	Create computational models for simulating real-world system.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 9-12
OBJECTIVE / EXPECTATION		Impacts of Computing
GRADE LEVEL EXPECTATION	CS.9- 12.13.	Test and refine computational artifacts to reduce bias and equity deficits.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science in the Modern World
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.MW.3.	Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.
GRADE LEVEL EXPECTATION	CS.MW.8	Use modeling and simulation to represent and understand natural phenomena.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science in the Modern World
OBJECTIVE / EXPECTATION		Programming and Algorithms

GRADE LEVELCS.MW.2Describe a variety of programming languages available to solve problems and develop systems.EXPECTATION2.

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science & Mathematics
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION		Connect the development cycle of algorithm construction to problem-solving.
INDICATOR	CS.M.9.	Create systems of equations based on real-world situations.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science & Mathematics
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION		Create and evaluate algorithms to solve problems.
INDICATOR	CS.M.11.	Utilize modeling and simulation techniques to represent and understand natural phenomena.
INDICATOR	CS.M.13.	Manipulate formulas and equations and apply them to algorithm development.
INDICATOR	CS.M.15.	Write algorithms to solve mathematical problems using formulas, equations, and functions.
INDICATOR	CS.M.16.	Implement conditional statements that include if/then, if/then/else, case statements, and Boolean logic, in the design of algorithms.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.GIS.1.	Demonstrate an understanding of the basics of cartography.
GRADE LEVEL EXPECTATION	CS.GIS.2.	Demonstrate a basic proficiency in map reading; an understanding of scale; an understanding of the power of analysis; and an understanding of the history of map creation and use.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems

OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.GIS.9.	Use a web-based GIS to answer questions about the earth and the environment.
GRADE LEVEL EXPECTATION	CS.GIS.1 0.	Demonstrate basic proficiency in map creation, including adding layers, adding additional data, changing data symbology, configuring pop-up, saving and sharing maps.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.GIS. 11.	Use geospatial technology to explore and investigate environmental problems such as:
INDICATOR	CS.GIS.1 1.a.	resource management
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.GIS. 12.	Use geospatial technology to explore and investigate rural and urban issues such as:
INDICATOR	CS.GIS.1 2.a.	urban planning
INDICATOR	CS.GIS.1 2.b.	transportation
INDICATOR	CS.GIS.1 2.c.	logistics
INDICATOR	CS.GIS.1 2.d.	emergency planning to calculate emergency response times in the event of a natural disaster.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION		Programming and Algorithms

GRADE LEVEL EXPECTATION	CS.GIS.1 3.	Explore uses of geospatial technology by law enforcement to map, visualize, and analyze crime incident patterns.
GRADE LEVEL EXPECTATION	CS.GIS.1 4.	Use geospatial technology to explore and investigate business problems related to asset management.
GRADE LEVEL EXPECTATION	CS.GIS.1 5.	Use geospatial technology to explore and investigate problems related to medical geography and epidemiology.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science

CONTENT STANDARD / OBJECTIVE	Introduction to Geographic Information Systems
OBJECTIVE / EXPECTATION	Impacts of Computing

GRADE LEVELCS.GIS.1Use geospatial technology to explore and investigate the history of cartography.EXPECTATION9.

Wisconsin Academic Standards Mathematics

Grade 9 - Adopted: 2021

DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT STANDARD	Math Practice 2:	Reason abstractly and quantitatively.
CONTENT STANDARD	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT STANDARD	Math Practice 4:	Model with mathematics.
CONTENT STANDARD	Math Practice 6:	Attend to precision.
CONTENT STANDARD	Math Practice 7:	Look for and make use of structure.
CONTENT STANDARD	Math Practice 8:	Look for and express regularity in repeated reasoning.

DOMAIN		Functions
CONTENT ST ANDARD	M.F.IF.	Interpreting Functions (F-IF)
PERFORMANC E STANDARD / LEARNING PRIORITY	M.F.IF.B	Interpret functions that arise in applications in terms of context. (M)
DESCRIPTOR / FOCUS AREA	M.F.IF.B. 6.	Calculate and interpret the average rate of change of a linear or nonlinear function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Wisconsin Academic Standards

Mathematics

	Grade 10 - Adopted: 2021	L
--	--------------------------	---

DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT STANDARD	Math Practice 2:	Reason abstractly and quantitatively.
CONTENT STANDARD	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT STANDARD	Math Practice 4:	Model with mathematics.
CONTENT STANDARD	Math Practice 6:	Attend to precision.
CONTENT STANDARD	Math Practice 7:	Look for and make use of structure.
CONTENT STANDARD	Math Practice 8:	Look for and express regularity in repeated reasoning.

DOMAIN		Functions
CONTENT STANDARD	M.F.IF.	Interpreting Functions (F-IF)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	M.F.IF.B	Interpret functions that arise in applications in terms of context. (M)

DESCRIPTOR / M.F.IF.B. Calculate and interpret the average rate of change of a linear or nonlinear function (presented symbolically or as a FOCUS AREA 6. table) over a specified interval. Estimate the rate of change from a graph.

Wisconsin Academic Standards

Science

Grade 9 - Adopted: 2017

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.CC4	Students use science and engineering practices, disciplinary core ideas, and an understanding of systems and models to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Systems and System Models
LEARNING CONTINUUM	SCI.CC4. h.	Students investigate or analyze a system by defining its boundaries and initial conditions, as well as its inputs and outputs. They use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and interactions within and between systems at different scales. They also use models and simulations to predict the behavior of a system, and recognize that these predictions have limited precision and reliability due to the assumptions and approximations inherent in the models. They also design systems to do specific tasks.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC	SCI.SEP	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary

PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students use, synthesize, and develop models to predict and show relationships among variables and between systems and their components in the natural and designed world. This includes the following:
LEARNING CONTINUUM	SCI.SEP2 .A.h.1.	Evaluate merits and limitations of two different models of the same proposed tool, process, mechanism, or system in order to select or revise a model that best fits the evidence or design criteria.
LEARNING CONTINUUM	SCI.SEP2 .A.h.2.	Design a test of a model to ascertain its reliability.
LEARNING CONTINUUM	SCI.SEP2 .A.h.3.	Develop, revise, and use models based on evidence to illustrate and predict the relationships between systems or between components of a system.
LEARNING CONTINUUM	SCI.SEP2 .A.h.4.	Develop and use multiple types of models to provide mechanistic accounts and predict phenomena. Move flexibly between these model types based on merits and limitations.
LEARNING CONTINUUM	SCI.SEP2 .A.h.5.	Develop a complex model that allows for manipulation and testing of a proposed process or system.
LEARNING CONTINUUM	SCI.SEP2 .A.h.6.	Develop and use a model (including mathematical and computational) to generate data to support explanations, predict phenomena, analyze systems, and solve problems.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 3.	Students plan and carry out investigations, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.

DESCRIPTOR / FOCUS AREA	SCI.SEP 3.A.	Planning and Conducting Investigations – Students plan and carry out investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models: This includes the following:
LEARNING CONTINUUM	SCI.SEP3 .A.h.4.	Select appropriate tools to collect, record, analyze, and evaluate data.

LEARNING CONTINUUM

world.

SCI.SEP3 Manipulate variables and collect data about a complex model of a proposed process or system to identify failure .A.h.6. points, or to improve performance relative to criteria for success.

DOMAIN	WI.SCI.	Science
CONT ENT ST AND ARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 5.	Students use mathematics and computational thinking, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 5.A.	Qualitative and Quantitative Data – Students use algebraic thinking and analysis, a range of linear and nonlinear functions (including trigonometric functions, exponentials, and logarithms), and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. This includes the following:
LEARNING CONTINUUM	SCI.SEP 5.A.h.2.	Create and/or revise a computational model or simulation of a phenomenon, designed device, process, or system.
LEARNING CONTINUUM	SCI.SEP 5.A.h.3.	Use mathematical, computational, and algorithmic representations of phenomena or design solutions to describe and support claims and explanations.
LEARNING CONTINUUM	SCI.SEP 5.A.h.5.	Use simple limit cases to test mathematical expressions, computer programs, algorithms, or simulations of a process or system to see if a model "makes sense" by comparing the outcomes with what is known about the real

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students create explanations that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.A.h.1.	Make quantitative and qualitative claims regarding the relationship between dependent and independent variables.
LEARNING CONTINUUM	SCI.SEP 6.A.h.2.	Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources, including students' own investigations, models, theories, simulations, and peer review. Explanations should reflect the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
LEARNING CONTINUUM	SCI.SEP 6.A.h.3.	Apply scientific ideas, principles, and evidence to provide an explanation of phenomena taking into account possible, unanticipated effects.
LEARNING CONTINUUM	SCI.SEP 6.A.h.4.	Apply scientific reasoning, theory, and models to link evidence to the claim and to assess the extent to which the reasoning and data support the explanation.

DOMAIN	WI.SCI.	Science
CONTENT ST ANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students create designs that are supported by multiple and independent student- generated sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.B.h.1.	Design, evaluate, and refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, and prioritized criteria. Consider trade-offs.
LEARNING CONTINUUM	SCI.SEP 6.B.h.2.	Apply scientific ideas, principles, and evidence to solve design problems, taking into account possible unanticipated effects.
DOMAIN	WI.SCI.	Science
CONT ENT ST AND ARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the validity and reliability of claims, methods, and designs. This includes the following:
LEARNING CONTINUUM	SCI.SEP 8.A.h.1.	Critically read scientific literature adapted for classroom use to determine the central ideas or conclusions, and to obtain scientific and technical information. Summarize complex evidence, concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.
LEARNING CONTINUUM	SCI.SEP 8.A.h.5.	Communicate scientific and technical information in multiple formats, including orally, graphically, textually, and mathematically. Examples of information could include ideas about phenomena or the design and performance of a proposed process or system.
DOMAIN	wi.sci.	Science
CONT ENT ST AND ARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.LS2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the interactions, energy, and dynamics within ecosystems to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.LS2. B.	Cycles of Matter and Energy Transfer in Ecosystems
LEARNING CONTINUUM	SCI.LS2. B.h.	Photosynthesis and cellular respiration provide most of the energy for life processes. Only a fraction of matter consumed at the lower level of a food web is transferred up, resulting in fewer organisms at higher levels. At each link in an ecosystem, elements are combined in different ways, and matter and energy are conserved. Photosynthesis and cellular respiration are key components of the global carbon cycle.

DOMAIN	WI.SCI.	Science
 CONTENT STANDARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)

PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.LS2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the interactions, energy, and dynamics within ecosystems to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.LS2. C.	Ecosystem Dynamics, Functioning, and Resilience
LEARNING CONTINUUM	SCI.LS2. C.h.	If a biological or physical disturbance to an ecosystem occurs, including one induced by human activity, the ecosystem may return to its more or less original state or become a very different ecosystem, depending on the complex set of interactions within the ecosystem.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.LS4	Students use science and engineering practices, crosscutting concepts, and an understanding of biological evolution to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.LS4. D.	Biodiversity and Humans
LEARNING CONTINUUM	SCI.LS4. D.h.	Biodiversity is increased by formation of new species and reduced by extinction. Humans depend on biodiversity but also have adverse impacts on it. Sustaining biodiversity is essential to supporting life on Earth.
DOMAIN	WI.SCI.	Science

CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.ESS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of Earth's systems to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ESS 2.D.	Weather and Climate
LEARNING CONTINUUM	SCI.ESS2 .D.h.	The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by

human behavior and natural factors.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ESS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ESS 3.A.	Natural Resources
	SCIESS2	Decourse availability has guided the development of human coaiety and use of natural resources has accoaieted

LEARNINGSCI.ESS3Resource availability has guided the development of human society and use of natural resources has associatedCONTINUUM.A.h.costs, risks, and benefits.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)

PERFORMANC E ST ANDARD / LEARNING PRIORITY		Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.
	SCI.ESS 3.C.	Human Impacts on Earth Systems

LEARNINGSCI.ESS3Sustainability of human societies and the biodiversity that supports them requires responsible management of
natural resources, including the development of technologies.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions
LEARNING CONTINUUM	SCI.ETS1 .B.h.1.	When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts.
LEARNING CONTINUUM	SCI.ETS1 .B.h.2.	Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical. They are also useful in making a persuasive

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.ET S 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology
LEARNING CONTINUUM	SCI.ETS2 .A.h.1.	Science and engineering complement each other in the cycle known as research and development (R&D).

presentation to a client about how a given design will meet his or her needs.

LEARNINGSCI.ETS2Many research and development projects may involve scientists, engineers, and others with wide ranges ofCONTINUUM.A.h.2.expertise.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.B.	Influence of Engineering, Technology, and Science on Society and the Natural World
LEARNING CONTINUUM	SCI.ETS2 .B.h.1.	Modern civilization depends on major technological systems, such as agriculture, health, water, energy, transportation, manufacturing, construction, and communications.

LEARNING CONTINUUM	SCI.ETS2 .B.h.2.	Engineers continuously modify these systems to increase benefits while decreasing costs and risks.
LEARNING CONTINUUM	SCI.ETS2 .B.h.3.	New technologies can have deep impacts on society and the environment, including some that were not anticipated.
LEARNING CONTINUUM	SCI.ETS2 .B.h.4.	Analysis of costs and benefits is a critical aspect of decisions about technology.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ET S 3.A.	Science and Engineering Are Human Endeavors
LEARNING CONTINUUM	SCI.ETS3 .A.h.4.	Scientists and engineers embrace skepticism and critique as a community. Deliberate deceit in science is rare and is likely exposed through the peer review process. When discovered, intellectual dishonesty is condemned by the scientific community.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.B.	Science and Engineering Are Unique Ways of Thinking with Different Purposes
LEARNING CONTINUUM	SCI.ETS3 .B.h.3.	Science and engineering innovations may raise ethical issues for which science and engineering, by themselves, do not provide answers and solutions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.

DESCRIPTOR / FOCUS AREA		Science and Engineering Use Multiple Approaches to Create New Knowledge and Solve Problems
LEARNING	SCI.ETS3	Engineers use a variety of approaches, tools, and techniques to define problems and develop solutions to those

CONTINUUM .C.h.3. problems. Successful engineering solutions meet stakeholder needs and safety requirements, and are economically viable. Trade-offs in design aspects balance competing demands.

Wisconsin Academic Standards

Science

Grade 10 - Adopted: 2017

CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.CC4	Students use science and engineering practices, disciplinary core ideas, and an understanding of systems and models to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Systems and System Models
LEARNING CONTINUUM	SCI.CC4. h.	Students investigate or analyze a system by defining its boundaries and initial conditions, as well as its inputs and outputs. They use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and

NUUM h. outputs. They use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and interactions within and between systems at different scales. They also use models and simulations to predict the behavior of a system, and recognize that these predictions have limited precision and reliability due to the assumptions and approximations inherent in the models. They also design systems to do specific tasks.

DOMAIN	WI.SCI.	Science		
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)		
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.		
DESCRIPTOR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students use, synthesize, and develop models to predict and show relationships mong variables and between systems and their components in the natural and designed world. This ncludes the following:		
LEARNING CONTINUUM	SCI.SEP2 .A.h.1.	Evaluate merits and limitations of two different models of the same proposed tool, process, mechanism, or system in rder to select or revise a model that best fits the evidence or design criteria.		
LEARNING CONTINUUM	SCI.SEP2 .A.h.2.	Design a test of a model to ascertain its reliability.		
LEARNING CONTINUUM	SCI.SEP2 .A.h.3.	Develop, revise, and use models based on evidence to illustrate and predict the relationships between systems or between components of a system.		
LEARNING CONTINUUM	SCI.SEP2 .A.h.4.	Develop and use multiple types of models to provide mechanistic accounts and predict phenomena. Move flexibly between these model types based on merits and limitations.		
LEARNING CONTINUUM	SCI.SEP2 .A.h.5.	Develop a complex model that allows for manipulation and testing of a proposed process or system.		
LEARNING CONTINUUM	SCI.SEP2 .A.h.6.	Develop and use a model (including mathematical and computational) to generate data to support explanations, predict phenomena, analyze systems, and solve problems.		
DOMAIN	WI.SCI.	Science		
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)		
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 3.	Students plan and carry out investigations, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.		
DESCRIPTOR / FOCUS AREA	SCI.SEP 3.A.	Planning and Conducting Investigations – Students plan and carry out investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models: This includes the following:		

LEARNING	SCI.SEP3 Select appropriate tools to collect, record, analyze, and evaluate data.
CONTINUUM	.A.h.4.

LEARNING CONTINUUM SCI.SEP3 Manipulate variables and collect data about a complex model of a proposed process or system to identify failure .A.h.6. points, or to improve performance relative to criteria for success.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORIT Y	SCI.SEP 5.	Students use mathematics and computational thinking, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 5.A.	Qualitative and Quantitative Data – Students use algebraic thinking and analysis, a range of linear and nonlinear functions (including trigonometric functions, exponentials, and logarithms), and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. This includes the following:
LEARNING CONTINUUM	SCI.SEP 5.A.h.2.	Create and/or revise a computational model or simulation of a phenomenon, designed device, process, or system.
LEARNING CONTINUUM	SCI.SEP 5.A.h.3.	Use mathematical, computational, and algorithmic representations of phenomena or design solutions to describe and support claims and explanations.
LEARNING CONTINUUM	SCI.SEP 5.A.h.5.	Use simple limit cases to test mathematical expressions, computer programs, algorithms, or simulations of a process or system to see if a model "makes sense" by comparing the outcomes with what is known about the real world.

DOMAIN	WI.SCI.	Science	
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)	
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.	
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students create explanations that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:	
LEARNING CONTINUUM	SCI.SEP 6.A.h.1.	Make quantitative and qualitative claims regarding the relationship between dependent and independent variables.	
LEARNING CONTINUUM	SCI.SEP 6.A.h.2.	Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources, including students' own investigations, models, theories, simulations, and peer review. Explanations should reflect the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	
LEARNING CONTINUUM	SCI.SEP 6.A.h.3.	Apply scientific ideas, principles, and evidence to provide an explanation of phenomena taking into account possible, unanticipated effects.	
LEARNING CONTINUUM	SCI.SEP 6.A.h.4.	Apply scientific reasoning, theory, and models to link evidence to the claim and to assess the extent to which the reasoning and data support the explanation.	
DOMAIN	WI.SCI.	Science	

CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students create designs that are supported by multiple and independent student- generated sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.B.h.1.	Design, evaluate, and refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, and prioritized criteria. Consider trade-offs.
LEARNING CONTINUUM	SCI.SEP 6.B.h.2.	Apply scientific ideas, principles, and evidence to solve design problems, taking into account possible unanticipated effects.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the validity and reliability of claims, methods, and designs. This includes the following:
LEARNING CONTINUUM	SCI.SEP 8.A.h.1.	Critically read scientific literature adapted for classroom use to determine the central ideas or conclusions, and to obtain scientific and technical information. Summarize complex evidence, concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.
LEARNING CONTINUUM	SCI.SEP 8.A.h.5.	Communicate scientific and technical information in multiple formats, including orally, graphically, textually, and mathematically. Examples of information could include ideas about phenomena or the design and performance of a

		,		
pr	oposed p	rocess	or	system.

DOMAIN	WI.SCI.	Science	
CONTENT ST ANDARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)	
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.LS2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the interactions, energy, and dynamics within ecosystems to make sense of phenomena and solve problems.	
DESCRIPTOR / FOCUS AREA	SCI.LS2. B.	Cycles of Matter and Energy Transfer in Ecosystems	
LEARNING CONTINUUM	SCI.LS2. B.h.	Photosynthesis and cellular respiration provide most of the energy for life processes. Only a fraction of matter consumed at the lower level of a food web is transferred up, resulting in fewer organisms at higher levels. At each link in an ecosystem, elements are combined in different ways, and matter and energy are conserved.	

-		-	
Photosynthesis and	cellular respiration are k	key components of the	global carbon cycle.

DOMAIN	WI.SCI.	Science
CONTENT ST AND ARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.LS2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the interactions, energy, and dynamics within ecosystems to make sense of phenomena and solve problems.

		SCI.LS2. C.	Ecosystem Dynamics, Functioning, and Resilience
L	EARNING	SCI.LS2.	If a biological or physical disturbance to an ecosystem occurs, including one induced by human activity, the
C	CONTINUUM	C.h.	ecosystem may return to its more or less original state or become a very different ecosystem, depending on the

INUUM	C.h.	ecosystem may return to its more or less original state or become a very different ecosystem, depending on the
		complex set of interactions within the ecosystem.

DOMAIN	WI.SCI.	Science
CONTENT ST ANDARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.LS4	Students use science and engineering practices, crosscutting concepts, and an understanding of biological evolution to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.LS4. D.	Biodiversity and Humans

LEARNING SCI.LS4. Biodiversity is increased by formation of new species and reduced by extinction. Humans depend on biodiversity CONTINUUM D.h. but also have adverse impacts on it. Sustaining biodiversity is essential to supporting life on Earth.

DOMAIN	WI.SCI.	Science		
CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)		
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ESS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of Earth's systems to make sense of phenomena and solve problems.		
DESCRIPTOR / FOCUS AREA	SCI.ESS 2.D.	Weather and Climate		
LEARNING CONTINUUM	SCI.ESS2 .D.h.	The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by		

human	behavioi	and	natural	factors.	

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ESS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ESS 3.A.	Natural Resources
LEARNING	SCI.ESS3	Resource availability has guided the development of human society and use of natural resources has associated

		-
CONTINUUM	.A.h.	costs, risks, and benefits.

DOMAIN	WI.SCI.	Science
CONTENT ST ANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY		Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ESS 3.C.	Human Impacts on Earth Systems
LEARNING CONTINUUM

.C.h.

SCI.ESS3 Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions
LEARNING CONTINUUM	SCI.ETS1 .B.h.1.	When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts.
LEARNING CONTINUUM	SCI.ETS1 .B.h.2.	Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a

problem or to see which one is most efficient or economical. They are also useful in making a persuasive presentation to a client about how a given design will meet his or her needs.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology
LEARNING CONTINUUM	SCI.ETS2 .A.h.1.	Science and engineering complement each other in the cycle known as research and development (R&D).
LEARNING CONTINUUM	SCI.ETS2 .A.h.2.	Many research and development projects may involve scientists, engineers, and others with wide ranges of expertise.
DOMAIN	WI.SCI.	Science
DOMAIN CONTENT STANDARD	WI.SCI. SCI.ETS	Science Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
CONTENT		
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING	SCI.ETS SCI.ETS 2.	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS) Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPTOR /	SCI.ETS SCI.ETS 2. SCI.ETS 2.B.	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS) Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.

LEARNING	SCI.ETS2 New technologies can have deep impacts on society and the environment, including some that were not anticipated.
CONTINUUM	.B.h.3.

LEARNING SCI.ETS2 Analysis of costs and benefits is a critical aspect of decisions about technology. CONTINUUM .B.h.4.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ET S 3.A.	Science and Engineering Are Human Endeavors
LEARNING	SCI.ETS3	Scientists and engineers embrace skepticism and critique as a community. Deliberate deceit in science is rare and

CONTINUUM .A.h.4.

Scientists and engineers embrace skepticism and critique as a community. Deliberate deceit in science is rare and is likely exposed through the peer review process. When discovered, intellectual dishonesty is condemned by the scientific community.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.B.	Science and Engineering Are Unique Ways of Thinking with Different Purposes
LEARNING CONTINUUM	SCI.ETS3 .B.h.3.	Science and engineering innovations may raise ethical issues for which science and engineering, by themselves, do not provide answers and solutions.
DOMAIN	WI.SCI.	Science
DOMAIN CONTENT STANDARD	WI.SCI. SCI.ETS	Science Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
CONTENT		
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING	SCI.ETS SCI.ETS 3.	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS) Students use science and engineering practices, crosscutting concepts, and an understanding of the

Wisconsin Academic Standards

Technology Education

Grade 9 - Adopted: 2017

DOMAIN	wi.cs.	Computer Science
CONTENT ST ANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)

PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP1.	Students will recognize and define computational problems using algorithms and programming.
	CS.AP1. a.	Develop algorithms.

LEARNINGCS.AP1.aAnalyze a problem, and then design and implement an algorithmic solution using sequence, selection and iteration.CONTINUUM.8.h.

DOMAIN	wi.cs.	Computer Science
CONTENT ST ANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.

LEARNING	CS.AP2.a	Integrate grade-level appropriate mathematical techniques, concepts, and processes in the creation of
CONTINUUM	.11.h.	computational artifacts.

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3. b.	Communicate about technical and social issues.
LEARNING CONTINUUM	CS.AP3.b .9.h.	(+) Compare a variety of programming languages and identify features that make them useful for solving different types of problems and developing different kinds of systems (e.g., declarative, logic, parallel, functional, compiled,

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP4.	Students will develop and use abstractions.
DESCRIPTOR / FOCUS AREA	CS.AP4. a.	Create and use abstractions (representations) to solve complex computational problems.
LEARNING CONTINUUM	CS.AP4. a.8.h.	(+) Critically analyze and evaluate classic algorithms (e.g., sorting, searching) and use in different contexts, adapting as appropriate.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.KC1	Students OcriticallyD OcurateD DaD OvarietyD DofD OdigitalD OtoolsD DandD OdiverseD Dresources.

DESCRIPTOR /	ITL.KC1.	Plan0 0and0 0employ effective0 0research0 0strategies.
FOCUS AREA	a.	

 LEARNING
 ITL.KC1.a
 Utilize
 Iand
 Inquiry-based process
 Itol
 Ideepen
 Icontent knowledge,
 Iconnect academic
 Ilearning
 Iwith
 Ith

 CONTINUUM
 .12.h.
 real
 Iworld,
 Ipersonal interests,
 Iand
 Investigate opportunities
 Ifor
 Ipersonal growth.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.KC1	Students OcriticallyD OcurateD DaD OvarietyD DofD OdigitalD OtoolsD DandD OdiverseD Oresources.
DESCRIPTOR / FOCUS AREA	ITL.KC1. b.	©EvaluateD Othe accuracy,D Operspective, credibility,D OandO OrelevanceD Oof information,D Omedia,D OdataD O or otherD Oresources.

LEARNINGITL.KC1.bSelect: 0 information: 0 that: 0 is related: 0 to 0 0 all 0 problem: 0 or question: 0 while: 0 using formats: 0 and 0 genre: 0 mostCONTINUUM.8.h.appropriate: 0 to 0 0 the 0 content. Establish: 0 criteria: 0 in 0 judging the 0 information: 0 in 0 this process.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.KC2	Students produce0 0creative0 0artifacts0 0and0 0make0 0meaningful0 0learning0 0experiences0 0from0 0 curated knowledge0 0for0 0themselves0 0and0 0others.
DESCRIPTOR / FOCUS AREA	ITL.KC2. b.	Build® @knowledge® @by actively® @exploring real-world® @issues® @and problems.
LEARNING CONTINUUM	ITL.KC2.b .8.h.	Build Oknowledge Oby Oactively exploring Oreal-world Oissues and Oproblems, independently Odeveloping ideas Oand Otheories Oand pursuing Oanswers Oand solutions.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	IT L.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.ID1.	Students BuseB BaB BvarietyB BofB BdigitalB BtoolsB BandB BresourcesB BtoB BidentifyB BandB BsolveB B authenticB BproblemsB Busing designB Bthinking.
DESCRIPTOR / FOCUS AREA	ITL.ID1. b.	Exhibit® @tolerance® @for ambiguity,® @perseverance and® @the® @capacity® @to® @work with® @authentic,® @ open-ended problems.

 LEARNING
 ITL.ID1.b.
 Apply@ labstract@ lconcepts@ lto solve@ lauthentic, open-ended@ lproblems@ lfor@ la group@ lof@ lstakeholders.

 CONTINUUM
 4.h.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT ST ANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	IT L.ID2.	Students usel lal lvariety lofl ltechnologies lwithin lal ldesign lprocess ltol lcreatel lnew, l useful, land imaginative lsolutions.
DESCRIPTOR / FOCUS AREA	ITL.ID2. b.	Select® 0and0 0use0 0digital resources0 0to0 0plan0 0and manage0 0a0 0design® 0process0 0that considers0 0 design0 0constraints and0 0calculated0 0risks.

LEARNING	ITL.ID2.b.	Select and use digital resources to plan and manage[] []a[] []design[] []process that[] []considers[] []design constraints[] []
CONTINUUM	4.h.	and Icalculated risks I Ias I Ithey I Iapply I Ito authentic I Iproblems.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.CT1	Students develop® @and0 @employ@ @strategies© @for0 @understanding0 @and0 @solving0 @problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. a.	ldentify,0 0define,0 0and0 0interpret problems0 0where0 0digital0 0tools can0 0assist0 0in0 0finding0 0 solutions.

LEARNING ITL. CONTINUUM 4.h.

 ITL.CT1.a.
 Createl land
 larticulatel la precise
 land
 ltorough description
 lof
 lal
 lproblem designed
 ltol
 lutilize
 ldigital

 4.h.
 tools, ll data
 lanalysis, abstract
 lmodeling, ll or algorithmic
 lthinking
 lto
 facilitate
 lal
 lsolution.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.CT1	Students develop0 0and0 0employ0 0strategies0 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. c.	Break® @problems® @into@ @smaller parts,® @identify® @key information,® @and® @develop descriptive® @ models.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.GC.	Content Area: Global Collaborator (GC)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.GC2	Students use: @digital: @tools:: @too! @connect:: @with:: @a0 @global:: @network:: @of:: @learners:: @and:: @engage: @with:: @issues:: @that impact:: @local:: @and:: @global:: @communities.
DESCRIPTOR / FOCUS AREA	ITL.GC2 .b.	Explore: Diocal: Dand global: Dissues: Dand: Duse collaborative: Digital: Dresources to: Dinvestigate: D and: Ddevelop solutions.
LEARNING CONTINUUM	ITL.GC2.b .4.h.	Explore and analyze local and Iglobal Iissues I and leverage Icollaborative digital Itools Ito Iwork I with others Ito Investigate, develop, I and Iactualize solutions.

Wisconsin Academic Standards Technology Education

Grade 10 - Adopted: 2017

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP1.	Students will recognize and define computational problems using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP1. a.	Develop algorithms.

LEARNINGCS.AP1.aAnalyze a problem, and then design and implement an algorithmic solution using sequence, selection and iteration.CONTINUUM.8.h.

DOMAIN	WI.CS.	Computer Science
CONTENT ST AND ARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.

```
LEARNINGCS.AP2.aIntegrate grade-level appropriate mathematical techniques, concepts, and processes in the creation ofCONTINUUM.11.h.computational artifacts.
```

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3. b.	Communicate about technical and social issues.
LEARNING	CS.AP3.b	(+) Compare a variety of programming languages and identify features that make them useful for solving different

LLARINING	CO.AF 3.0	(') compare a variety of programming languages and identity leathes that make them useful for solving unletent
CONTINUUM	.9.h.	types of problems and developing different kinds of systems (e.g., declarative, logic, parallel, functional, compiled,
		interpreted, real-time).

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP4.	Students will develop and use abstractions.
DESCRIPTOR / FOCUS AREA	CS.AP4. a.	Create and use abstractions (representations) to solve complex computational problems.
LEARNING CONTINUUM	CS.AP4. a.8.h.	(+) Critically analyze and evaluate classic algorithms (e.g., sorting, searching) and use in different contexts, adapting as appropriate.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.KC1	Students OcriticallyO OcurateO 0a0 OvarietyO 0of0 OdigitalO OtoolsO 0and0 OdiverseO Oresources.
DESCRIPTOR / FOCUS AREA	ITL.KC1. a.	Plan0 0and0 0employ effective0 0research0 0strategies.
LEARNING	ITL.KC1.a	Utilize® Ban® Binquiry-based process® BtoB Bdeepen® Bcontent knowledge,® Bconnect academic® Blearning® Bwith® Bthe

CONTINUUM .12.h. real: world, 0 pursue: 0 personal interests, 0 and 0 investigate opportunities: 0 for 0 personal growth.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.KC1	Students @critically@ @curate@ 0a0 @variety@ 0of@ 0digital@ 0tools@ 0and0 0diverse@ 0resources.
DESCRIPTOR / FOCUS AREA	ITL.KC1. b.	DEvaluateD Othe accuracy,O Operspective, credibility,O OandO OrelevanceD Oof information,O Omedia,O OdataO O or otherD Oresources.
LEARNING CONTINUUM	ITL.KC1.b .8.h.	SelectI InformationI IthatI I is relatedI ItoI IaI IproblemI Ior questionI IwhileI Iusing formatsI IandI IgenreI Imost appropriateI ItoI ItheI Icontent. EstablishI IcriteriaI IinI Ijudging theI IinformationI IinI Ithis process.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT ST ANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.KC2	Students produce0 0creative0 0artifacts0 0and0 0make0 0meaningful0 0learning0 0experiences0 0from0 0 curated knowledge0 0for0 0themselves0 0and0 0others.
DESCRIPTOR / FOCUS AREA	ITL.KC2. b.	Build® @knowledge® @by actively® @exploring real-world® @issues® @and problems.
LEARNING CONTINUUM	ITL.KC2.b .8.h.	Build® @knowledge® @by® @actively exploring® @real-world® @issues and® @problems, independently® @developing ideas@ @and@ @theories® @and pursuing® @answers® @and solutions.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT ST ANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
	ITL.ID.	Content Area: Innovative Designer (ID) Students OuseO 0a0 Ovariety0 0of0 Odigital0 Otools0 0and0 Oresources0 Oto0 Oidentify0 0and0 Osolve0 0 authentic0 Oproblems0 Ousing design0 Othinking.
ST ANDARD PERFORMANC E ST ANDARD / LEARNING		Students lusel lal lvariety: lof: idigital ltools: land: lresources: ito: lidentify: land: isolve: i
ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR /	ITL.ID1.	Students DuseD DaD DvarietyD DofD DdigitalD DtoolsD DandD DresourcesD DtoD DidentifyD DandD DsolveD D authenticD DproblemsD Dusing designD Othinking. ExhibitD DtoleranceD Ofor ambiguity,D Operseverance andD OtheD DcapacityD DtoD Dwork withD Dauthentic,D D open-ended problems.
ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR / FOCUS AREA	ITL.ID1. b.	Students DuseD DaD OvarietyD DofD OdigitalD OtoolsD DandD DresourcesD DtoD DidentifyD DandD DsolveD D authenticD OproblemsD Dusing designD Othinking. ExhibitD OtoleranceD Ofor ambiguity,D Operseverance andD OtheD OcapacityD DtoD Owork withD Dauthentic,D D open-ended problems.
ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR / FOCUS AREA LEARNING CONTINUUM	IT L.ID1. b. ITL.ID1.b. 4.h.	Students DuseD DaD DvarietyD DofD DdigitalD DtoolsD DandD DresourcesD DtoD DidentifyD DandD DsolveD D authenticD DproblemsD Dusing designD Othinking. ExhibitD DtoleranceD Dfor ambiguity,D Dperseverance andD DtheD DcapacityD DtoD Dwork withD Dauthentic,D D open-ended problems. ApplyD DabstractD DconceptsD Dto solveD Dauthentic, open-endedD DproblemsD DforD Da groupD DofD Dstakeholders.
ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPTOR / FOCUS AREA LEARNING CONTINUUM	IT L.ID1. b. ITL.ID1.b. 4.h. WI.IT L.	Students DuseD DaD OvarietyD DofD DdigitalD DtoolsD DandD DresourcesD DtoD DidentifyD DandD DsolveD D authenticD DproblemsD Dusing designD Dthinking. ExhibitD DtoleranceD Dfor ambiguity,D Operseverance andD DtheD DcapacityD DtoD Dwork withD Dauthentic,D D open-ended problems. ApplyD DabstractD DconceptsD Dto solveD Dauthentic, open-endedD DproblemsD DforD Da groupD DofD Dstakeholders. Information and Technology Literacy
ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR / FOCUS AREA LEARNING CONTINUUM DOMAIN CONTENT ST ANDARD PERFORMANC E ST ANDARD / LEARNING	IT L.ID1. b. ITL.ID1.b. 4.h. WI.IT L. ITL.ID.	Students DuseD Dad DvarietyD Doff: Ddigital: DtoolsD DandD DresourcesD DtoD DidentifyD DandD DsolveD D authenticD DproblemsD Dusing designD Othinking. ExhibitD DtoleranceD Ofor ambiguity,D Operseverance andD OtheD DcapacityD DtoD Dwork withD Dauthentic,D O open-ended problems. ApplyD DabstractD DconceptsD Dto solveD Dauthentic, open-endedD OproblemsD DforD Da groupD Doff: Dstakeholders. Information and Technology Literacy Content Area: Innovative Designer (ID) Students useD Dat DvarietyD Doff: DtechnologiesD DwithinD Dat DdesignD OprocessD DtoD DcreateD Dnew,D D
ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR / FOCUS AREA LEARNING CONTINUUM DOMAIN CONT ENT ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR /	ITL.ID1. JTL.ID1. JTL.ID1.b. 4.h. WI.ITL. ITL.ID2. ITL.ID2.	Students Bused Bad Evarietyd Boff Edigital Etools0 Bande Bresources0 Btod Bidentifyd Bande Bsolved B authentic0 Oproblems0 Busing design0 Ethinking. Exhibit0 Etolerance0 Efor ambiguity,0 Operseverance and0 Ethel Bcapacity0 Etod Ework with0 Bauthentic,0 E open-ended problems. Apply0 Babstract0 Econcepts0 Eto solve0 Bauthentic, open-ended0 Eproblems0 Eford Ba group0 Eof0 Estakeholders. Information and Technology Literacy Content Area: Innovative Designer (ID) Students use0 Ba0 Evariety0 Eof0 Etechnologies0 Ewithin0 Ba0 Edesign0 Eprocess0 Etod Ecreate0 Enew,0 E useful,0 Band imaginative0 Esolutions.
ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR / FOCUS AREA LEARNING CONTINUUM CONTENT ST ANDARD PERFORMANC E ST ANDARD / LEARNING PRIORIT Y DESCRIPT OR / FOCUS AREA LEARNING	ITL.ID1. ITL.ID1.b. 4.h. ITL.ID2. ITL.ID2.b. ITL.ID2.b.	Students DuseD Dad DvarietyD DofD DdigitalD DtoolsD DandD DresourcesD DtoD DidentifyD DandD DsolveD D authenticD OproblemsD Dusing designD Othinking. ExhibitD DtoleranceD Dfor ambiguity,D Operseverance andD DtheD DcapacityD DtoD Dwork withD Dauthentic,D D open-ended problems. ApplyD DabstractD DconceptsD Dto solveD Dauthentic, open-endedD DproblemsD DforD Da groupD DofD Dstakeholders. Information and Technology Literacy Content Area: Innovative Designer (ID) Students useD Dad DvarietyD DofD DtechnologiesD DwithinD Dad DdesignD OprocessD DtoD OcreateD Dnew,D D useful,D Dand imaginativeD Dsolutions. SelectD DandD DuseD Ddigital resourcesD DtoD OplanD Dand manageD Dad DdesignD OprocessD Dthat considersD D designD Dconstraints andD DcalculatedD Drisks.

PERFORMANC E ST ANDARD / LEARNING PRIORIT Y		Students develop[] [and] [employ] [strategies] [for] [understanding] [and] [solving] [problems.
	ITL.CT1. a.	Identify,0 0define,0 0and0 0interpret problems0 0where0 0digital0 0tools can0 0assist0 0in0 0finding0 0 solutions.

LEARNING ITL. CONTINUUM 4.h.

ITL.CT1.a.Createl landi larticulatel la precisel landi lithorough description lofi lal liproblem designed litol lutilizel idigital4.h.tools, lidatal lanalysis, abstracti limodeling, lior algorithmic lithinking lito facilitatel lal lisolution.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.CT1	Students develop0 0and0 0employ0 0strategies0 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. c.	Breakl lproblemsl lintol lsmaller parts, lidentify lkey information, landl ldevelop descriptive l models.

LEARNINGITL.CT1.c.Evaluate0Ithe0Iproblem solving0Iprocess0Iand algorithms0Iof0Iothers,0Iand synthesize0Ithis0Iinformation to0ICONTINUUM4.h.create0Ithe0Imost effective0Iand0Iefficient0Iway to0Isolve0Ian0Ianthentic problem.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.GC.	Content Area: Global Collaborator (GC)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.GC2	Students use¤ @digital¤ @tools¤ @too @connect® @with¤ @a¤ @global¤ @network¤ @of¤ @learners¤ @and¤ @engage¤ @with¤ @issues¤ @that impact¤ @local¤ @and¤ @global¤ @communities.
DESCRIPTOR / FOCUS AREA	ITL.GC2 .b.	Explore: Diocal: Dand global: Dissues: Dand: Duse collaborative: Digital: Dresources to: Dinvestigate: D and: Ddevelop solutions.
LEARNING CONTINUUM	ITL.GC2.b .4.h.	Explore and analyze local and Iglobal Iissues I and leverage Icollaborative digital Itools Itol Iwork I with others Itol Investigate, develop, I and I actualize solutions.

Wyoming Content and Performance Standards

Mathematics

CONTENT STANDARD		Standards for Mathematical Practices
BENCHMARK	1	Make sense of problems and persevere in solving them.
BENCHMARK	2	Reason abstractly and quantitatively.
BENCHMARK	3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	4	Model with mathematics.
BENCHMARK	6	Attend to precision.
BENCHMARK	7	Look for and make use of structure.

Grade 9 - Adopted: 2018

8

Wyoming Content and Performance Standards

Mathematics

		Grade 10 - Adopted: 2018
CONTENT STANDARD		Standards for Mathematical Practices
BENCHMARK	1	Make sense of problems and persevere in solving them.
BENCHMARK	2	Reason abstractly and quantitatively.
BENCHMARK	3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	4	Model with mathematics.
BENCHMARK	6	Attend to precision.
BENCHMARK	7	Look for and make use of structure.
BENCHMARK	8	Look for and express regularity in repeated reasoning.

CONTENT STANDARD		Functions
BENCHMARK		Functions - Interpreting Functions
GRADE LEVEL EXAMPLE	F.IF.B.	Interpret functions that arise in application in terms of the context.

EXPECTATION F.IF.B.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Wyoming Content and Performance Standards

Science

Grade 10 - Adopted: 2016

CONTENT STANDARD		PHYSICAL SCIENCE
BENCHMARK	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXAMPLE	HS-PS4- 2.	Evaluate the advantages and disadvantages of using digital transmission and storage of information.

CONTENT STANDARD		
BENCHMARK	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXAMPLE	HS-LS2- 2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
GRADE LEVEL EXAMPLE	HS-LS2- 4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

GRADE LEVEL EXAMPLE	HS-LS2- 5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
GRADE LEVEL EXAMPLE	HS-LS2- 7.	Evaluate and assess impacts on the environment and biodiversity in order to refine or design a solution for detrimental impacts or enhancement for positive impacts.
CONTENT STANDARD		LIFE SCIENCE
BENCHMARK	HS-LS4.	Biological Evolution: Unity and Diversity

GRADE LEVELHS-LS4-Create and/or use a simulation to evaluate the impacts of human activity on biodiversity.EXAMPLE6.

CONTENT STANDARD		EARTH AND SPACE SCIENCE
BENCHMARK	HS- ESS2.	Earth's Systems
GRADE LEVEL EXAMPLE	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

GRADE LEVELHS-Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere,EXAMPLEESS2-6.and biosphere.

CONTENT STANDARD		EARTH AND SPACE SCIENCE	
BENCHMARK	HS- ESS3.	Earth and Human Activity	
GRADE LEVEL EXAMPLE	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	
GRADE LEVEL EXAMPLE	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and using energy and mineral resources based on cost-benefit ratios.	
GRADE LEVEL EXAMPLE	HS- ESS3-3.	Use computational tools to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.	
GRADE LEVEL EXAMPLE	HS- ESS3-6.	Use the results of a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.	
CONTENT STANDARD		ENGINEERING DESIGN	
BENCHMARK	HS- ET S1.	Engineering, Technology, & Applications of Science	
GRADE LEVEL EXAMPLE	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	
GRADE LEVEL EXAMPLE	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	

EXAMPLE	ETS1-3.	range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.	
Grade 10 - Adopted: 2012			
CONTENT STANDARD	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Key Ideas and Details	
GRADE LEVEL EXAMPLE	RST.9- 10.2.	Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process phenomenon, or concept; provide an accurate summary of the text.	
GRADE LEVEL EXAMPLE	RST.9- 10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks attending to special cases or exceptions defined in the text.	
CONTENT ST ANDARD	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Craft and Structure	
GRADE LEVEL EXAMPLE	RST.9- 10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.	
GRADE LEVEL EXAMPLE	RST.9- 10.5.	Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e. force, friction, reaction force, energy).	
CONTENT ST ANDARD	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Integration of Knowledge and Ideas	
GRADE LEVEL EXAMPLE	RST.9- 10.9.	Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.	
CONTENT STANDARD	RST.9- 10.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Range of Reading and Level of Text Complexity	
GRADE LEVEL EXAMPLE	RST.9- 10.10.	By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.	
CONTENT STANDARD	WHST.9- 10.	Writing Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Text Types and Purposes	
GRADE LEVEL EXAMPLE	WHST.9 -10.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.	
EXPECTATION	WHST.9- 10.2(d)	Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.	
CONTENT STANDARD	WHST.9- 10.	Writing Standards for Literacy in Science and Technical Subjects	
BENCHMARK		Production and Distribution of Writing	

Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a

GRADE LEVEL

HS-

GRADE LEVEL EXAMPLE	WHST.9- 10.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL	WHST.9-	Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking

GRADE LEVEL EXAMPLE 10.6.

advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Wyoming Content and Performance Standards

Technology Education

Grade 10 - Adopted: 2020

CONTENT STANDARD		Wyoming Computer Science Content Standards			
BENCHMARK		Computer Science Practices			
GRADE LEVEL EXAMPLE	1	Fostering an Inclusive Computing Culture			
EXPECTATION	1.1.	"Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products."			
EXPECTATION	1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.			
EXPECTATION	1.3.	"Employ self- and peer-advocacy to address bias in interactions, product design, and development methods."			
CONTENT STANDARD		Wyoming Computer Science Content Standards			
BENCHMARK		Computer Science Practices			
GRADE LEVEL EXAMPLE	3	Recognizing and Defining Computational Problems			
EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.			
EXPECTATION	3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.			
CONTENT ST ANDARD		Wyoming Computer Science Content Standards			
BENCHMARK		Computer Science Practices			
GRADE LEVEL EXAMPLE	4	Developing and Using Abstractions			
EXPECTATION	4.2.	Evaluate existing technological functionalities and incorporate them into new designs.			
EXPECTATION	4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.			
CONTENT ST ANDARD		Wyoming Computer Science Content Standards			
BENCHMARK		Computer Science Practices			
GRADE LEVEL EXAMPLE	5	Creating Computational Artifacts			

	EXPECTATION	5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectation		
	EXPECTATION	5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.		
CONTENT STANDARD BENCHMARK			Wyoming Computer Science Content Standards		
			Computer Science Practices		
	GRADE LEVEL EXAMPLE	6	Testing and Refining Computational Artifact		
EXPECTATION 6.1. Systematically test computationa		6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.		
	CONTENT ST ANDARD		Wyoming Computer Science Content Standards		
	BENCHMARK		HS Computer Science Standards		
	GRADE LEVEL EXAMPLE	AP.A.	Algorithms		
	EXPECTATION	L1.AP.A.0 1.	Create a prototype that uses algorithms (e.g., searching, sorting, finding shortest distance) to provide a possible solution for a real-world problem relevant to the student.		
	EXPECTATION	L1.AP.A.0 2.	Describe how artificial intelligence algorithms drive many software and physical systems.		
ST/	CONTENT STANDARD		Wyoming Computer Science Content Standards		
	BENCHMARK		HS Computer Science Standards		
	GRADE LEVEL EXAMPLE	AP.M.	Modularity		
	EXPECTATION	L2.AP.M. 01.	Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.		
	CONTENT STANDARD		Wyoming Computer Science Content Standards		
	BENCHMARK		HS Computer Science Standards		
	BENCHMARK GRADE LEVEL EXAMPLE	AP.PD.	HS Computer Science Standards Program Development		
	GRADE LEVEL				
	GRADE LEVEL EXAMPLE	L1.AP.PD	Program Development Plan and develop programs by analyzing a problem and/or process, developing and documenting a solution,		

GRADE LEVEL IC.C. Culture

L1.IC.C.0 Test and refine computational artifacts to reduce bias and equity deficits.

EXPECTATION	L1.IC.C.0	Demonstrate how a given algorithm applies to problems across disciplines.
	3.	