Main Criteria: Forward

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards, Pennsylvania Core and Academic Standards

 $\textbf{Subjects:} \ \textbf{Mathematics}, \textbf{Science}, \textbf{Technology} \ \textbf{Education}$

Grades: 5, 6, 7, 8, Key Stage 2, Key Stage 3

Forward

Solar Water Disinfection (SODIS)

Nebraska Content Area Standards Mathematics

Grade 5 - Adopted: 2022

CONTENT STANDARD		Grade 5 Standards
STRAND	5.G.	GEOMETRY: Students will solve problems and reason with geometry using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	5.G.4.	Area and Volume: Students will extend area problems for rectangles to include fractions and build meaning for measuring volume.
STRAND	5.G.4.d.	Find the volume of a rectangular prism with whole-number side lengths by modeling with unit squares and show that the volume can be additive and is the same as would be found by multiplying the area of the base times height.
STRAND	5.G.4.e.	Solve authentic problems by applying the formulas $V = I \times w \times h$ and $V = B \times h$ for rectangular prisms to find volumes of rectangular prisms with whole number edge lengths.

Nebraska Content Area Standards

Mathematics

Grade 6 - Adopted: 2022

CONTENT STANDARD		Grade 6 Standards
STRAND	6.G.	GEOMETRY: Students will solve problems and reason with geometry using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	6.G.3.	Measurement: Students identify geometric attributes that create two- and three-dimensional shapes in order to perform measurements and apply formulas to find area and volume.

STRAND 6.G.3.c. Apply volume formulas for triangular prisms.

Nebraska Content Area Standards

${\bf Mathematics}$

Grade 8 - Adopted: 2022

CONTENT STANDARD		Grade 8 Standards
STRAND	8.G.	GEOMETRY: Students will solve problems and reason with geometry using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	8.G.3.	Measurement: Students will reason with formulas and context to determine and compare length, area, and volume.

STRAND 8.G.3.d. Determine the volume of cones, cylinders, and spheres and solve authentic problems using volumes.

Nebraska Content Area Standards

Science

CONTENT	NE CO E	Fauthle Contains
	NE.SC.5. 13.	Earth's Systems

STRAND	SC.5.13. 4.	Gather and analyze data to communicate understanding of Earth's systems.
INDICATOR	SC.5.13. 4.D.	Define a simple design problem that can be solved by applying scientific ideas about the conservation of fresh water on Earth.
INDICATOR	SC.5.13. 4.E.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Nebraska Content Area Standards

Science

Grade 6 - Adopted: 2017

CONTENT STANDARD	NE.SC.6. 4.	Energy
STRAND	SC.6.4.1	Gather, analyze, and communicate evidence of energy.
INDICATOR	SC.6.4.1. B.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principle and potential impacts on people and the natural environment that may limit possible solutions.

Nebraska Content Area Standards

Science

Grade 7 - Adopted: 2017

CONTENT STANDARD	NE.SC.7. 13.	Earth's Systems
STRAND	SC.7.13. 5.	Gather, analyze, and communicate evidence of the flow of energy and cycling of matter associated with Earth's materials and processes.
INDICATOR	SC.7.13. 5.C.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

Nebraska Content Area Standards

Science

Grade 8 - Adopted: 2017

CONTENT ST ANDARD	NE.SC.8. 1.	Forces and Interactions
STRAND	SC.8.1.1	Gather, analyze, and communicate evidence of forces and interactions.
INDICATOR	SC.8.1.1. B.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Nebraska Content Area Standards Technology Education

Grade 5 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE STANDARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).

Nebraska Content Area Standards Technology Education

ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFTWARE STANDARDS
STRAND	Apply strategies for identifying and solving routine problems that occur during everyday computer use.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS
STRAND	Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.

STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).
	Nebraska Content Area Standards Technology Education Grade 7 - Adopted: 2018
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFTWARE STANDARDS
STRAND	Apply strategies for identifying and solving routine problems that occur during everyday computer use.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGIT AL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS
STRAND	Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND Write programs using visual (block-based) programming languages (scratch, code.org).

Technology Education

Grade 8 - Adopted: 2018

	Grade 8 - Adopted: 2018
CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFTWARE STANDARDS
STRAND	Apply strategies for identifying and solving routine problems that occur during everyday computer use.
CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS
STRAND	Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.
CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
STRAND	Evaluate algorithms by their efficiency, correctness, and clarity.
CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

Nevada Academic Content Standards Mathematics

Write programs using visual (block-based) programming languages (scratch, code.org).

STRAND

CONTENT STANDARD	NV.CC.M P.5.	Mathematical Practices
STRAND / INDICATOR	MP.5.1.	Make sense of problems and persevere in solving them.

STRAND / INDICATOR	MP.5.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.5.4.	Model with mathematics.
STRAND / INDICATOR	MP.5.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.5.7.	Look for and make use of structure.
CONTENT STANDARD	NV.CC.M D.5.	Measurement and Data
STRAND / INDICATOR		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
INDICATOR / GRADE LEVEL EXPECTATION	MD.5.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
CONTENT STANDARD	NV.CC.M D.5.	Measurement and Data
STRAND / INDICATOR		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
INDICATOR / GRADE LEVEL	MD.5.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.

CONTENT STANDARD	NV.CC.M D.5.	Measurement and Data
STRAND / INDICATOR		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
INDICATOR / GRADE LEVEL EXPECTATION	MD.5.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
GRADE LEVEL EXPECTATION	MD.5.5(a)	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
GRADE LEVEL EXPECTATION	MD.5.5(b	Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

Nevada Academic Content Standards Mathematics

CONTENT STANDARD	NV.CC.M P.6.	Mathematical Practices
STRAND / INDICATOR	MP.6.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.6.2.	Reason abstractly and quantitatively.
STRAND /	MP.6.3.	Construct viable arguments and critique the reasoning of others.

STRAND / INDICATOR	MP.6.4.	Model with mathematics.
STRAND / INDICATOR	MP.6.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.6.7.	Look for and make use of structure.
CONTENT STANDARD	NV.CC.G. 6.	Geometry
STRAND / INDICATOR		Solve real-world and mathematical problems involving area, surface area, and volume.
INDICATOR / GRADE LEVEL EXPECTATION	G.6.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w h$ and $V = b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Nevada Academic Content Standards Mathematics

Grade 7 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.7.	Mathematical Practices
STRAND / INDICATOR	MP.7.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.7.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.7.4.	Model with mathematics.
STRAND / INDICATOR	MP.7.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.7.7.	Look for and make use of structure.

Nevada Academic Content Standards Mathematics

	NV.CC.M P.8.	Mathematical Practices
STRAND / INDICATOR	MP.8.1.	Make sense of problems and persevere in solving them.

STRAND / INDICATOR	MP.8.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.8.4.	Model with mathematics.
STRAND / INDICATOR	MP.8.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.8.7.	Look for and make use of structure.
CONTENT STANDARD	NV.CC.G. 8.	Geometry
STRAND / INDICATOR		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
INDICATOR / GRADE LEVEL EXPECTATION	G.8.9.	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Nevada Academic Content Standards Science

Grade 5 - Adopted: 2014

CONTENT STANDARD	NV.3-5- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	3-5- ETS1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Nevada Academic Content Standards Science

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT ST ANDARD	NV.MS- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ETS1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas

INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		Nevada Academic Content Standards

Nevada Academic Content Standards Science

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD	NV.MS- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ETS1.	Engineering Design

INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity

INDICATOR / RST.6-By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band **GRADE LEVEL** 8.10. independently and proficiently. **EXPECTATION** NV.WHST Writing Standards for Literacy in Science and Technical Subjects .6-8. CONTENT STANDARD

Write informative/explanatory texts, including the narration of historical events, scientific procedures/

GRADE LEVEL WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic. **EXPECTATION**

Text Types and Purposes

EARTH AND SPACE SCIENCE

possible solutions.

experiments, or technical processes.

STRAND /

CONTENT

STANDARD

INDICATOR

INDICATOR /

GRADE LEVEL

EXPECT ATION

WHST.6

-8.2.

8.2(d)

NV.MS-

CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Nevada Academic Content Standards Science

STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD	NV.MS- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ETS1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Text Types and Purposes

INDICATOR / GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION		Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION		Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Nevada Academic Content Standards Technology Education

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
GRADE LEVEL EXPECTATION	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts
GRADE LEVEL EXPECTATION	P6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR /	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION		

Nevada Academic Content Standards Technology Education Grade 6 - Adopted: 2019

CONTENT STANDARD

NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

STRAND / INDICATOR

INDICATOR / GRADE LEVEL EXPECTATION

NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

Practices

Practices

Practices

Computing Culture

GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
GRADE LEVEL EXPECTATION	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL EXPECTATION	P6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.C.1.	Break problems into component parts, identify key pieces, and use that information to problem solve.

Nevada Academic Content Standards Technology Education Grade 7 - Adopted: 2019

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices

INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
GRADE LEVEL EXPECTATION	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices

INDICATOR I GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts
GRADE LEVEL EXPECTATION	P6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.C.1.	Break problems into component parts, identify key pieces, and use that information to problem solve.

Nevada Academic Content Standards Technology Education Grade 8 - Adopted: 2019

CONTENT	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STANDARD	

STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE Practices
STANDARD STRAND /	P4.	
STANDARD STRAND / INDICATOR INDICATOR / GRADE LEVEL	P4. P4.3.	Practices
STANDARD STRAND / INDICATOR INDICATOR / GRADE LEVEL EXPECTATION GRADE LEVEL		Practices Developing and Using Abstractions
STANDARD STRAND / INDICATOR INDICATOR / GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION CONTENT		Practices Developing and Using Abstractions Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
STANDARD STRAND / INDICATOR INDICATOR / GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION CONTENT STANDARD STRAND /		Practices Developing and Using Abstractions Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STANDARD STRAND / INDICATOR INDICATOR / GRADE LEVEL EXPECTATION CONTENT STANDARD STRAND / INDICATOR / GRADE LEVEL INDICATOR / GRADE LEVEL	P4.3.	Practices Developing and Using Abstractions Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE Practices
STANDARD STRAND / INDICATOR INDICATOR / GRADE LEVEL EXPECTATION CONTENT STANDARD STRAND / INDICATOR INDICATOR / GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION	P4.3.	Practices Developing and Using Abstractions Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE Practices Creating Computational Artifacts Plan the development of a computational artifact using an iterative process that includes reflection on and

STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts
GRADE LEVEL EXPECTATION	P6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.C.1.	Break problems into component parts, identify key pieces, and use that information to problem solve.

STRAND / STANDARD	NH.CC.M P.5.	Mathematical Practices
STANDARD / GLE	MP.5.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.5.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.5.4.	Model with mathematics.
STANDARD / GLE	MP.5.5.	Use appropriate tools strategically.
STANDARD / GLE	MP.5.7.	Look for and make use of structure.
STRAND / STANDARD	NH.CC.M D.5.	Measurement and Data
STANDARD / GLE		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL EXPECTATION	MD.5.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
STRAND / STANDARD	NH.CC.M D.5.	Measurement and Data
STANDARD / GLE		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL EXPECTATION	MD.5.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
EXPECTATION	MD.5.5(a)	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
EXPECTATION	MD.5.5(b	Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

New Hampshire College and Career Ready Standards Mathematics

STRAND / STANDARD	NH.CC.M P.6.	Mathematical Practices
STANDARD / GLE	MP.6.1.	Make sense of problems and persevere in solving them.

STANDARD / GLE	MP.6.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.6.4.	Model with mathematics.
STANDARD / GLE	MP.6.5.	Use appropriate tools strategically.
STANDARD / GLE	MP.6.7.	Look for and make use of structure.

STRAND / STANDARD	NH.CC.G. 6.	Geometry
STANDARD / GLE		Solve real-world and mathematical problems involving area, surface area, and volume.
GRADE LEVEL EXPECTATION	G.6.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = I w h and V = b h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

New Hampshire College and Career Ready Standards ${\bf Mathematics}$

STRAND / STANDARD	NH.CC.M P.7.	Mathematical Practices
STANDARD / GLE	MP.7.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.7.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.7.4.	Model with mathematics.
STANDARD / GLE	MP.7.5.	Use appropriate tools strategically.
STANDARD / GLE	MP.7.7.	Look for and make use of structure.

STRAND / STANDARD	NH.CC.M P.8.	Mathematical Practices
STANDARD / GLE	MP.8.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.8.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.8.4.	Model with mathematics.
STANDARD / GLE	MP.8.5.	Use appropriate tools strategically.
STANDARD / GLE	MP.8.7.	Look for and make use of structure.
STRAND / STANDARD	NH.CC.G. 8.	Geometry

New Hampshire College and Career Ready Standards Science

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and

STANDARD / GLE

GRADE LEVEL

EXPECTATION

G.8.9.

mathematical problems.

Grade 5 - Adopted: 2016

STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
STANDARD / GLE	3-5- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Hampshire College and Career Ready Standards Science

STRAND /	NGSS.MS	EARTH AND SPACE SCIENCE
STANDARD	-ESS.	

GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
STANDARD / GLE	MS- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

STANDARD / GLE

STRAND / STANDARD MS-ESS3.

Earth and Human Activity

NGSS.MS EARTH AND SPACE SCIENCE -ESS.

New Hampshire College and Career Ready Standards Science

STANDARD / GLE	MS- ESS3.	Earth and Human Activity	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	
STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN	
STANDARD / GLE	MS- ETS1.	Engineering Design	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	

New Hampshire College and Career Ready Standards Science

		Grade 8 - Adopted: 2016
STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
STANDARD / GLE	MS- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		New Hampshire College and Career Ready Standards
		Technology Education Grade 5 - Adopted: 2005
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE		USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

Grade 5 - Adopted: 2018

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences.
GRADE LEVEL EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations.
STRAND / STANDARD		Computer Science
STANDARD / GLE		Impacts of Computing
GRADE LEVEL EXPECTATION	1B-IC- 19.	Brainstorm ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.

New Hampshire College and Career Ready Standards Technology Education

Grade 6 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects

STRAND /	Computer Science
STANDARD	

STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms.

New Hampshire College and Career Ready Standards Technology Education

		Grade 7 - Adopted: 2005
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects
		Grade 7 - Adopted: 2018

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms.

New Hampshire College and Career Ready Standards

Technology Education

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program

STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects

Grade 8 - Adopted: 2018

			Crade 6 - Adopted. 2010
	AND / NDARD		Computer Science
ST A	ANDARD /		Algorithms & Programming
GRA	ADE LEVEL	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms.

EXPECTATION

New Jersey Student Learning Standards Mathematics

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.
CONTENT AREA / STANDARD	NJ.5.MD.	Measurement and Data
STRAND	5.MD.C.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
CONTENT STATEMENT	5.MD.C.4	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and non-standard units.
CONTENT AREA / STANDARD	NJ.5.MD.	Measurement and Data

STRAND	5.MD.C.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
CONTENT STATEMENT	5.MD.C. 5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
CUMULATIVE PROGRESS INDICATOR	5.MD.C.5 .a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
CUMULATIVE PROGRESS INDICATOR	5.MD.C.5 .b.	Apply the formulas $V = I \times w \times h$ and $V = B \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems.

New Jersey Student Learning Standards Mathematics

Grade 6 - Adopted: 2016

		Ciddo V Adopted. 2010
CONTENT AREA / ST ANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.
CONTENT AREA / ST ANDARD	NJ.6.G.	Geometry
STRAND	6.G.A.	Solve real-world and mathematical problems involving area, surface area, and volume.
CONTENT	6.G.A.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w h$ and $V = B h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

New Jersey Student Learning Standards Mathematics

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.

STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.

New Jersey Student Learning Standards Mathematics

Grade 8 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.
CONTENT AREA / STANDARD	NJ.8.G.	Geometry
STRAND	8.G.C.	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
CONTENT STATEMENT	8.G.C.9.	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

New Jersey Student Learning Standards Science

Grade 5 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	3-5-ETS.	Engineering Design
STRAND	3-5- ETS1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

CONTENT	3-5-	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of
STATEMENT	ETS1-3.	a model or prototype that can be improved.

New Jersey Student Learning Standards Science

Grade 6 - Adopted: 2020/Effective 2021

CONTENT AREA <i>l</i> STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT		
STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
		into account relevant scientific principles and potential impacts on people and the natural environment that may limit

New Jersey Student Learning Standards Science

Grade 7 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

CONTENT MS- Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such STATEMENT ETS1-4. that an optimal design can be achieved.

New Jersey Student Learning Standards Science

Grade 8 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Jersey Student Learning Standards Technology Education Grade 5 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices	
STRAND	1 Fostering an Inclusive Computing and Design Culture	
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:	

CUMULATIVE PROGRESS INDICATOR Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts
CONTENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 2:	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements include desired features and limitations that need to be considered.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 4:	Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desired features, constraints).
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 5:	Describe how specifications and limitations impact the engineering design process.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 6:	Evaluate and test alternative solutions to a problem using the constraints and tradeoffs identified in the design process.
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Interaction of Technology and Humans
CONTENT STATEMENT		Societal needs and wants determine which new tools are developed to address real-world problems.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ITH. 1:	Explain how societal needs and wants influence the development and function of a product and a system.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology innovation and improvement may be influenced by a variety of factors. Engineers create and modify technologies to meet people's needs and wants; scientists ask questions about the natural world.
CUMULATIVE	8.2.5.NT.1	Troubleshoot a product that has stopped working and brainstorm ideas to correct the problem.

PROGRESS INDICATOR

INDICATOR

CUMULATIVE 8.2.5.NT.2 Identify new technologies resulting from the demands, values, and interests of individuals, businesses, industries, PROGRESS : and societies.

New Jersey Student Learning Standards Technology Education

Grade 6 - Adopted: 2020		
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT		Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		3 Recognizing and Defining Computational Problems
CONTENT STATEMENT		The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR		Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		4 Developing and Using Abstractions
CONTENT STATEMENT		Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR		Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices

STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts

CUMULATIVE PROGRESS INDICATOR

CONTENT STATEMENT

Systematically test computational artifacts by considering all scenarios and using test cases.

Testing and refinement is the deliberate and iterative process of improving a computational artifact.

This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Computing Systems
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential tradeoffs.

CUMULATIVE

8.1.8.CS. Justify design decisions and explain potential system trade-offs.

practice, students:

PROGRESS INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.

CUMULATIVE

8.1.8.DA. Test, analyze, and refine computational models.

PROGRESS

INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 1:	Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 8:	Systematically test and refine programs using a range of test cases and users.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.

CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT.1 :	Examine a malfunctioning tool, product, or system and propose solutions to the problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT. 4:	Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ET W.3:	Analyze the design of a product that negatively impacts the environment or society and develop possible solutions to lessen its impact.
		New Jersey Student Learning Standards Technology Education

Grade 7 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR

 $Employ \ self- \ and \ peer-advocacy \ to \ address \ bias \ in \ interactions, \ product \ design, \ and \ development \ methods.$

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems

CONTENT		The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR		Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / ST ANDARD	C	Computer Science and Design Thinking Practices
STRAND		4 Developing and Using Abstractions
CONTENT STATEMENT		Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR		Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
INDICATOR		
CONTENT	C	Computer Science and Design Thinking Practices
	C	Computer Science and Design Thinking Practices
CONTENT AREA /		Computer Science and Design Thinking Practices 5 Creating Computational Artifacts
CONTENT AREA / STANDARD		
CONTENT AREA / STANDARD STRAND		5 Creating Computational Artifacts The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations,
CONTENT AREA / STANDARD STRAND CONTENT STATEMENT CUMULATIVE PROGRESS		5 Creating Computational Artifacts The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students: Plan the development of a computational artifact using an iterative process that includes reflection on and
CONTENT AREA I STANDARD STRAND CONTENT STATEMENT CUMULATIVE PROGRESS INDICATOR CUMULATIVE PROGRESS		5 Creating Computational Artifacts The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students: Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CONTENT AREA I STANDARD STRAND CONTENT STATEMENT CUMULATIVE PROGRESS INDICATOR CUMULATIVE PROGRESS INDICATOR CONTENT AREA I		5 Creating Computational Artifacts The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students: Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations. Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CUMULATIVE PROGRESS INDICATOR		Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT AREA <i>I</i> STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Computing Systems
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential tradeoffs.
CUMULATIVE PROGRESS INDICATOR	8.1.8.CS. 3:	Justify design decisions and explain potential system trade-offs.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.
CUMULATIVE PROGRESS INDICATOR	8.1.8.DA. 5:	Test, analyze, and refine computational models.
CONTENT AREA <i>l</i> STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 1:	Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.
CONTENT AREA <i>l</i> STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 8:	Systematically test and refine programs using a range of test cases and users.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking

STRAND

Engineering Design

CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT.1 :	Examine a malfunctioning tool, product, or system and propose solutions to the problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT. 4:	Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.

CUMULATIVE PROGRESS INDICATOR

W.3:

8.2.8.ET Analyze the design of a product that negatively impacts the environment or society and develop possible solutions to lessen its impact.

New Jersey Student Learning Standards Technology Education

	Grade 8 - Adopted: 2020
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices

STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts

CUMULATIVE PROGRESS INDICATOR

CONTENT STATEMENT

Systematically test computational artifacts by considering all scenarios and using test cases.

Testing and refinement is the deliberate and iterative process of improving a computational artifact.

This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Computing Systems
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential tradeoffs.

CUMULATIVE

8.1.8.CS. Justify design decisions and explain potential system trade-offs.

practice, students:

PROGRESS INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.

CUMULATIVE

8.1.8.DA. Test, analyze, and refine computational models.

PROGRESS

INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 1:	Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 8:	Systematically test and refine programs using a range of test cases and users.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.

CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT.1 :	Examine a malfunctioning tool, product, or system and propose solutions to the problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT. 4:	Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE PROGRESS	8.2.8.ET W.3:	Analyze the design of a product that negatively impacts the environment or society and develop possible solutions to lessen its impact.

New Mexico Content Standards Mathematics

INDICATOR

Grade 5 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.

BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
STRAND / CONTENT STANDARD	NM.5.MD.	Measurement and Data
BENCHMARK / STANDARD		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	5.MD.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
STRAND / CONTENT STANDARD	NM.5.MD.	Measurement and Data
BENCHMARK / STANDARD		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	5.MD.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
PERFORMANCE STANDARD / INDICATOR	5.MD.5(a)	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
PERFORMANCE STANDARD / INDICATOR	5.MD.5(b	Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

New Mexico Content Standards Mathematics

Grade 6 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.

BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
STRAND / CONTENT STANDARD	NM.6.G.	Geometry
BENCHMARK / STANDARD		Solve real-world and mathematical problems involving area, surface area, and volume.
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	6.G.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I$ whand $V = b$ h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

New Mexico Content Standards Mathematics

Grade 7 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.

New Mexico Content Standards Mathematics

Grade 8 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.

BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
STRAND / CONTENT STANDARD	NM.8.G.	Geometry
CONTENT	NM.8.G.	Geometry Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

New Mexico Content Standards Science

Grade 5 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	3-5- ETS1.	Engineering Design
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Mexico Content Standards Science

Grade 6 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE MS-STANDARD / ESS3-4. INDICATOR

STRAND/

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	MS- ETS1.	Engineering Design
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Mexico Content Standards Science

Grade 7 - Adopted: 2013

NGSS.MS EARTH AND SPACE SCIENCE

CONTENT STANDARD	-ESS.	
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND /	NGSS.MS	ENGINEERING DESIGN
CONTENT STANDARD	-ETS.	
CONTENT		Engineering Design
CONTENT STANDARD BENCHMARK /	-ETS. MS-	

PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Mexico Content Standards Science

Grade 8 - Adopted: 2013

STRAND /	NGSS.MS	EARTH AND SPACE SCIENCE
CONTENT STANDARD	-ESS.	
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	MS- ETS1.	Engineering Design
	E131.	
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	ETSI.	Students who demonstrate understanding can:
PERFORMANC E STANDARD / BENCHMARK /		Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
PERFORMANC E ST AND ARD I BENCHMARK I PROFICIENCY PERFORMANCE STANDARD /	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

New Mexico Content Standards Technology Education

Grade 5 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)

PERFORMANC E STANDARD /	1B-AP.	Algorithms & Programming
BENCHMARK / PROFICIENCY		
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
INDICATOR	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
INDICATOR	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Culture
INDICATOR	1B-IC-19.	Brainstorm ways to improve the accessibility and usability of technology products for the diverse needs and wants of users. (P1.2)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions

INDICATOR 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

New Mexico Content Standards Technology Education Grade 6 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)

PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms
INDICATOR	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms
INDICATOR	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing

PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact (P2.4, P5.2)

New Mexico Content Standards Technology Education Grade 8 - Adopted: 2019		
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms
INDICATOR	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development

INDICATOR 2-AP-15. Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CST A.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

New York State Learning Standards and Core Curriculum Mathematics

		Grade 5 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
STRAND / DOMAIN / UNIFYING THEME		Grade 5
CATEGORY / CLUSTER /	NY- 5.MD.	Measurement and Data

KEYIDEA

STANDARD / CONCEPTUAL UNDERSTAND ING		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
EXPECTATION / CONTENT SPECIFICATION	NY- 5.MD.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in., cubic ft., and improvised units.

STRAND / DOMAIN / UNIFYING THEME		Grade 5
CATEGORY I CLUSTER I KEY IDEA	NY- 5.MD.	Measurement and Data
STANDARD / CONCEPTUAL UNDERSTAND ING		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
EXPECTATION / CONTENT SPECIFICATION	NY- 5.MD.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
GRADE EXPECTATION	NY- 5.MD.5.a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base.
GRADE EXPECTATION	NY- 5.MD.5.b.	Apply the formulas $V = I \times w \times h$ and $V = B \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

New York State Learning Standards and Core Curriculum Mathematics

Grade 6 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.

CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
STRAND / DOMAIN / UNIFYING THEME		Grade 6
CATEGORY / CLUSTER / KEY IDEA	NY-6.G.	Geometry
STANDARD / CONCEPTUAL UNDERSTAND ING		Solve real-world and mathematical problems involving area, surface area, and volume.
EXPECTATION / CONTENT SPECIFICATION	NY-6.G.2.	Find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

New York State Learning Standards and Core Curriculum Mathematics Grade 7 - Adopted: 2017/Updated 2019

		Grade 7 - Adopted: 2017/Updat ed 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
STRAND / DOMAIN / UNIFYING THEME		Grade 7

CATEGORY / CLUSTER / KEY IDEA	NY-7.G.	Geometry
STANDARD / CONCEPTUAL UNDERSTAND ING		Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

CONTENT **SPECIFICATION**

EXPECTATION / NY-7.G.6. Solve real-world and mathematical problems involving area of two-dimensional objects composed of triangles and trapezoids. Solve surface area problems involving right prisms and right pyramids composed of triangles and trapezoids. Find the volume of right triangular prisms, and solve volume problems involving three-dimensional objects composed of right rectangular prisms.

New York State Learning Standards and Core Curriculum Mathematics

		Grade 8 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
STRAND / DOMAIN / UNIFYING THEME		Grade 8
CATEGORY I CLUSTER I KEY IDEA	NY-8.G.	Geometry
STANDARD / CONCEPTUAL UNDERSTAND ING		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

EXPECTATION /
CONTENT
SPECIFICATION

EXPECTATION / NY-8.G.9. Given the formulas for the volume of cones, cylinders, and spheres, solve mathematical and real-world problems.

New York State Learning Standards and Core Curriculum

Science

Grade 5 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.3- 5.ED.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum Science

Grade 6 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
DOMAIN / UNIFYING		Engineering Design Students who demonstrate understanding can:

STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

NG

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD I CONCEPT UAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

EXPECTATION / 6-CONTENT 8.WHST.2. Use precise language and domain-specific vocabulary to inform about or explain the topic.

SPECIFICATION d.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

New York State Learning Standards and Core Curriculum Science

Grade 7 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER /		Craft and Structure

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a

8.RST.4. specific scientific or technical context relevant to grades 6-8 texts and topics.

STANDARD /

CONCEPTUAL

UNDERSTANDI

NG

6-

STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY I CLUSTER I KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
EXPECTATION / CONTENT SPECIFICATION	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

UNDERSTANDI .

NG

STANDARD / 6-UNDERSTANDI .

Use technology, including the Internet, to produce and publish writing and present the relationships between CONCEPTUAL 8.WHST.6 information and ideas clearly and efficiently.

> New York State Learning Standards and Core Curriculum Science

> > Grade 8 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2011

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
STANDARD / CONCEPTUAL UNDERSTAND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

EXPECTATION / 6- Use precise language and domain-specific vocabulary to inform about or explain the topic. CONTENT 8.WHST.2.

SPECIFICATION d.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

New York State Learning Standards and Core Curriculum Technology Education

Grade 5 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.

STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

New York State Learning Standards and Core Curriculum Technology Education

Grade 6 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

New York State Learning Standards and Core Curriculum Technology Education

Grade 7 - Adopted: 1996

		Grade 7 - Adopted: 1996
STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER /	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.

KEY IDEA

STANDARD / CONCEPTUAL UNDERSTANDI NG

5.4.2.

Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

New York State Learning Standards and Core Curriculum Technology Education

Grade 8 - Adopted: 1996

		Grade 8 - Adopted: 1996
STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
CONTENT AREA / STRAND		Measurement and Data
STRAND / ESSENTIAL STANDARD		Understand concepts of volume.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.5.MD .4.	Recognize volume as an attribute of solid figures and measure volume by counting unit cubes, using cubic centimeters, cubic inches, cubic feet, and improvised units.
CONTENT AREA / STRAND		Measurement and Data
STRAND / ESSENTIAL STANDARD		Understand concepts of volume.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.5.M D.5.	Relate volume to the operations of multiplication and addition.
CLARIFYING OBJECTIVE	NC.5.MD. 5.a.	Find the volume of a rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths.

NC.5.MD. Build understanding of the volume formula for rectangular prisms with whole-number edge lengths in the context of

CLARIFYING

OBJECTIVE

5.b.

solving problems.

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
CONTENT AREA / STRAND		Geometry
STRAND / ESSENTIAL STANDARD		Solve real-world and mathematical problems involving area, surface area, and volume.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.6.G.2.	Apply and extend previous understandings of the volume of a right rectangular prism to find the volume of right rectangular prisms with fractional edge lengths. Apply this understanding to the context of solving real-world and mathematical problems.

North Carolina Standard Course of Study Mathematics

Grade 7 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.

STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.

North Carolina Standard Course of Study Mathematics

		Mathematics Grade 8 - Adopted: 2017/IMPL 2018
CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
CONTENT AREA / STRAND		Geometry
STRAND / ESSENTIAL STANDARD		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.8.G.9	Understand how the formulas for the volumes of cones, cylinders, and spheres are related and use the relationship to solve real-world and mathematical problems.

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT AREA / STRAND	NC.CC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects

STRAND / ESSENTIAL STANDARD		Text Types and Purposes
	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

CLARIFYING OBJECTIVE

OBJECTIVE

6-8.WHST.2.

Use precise language and domain-specific vocabulary to inform about or explain the topic.

d.

CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

North Carolina Standard Course of Study Science

Grade 7 - Adopted: 2010

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
CLARIFYING OBJECTIVE	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

CONTENT AREA / STRAND	NC.8.E.	Earth Science
STRAND / ESSENTIAL STANDARD		Earth Systems, Structures and Processes
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	8.E.1.	Understand the hydrosphere and the impact of humans on local systems and the effects of the hydrosphere on humans.
CLARIFYING OBJECTIVE	8.E.1.3.	Predict the safety and potability of water supplies in North Carolina based on physical and biological factors, including:
INDICATOR	8.E.1.3.a.	Temperature
INDICATOR	8.E.1.3.b.	Dissolved oxygen
INDICATOR	8.E.1.3.c.	рН
INDICATOR	8.E.1.3.d.	Nitrates and phosphates
INDICATOR	8.E.1.3.e.	Turbidity
INDICATOR	8.E.1.3.f.	Bio-indicators
CONTENT AREA / STRAND	NC.8.E.	Earth Science
STRAND / ESSENTIAL STANDARD		Earth Systems, Structures and Processes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	8.E.1.	Understand the hydrosphere and the impact of humans on local systems and the effects of the hydrosphere on humans.
CLARIFYING OBJECTIVE	8.E.1.4.	Conclude that the good health of humans requires:
INDICATOR	8.E.1.4.a.	Monitoring of the hydrosphere
INDICATOR	8.E.1.4.b.	Water quality standards
INDICATOR	8.E.1.4.c.	Methods of water treatment
INDICATOR	8.E.1.4.d.	Maintaining safe water quality
INDICATOR	8.E.1.4.e.	Stewardship
CONTENT AREA / STRAND	NC.8.L.	Life Science
STRAND / ESSENTIAL STANDARD		Structures and Functions of Living Organisms

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	8.L.1.	Understand the hazards caused by agents of diseases that effect living organisms.
CLARIFYING OBJECTIVE	8.L.1.1.	Summarize the basic characteristics of viruses, bacteria, fungi and parasites relating to the spread, treatment and prevention of disease.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity

STANDARD / CLARIFYING OBJECTIVE	8.RST.10.	independently and proficiently.
CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

CLARIFYING

ESSENTIAL

6-

Use precise language and domain-specific vocabulary to inform about or explain the topic.

OBJECTIVE 8.WHST.2.

CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

North Carolina Standard Course of Study Technology Education

Grade 5 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 5 - Adopted: 2020

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	35-AP- 01.	Create multiple algorithms for the same task to determine which is the most accurate and efficient.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 3-5 (Ages 8-11)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Program Development

INDICATOR

CONTENT AREA / STRAND 35-AP-

12.

Describe choices made during program development using code comments, presentations, and demonstrations.

North Carolina Standard Course of Study Technology Education

Grade 6 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 6 - Adopted: 2020

NC K-12 Computer Science Standards

STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD I CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	68-AP- 01.	Implement flowcharts and/or pseudocode to address complex problems as algorithms.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Modularity
INDICATOR	68-AP- 05.	Organize problems and subproblems into parts.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD I CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	68-AP- 10.	Systematically test and refine programs using a range of test cases.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL		Impacts of Computing

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR ${\it 68-IC-05.} \ \ \, {\it Collaborate with many contributors to create a computational artifact.}$

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 7 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms
INDICATOR	68-AP- 01.	Implement flowcharts and/or pseudocode to address complex problems as algorithms.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Modularity
INDICATOR	68-AP- 05.	Organize problems and subproblems into parts.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
STANDARD / CLARIFYING		Algorithms & Programming Program Development
STANDARD / CLARIFYING OBJECTIVE	68-AP- 10.	
STANDARD / CLARIFYING OBJECTIVE CLARIFYING OBJECTIVE	10.	Program Development
STANDARD / CLARIFYING OBJECTIVE CLARIFYING OBJECTIVE INDICATOR CONTENT	10.	Program Development Systematically test and refine programs using a range of test cases.
STANDARD / CLARIFYING OBJECTIVE CLARIFYING OBJECTIVE INDICATOR CONTENT AREA / STRAND / ESSENTIAL	10.	Program Development Systematically test and refine programs using a range of test cases. NC K-12 Computer Science Standards

INDICATOR 68-IC-05. Collaborate with many contributors to create a computational artifact.

OBJECTIVE

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 8 - Adopted: 2020

OBJECTIVE

CONTENT AREA / STRAND	,	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming

CLARIFYING OBJECTIVE		Algorithms
INDICATOR	68-AP- 01.	Implement flowcharts and/or pseudocode to address complex problems as algorithms.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Modularity
INDICATOR	68-AP- 05.	Organize problems and subproblems into parts.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
		NC K-12 Computer Science Standards Grades 6-8 (Ages 11-14)
STRAND / ESSENTIAL		
STRAND / ESSENTIAL STANDARD ESSENTIAL STANDARD / CLARIFYING		Grades 6-8 (Ages 11-14)
STRAND / ESSENTIAL STANDARD ESSENTIAL STANDARD / CLARIFYING OBJECTIVE CLARIFYING		Grades 6-8 (Ages 11-14) Algorithms & Programming
STRAND / ESSENTIAL STANDARD ESSENTIAL STANDARD / CLARIFYING OBJECTIVE CLARIFYING OBJECTIVE	68-AP- 10.	Grades 6-8 (Ages 11-14) Algorithms & Programming Program Development
STRAND / ESSENTIAL STANDARD ESSENTIAL STANDARD / CLARIFYING OBJECTIVE CLARIFYING OBJECTIVE INDICATOR	68-AP- 10.	Grades 6-8 (Ages 11-14) Algorithms & Programming Program Development Systematically test and refine programs using a range of test cases.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR 68-IC-05. Collaborate with many contributors to create a computational artifact.

North Dakota Content Standards Mathematics

Grade 5 - Adopted: 2017

STANDARD

BENCHMARK MP.1 Make sense of problems and persevere in solving them.

BENOTIVITA		
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.
BENCHMARK	MP.7	Look for and make use of structure.
CONTENT STANDARD		Measurement and Data
BENCHMARK		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL EXPECTATION	5.MD.4	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft., and improvised units.
CONTENT STANDARD		Measurement and Data
BENCHMARK		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL EXPECTATION	5.MD.5	Relate volume to the operations of multiplication and addition and solve real world and mathematical
		problems involving volume.
INDICATOR	5.MD.5.a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes. Show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base.
INDICATOR		Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes. Show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by

BENCHMARK

MP.2

Reason abstractly and quantitatively.

North Dakota Content Standards Mathematics

Grade 6 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.

BENCHMARK	MP.7	Look for and make use of structure.
CONTENT STANDARD		Geometry
BENCHMARK		Solve real world and mathematical problems involving area, surface area, and volume.
GRADE LEVEL EXPECTATION	6.G.2	Using cubes of an appropriate size, pack a right rectangular prism having fractional edge lengths to find its volume. Then show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = Iwh$ and

North Dakota Content Standards Mathematics

Grade 7 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.
BENCHMARK	MP.7	Look for and make use of structure.
CONTENT STANDARD		Geometry
BENCHMARK		Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
GRADE LEVEL EXPECTATION	7.G.6	Solve real world and mathematical problems involving area of two-dimensional figures composed of polygons and/or circles, including composite figures. Use nets to solve real world and mathematical problems involving surface area of prisms and cylinders, including composite solids. Solve real world and mathematical problems involving volumes of right prisms, including composite solids.

North Dakota Content Standards Mathematics

Grade 8 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.

BENCHMARK	MP.5	Use appropriate tools strategically.
BENCHMARK	MP.7	Look for and make use of structure.
CONTENT STANDARD		Geometry
BENCHMARK		Solve real world and mathematical problems involving volume of cylinders, cones, and spheres.

North Dakota Content Standards Science

Grade **5** - Adopted: **2019**

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	5-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	5-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	5-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	5-ET1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
		North Dakota Content Standards

North Dakota Content Standards Science

Grade 6 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models

GRADE LEVEL
EXPECTATION

Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

Science

Grade 7 - Adonted: 2019

Grade 7 - Adopted: 2019		
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

Science

Grade 8 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology

GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1-	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards Technology Education

Grade 5 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	5.PSA.1.	Create a sequence of instructions from a previous decomposed task.
CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Development & Design
INDICATOR		Design processes to create new, useful, and imaginative solutions to problems.
INDICATOR	5.DD.1.	Continued growth independently or collaboratively creating programs that use sequencing, loops, and conditions.
INDICATOR	5.DD.2.	Create solutions to problems using a design method.

North Dakota Content Standards Technology Education

Grade 6 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECT ATION	Creative and Innovative Processes and Products

INDICATOR 6- Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. 8.MTL.7.

Grade 6 - Adopted: 2019

CONTENT STANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms

INDICATOR		Strategies for understanding and solving problems.
INDICATOR	6.PSA.1.	Identify and test an algorithm to solve a problem.

North Dakota Content Standards Technology Education Grade 7 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECTATION	Creative and Innovative Processes and Products

INDICATOR 6- Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. 8.MTL.7.

Grade 7 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	7.PSA.1.	Modify and test an algorithm to solve a problem.
INDICATOR	7.PSA.2.	Continued growth debugging a program that includes sequencing, loops, or conditionals.

North Dakota Content Standards Technology Education Grade 8 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECTATION	Creative and Innovative Processes and Products

INDICATOR 6- Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. 8.MTL.7.

Grade 8 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECT ATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	8.PSA.1.	Create and test an algorithm to solve a problem across disciplines.
INDICATOR	8.PSA.2.	Continued growth debugging a program that includes sequencing, loops, or conditionals.

Ohio Learning Standards Mathematics

Grade 5 - Adopted: 2017

		Grade 3 - Adopted. 2017
DOMAIN / ACADEMIC CONTENT STANDARD	он.мр.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.5.MD.	MEASUREMENT AND DATA
STANDARD / BENCHMARK		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
BENCHMARK / GRADE LEVEL INDICATOR	5.MD.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.5.MD.	MEASUREMENT AND DATA
STANDARD / BENCHMARK		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
BENCHMARK / GRADE LEVEL INDICATOR	5.MD.5.	Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.
PROFICIENCY LEVEL	5.MD.5.a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the Associative Property of Multiplication.
PROFICIENCY LEVEL	5.MD.5.b.	Apply the formulas $V = \ell \times w \times h$ and $V = B \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.

DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.6.G.	GEOMETRY
STANDARD / BENCHMARK		Solve real-world and mathematical problems involving area, surface area, and volume.
BENCHMARK / GRADE LEVEL INDICATOR	6.G.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = \emptyset Wh$ and $V = B B$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Ohio Learning Standards Mathematics

Grade 7 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.

STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.

Ohio Learning Standards Mathematics

Grade 8 - Adopted: 2017

DOMAIN /	OH.MP.	Standards for Mathematical Practice
ACADEMIC CONTENT STANDARD		
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
DOMAIN / ACADEMIC CONTENT STANDARD	он.8.G.	GEOMETRY
STANDARD / BENCHMARK		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
BENCHMARK / GRADE LEVEL INDICATOR	8.G.9.	Solve real-world and mathematical problems involving volumes of cones, cylinders, and spheres.

Ohio Learning Standards Technology Education

Grade 5 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.

PROFICIENCY Describe the advantages/disadvantages of technology (past, present, future) to understand the relationship between technology, society and the individual. **LEVEL** 5.ST.3.a. Ohio Learning Standards in Technology DOMAIN I **ACADEMIC** CONTENT **STANDARD** STANDARD / Design and Technology: Addresses the nature of technology to develop and improve products and **BENCHMARK** systems over time to meet human/societal needs and wants through design processes. BENCHMARK / Define and describe technology, including its core concepts of systems, resources, requirements, Topic 1: **GRADE LEVEL** processes, controls, optimization and trade-offs. **INDICATOR PROFICIENCY** Give examples of how requirements for a product can limit the design possibilities for that product. 3-5.DT.1.b. **LEVEL** DOMAIN / Ohio Learning Standards in Technology **ACADEMIC** CONTENT STANDARD STANDARD / Design and Technology: Addresses the nature of technology to develop and improve products and **BENCHMARK** systems over time to meet human/societal needs and wants through design processes. BENCHMARK / Topic 2: Identify a problem and use an engineering design process to solve the problem. **GRADE LEVEL INDICATOR**

DOMAIN / ACADEMIC CONTENT STANDARD

Design and Technology: Addresses the nature of technology to develop and improve products and

systems over time to meet human/societal needs and wants through design processes.

Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible

BENCHMARK / Topic 3: Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.

PROFICIENCY 3-LEVEL 5.DT.3.b.

PROFICIENCY

BENCHMARK

INDICATOR

3-

Explore and document connections between technology and other fields of study.

Grade 5 - Adonted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY

CS.T.5.a. Diagnose problems and develop strategies to resolve technology issues.

LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 5
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Algorithms
PROFICIENCY LEVEL	ATP.A.5.	Evaluate a multi-step process to diagram the proper steps to solve a problem.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 5
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .5.a.	Create a variable, a placeholder for storing a value, to understand how it is used in a multi-step process (i.e., algorithm).
	,	
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 5
ACADEMIC CONTENT		Computer Science, Grade 5 ALGORITHMIC THINKING AND PROGRAMMING
ACADEMIC CONTENT STANDARD STANDARD /		
STANDARD STANDARD STANDARK BENCHMARK BENCHMARK / GRADE LEVEL	ATP.CS.5	ALGORITHMIC THINKING AND PROGRAMMING
ACADEMIC CONTENT STANDARD STANDARD / BENCHMARK BENCHMARK / GRADE LEVEL INDICATOR PROFICIENCY		ALGORITHMIC THINKING AND PROGRAMMING Control Structures
ACADEMIC CONTENT STANDARD STANDARD / BENCHMARK / GRADE LEVEL INDICATOR PROFICIENCY LEVEL DOMAIN / ACADEMIC CONTENT		ALGORITHMIC THINKING AND PROGRAMMING Control Structures Create a program using sequences, events, loops and conditionals to solve a problem.
ACADEMIC CONTENT STANDARD STANDARD STANDARD / BENCHMARK / GRADE LEVEL INDICATOR PROFICIENCY LEVEL DOMAIN / ACADEMIC CONTENT STANDARD / STANDARD /		ALGORITHMIC THINKING AND PROGRAMMING Control Structures Create a program using sequences, events, loops and conditionals to solve a problem. Computer Science, Grade 5
ACADEMIC CONTENT STANDARD STANDARD / BENCHMARK / GRADE LEVEL INDICATOR PROFICIENCY LEVEL DOMAIN / ACADEMIC CONTENT STANDARD / BENCHMARK / GRADE LEVEL BENCHMARK / GRADE LEVEL		ALGORITHMIC THINKING AND PROGRAMMING Control Structures Create a program using sequences, events, loops and conditionals to solve a problem. Computer Science, Grade 5 ALGORITHMIC THINKING AND PROGRAMMING

Ohio Learning Standards
Technology Education
Grade 6 - Adopted: 2017

DOMAIN /	Ohio Learning Standards in Technology
ACADEMIC	
CONTENT	
STANDARD	

STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural wor specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.
PROFICIENCY LEVEL	6- 8.ST.1.b.	Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in yo world.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural worl specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	6- 8.ST.3.d.	Describe the impact of an individual's wants, values and interests on the development of new technologies.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements
DOMAIN / ACADEMIC CONTENT ST ANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, te evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.

PROFICIENCY 6-LEVEL 8.DT.3.a. Collaborate to solve a problem as an interdisciplinary team modeling different roles and functions.

Grade 6 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY LEVEL

CS.T.6.a. Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best solution to solve the computing problem and communicate the solution to others.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY LEVEL

ATP.A.6. Compare and refine multiple algorithms for the same task to determine which is the most efficient.

DOMAIN / ACADEMIC	Computer Science, Grade 6	
CONTENT		
STANDARD		

STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Variables and Data Representation

PROFICIENCY

ATP.VDR Identify unknown values that need to be represented by a variable within a multi-step process.

LEVEL .6.a.

PROFICIENCY ATP.VDR Create variables and use them within a multi-step process.

LEVEL .6.b.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCY

ATP.CS.6 Identify and trace decisions and loops that exist in a multi-step process within a program.

LEVEL .a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Modularity

PROFICIENCY

ATP.M.6. Decompose problems into parts to facilitate the design, implementation and review of programs.

LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCY

ATP.PD.6 Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.

LEVEL .a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions

PROFICIENCY **LEVEL**

Al.NI.6.a. Individually and collaboratively compare language processing algorithms to solve a problem based on a given criteria (e.g., time, resource, accessibility).

> Ohio Learning Standards Technology Education Grade 7 - Adopted: 2017

DOMAIN /	Ohio Learning Standards in Technology
	Onio Learning Standards in Fectinology
ACADEMIC	
CONTENT	
STANDARD	

STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural wor specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.
PROFICIENCY LEVEL	6- 8.ST.1.b.	Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in yo world.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural worl specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	6- 8.ST.3.d.	Describe the impact of an individual's wants, values and interests on the development of new technologies.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements
DOMAIN / ACADEMIC CONTENT ST ANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, te evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.

PROFICIENCY 6-LEVEL 8.DT.3.a. Collaborate to solve a problem as an interdisciplinary team modeling different roles and functions.

Grade 7 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY LEVEL

CS.T.7.a. Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best solution to solve the computing problem and communicate the solution to others.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

LEVEL

PROFICIENCY ATP.A.7.a Select and modify pseudocode for a multi-step process to solve a problem.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Variables and Data Representation

PROFICIENCY

ATP.VDR Use test cases to trace variable values to determine the result.

LEVEL .7.a.

DOMAIN / ACADEMIC CONTENT ST ANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING

BENCHMARK / GRADE LEVEL INDICATOR		Control Structures
PROFICIENCY LEVEL	ATP.CS.7	Use and apply decisions and loops in a program to solve a problem.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 7
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Program Development
PROFICIENCY LEVEL	ATP.PD.7	Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 7
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Representation & Reasoning
PROFICIENCY LEVEL	Al.RR.7.a.	Compare several algorithms that could be used to solve a specific type of reasoning problem.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 7
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Natural Interactions
PROFICIENCY LEVEL	Al.Nl.7.a.	Curate a dataset to train a language-processing algorithm to create a program that incorporates voice commands.
		Ohio Loorning Standards

Ohio Learning Standards
Technology Education
Grade 8 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.

PROFICIENCY LEVEL	6- 8.ST.1.b.	Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in your world.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	6- 8.ST.3.d.	Describe the impact of an individual's wants, values and interests on the development of new technologies.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety, etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY LEVEL	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.

BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.
PROFICIENCY LEVEL	6- 8.DT.3.a.	Collaborate to solve a problem as an interdisciplinary team modeling different roles and functions.
		Grade 8 - Adopted: 2022
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.8.a.	Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best solution to solve the computing problem and communicate the solution to others.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Algorithms
PROFICIENCY LEVEL	ATP.A.8.	Create multiple pseudocode to solve a multi-step process and justify the most efficient solution.
DOMAIN / ACADEMIC CONTENT ST ANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .8.a.	Analyze test cases and determine the range of valid solutions.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Control Structures

PROFICIENCY ATP.CS.8 Use and apply decisions and loops in a program to solve a problem. LEVEL .a.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Modularity
PROFICIENCY LEVEL	ATP.M.8. a.	Decompose problems and subproblems into parts to facilitate the design, implementation and review of complex programs.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Program Development
PROFICIENCY LEVEL	ATP.PD.8 .a.	Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Representation & Reasoning
PROFICIENCY LEVEL	AI.RR.8.a.	Model the process of solving a graph-search problem using breadth-first search to draw a search tree.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR		Natural Interactions
PROFICIENCY LEVEL	Al.Nl.8.a.	Create a program, individually and collaboratively, that implements a language processing algorithm to create a functional chatbot.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ARTIFICIAL INTELLIGENCE

BENCHMARK / GRADE LEVEL INDICATOR		Societal Impacts
PROFICIENCY LEVEL	Al.Sl.8.b.	Identify bias potential in the design of artificial intelligence systems and describe how to utilize inclusive AI design to prevent algorithmic bias.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		IMPACTS OF COMPUTING
BENCHMARK / GRADE LEVEL INDICATOR		Culture

PROFICIENCY

IC.Cu.8.d. Explain how computing impacts innovation in other fields.

LEVEL

Oklahoma Academic Standards Mathematics

Grade 5 - Adopted: 2022			
CONTENT STANDARD / COURSE		Mathematical Actions and Processes	
STRAND / STANDARD		Develop a Deep and Flexible Conceptual Understanding	
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency	
STRAND / STANDARD		Develop Strategies for Problem Solving	
STRAND / STANDARD		Develop Mathematical Reasoning	
STRAND / STANDARD		Develop a Productive Mathematical Disposition	
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize	
STRAND / STANDARD		Develop the Ability to Communicate Mathematically	
CONTENT STANDARD / COURSE	5	Fifth Grade (5)	
STRAND / STANDARD	5.GM.	Geometry & Measurement (GM)	
OBJECTIVE	5.GM.2.	Determine volume using the object's dimensions. Compare and analyze rectangular prisms with equivalent volume to recognize their different dimensions.	

CONCEPT product of the dimensions of the prism 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SKILL / CONCEPT	5.GM.2.1.	
--	--------------------	-----------	--

CONTENT STANDARD / COURSE	5	Fifth Grade (5)
STRAND / STANDARD	5.GM.	Geometry & Measurement (GM)
OBJECTIVE	5.GM.3.	Understand angle, length, weight, and capacity as measurable attributes of real-world and mathematical objects, using various tools to measure them. Solve real-world problems of length.

SKILL / CONCEPT

SKILL / CONCEPT

units.

5.GM.3.5. Estimate lengths and geometric measurements to the nearest whole unit, using benchmarks in customary and metric measurement systems.

Oklahoma Academic Standards Mathematics

Grade 6 - Adopted: 2022

Grade 6 - Adopted: 2022			
CONTENT STANDARD / COURSE		Mathematical Actions and Processes	
STRAND / STANDARD		Develop a Deep and Flexible Conceptual Understanding	
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency	
STRAND / STANDARD		Develop Strategies for Problem Solving	
STRAND / STANDARD		Develop Mathematical Reasoning	
STRAND / STANDARD		Develop a Productive Mathematical Disposition	
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize	
STRAND / STANDARD		Develop the Ability to Communicate Mathematically	
CONTENT STANDARD / COURSE	6	Sixth Grade (6)	
STRAND / STANDARD	6.GM.	Geometry & Measurement (GM)	
OBJECTIVE	6.GM.4.	Choose appropriate units of measurement and use ratios to convert within measurement systems to model and solve real-world and mathematical problems.	
SKILL /	6.GM.4.1.	Estimate weights and capacities using benchmarks in customary and metric measurement systems with appropriate	

Mathematics

Grade 7 - Adopted: 2022

CONTENT STANDARD / COURSE		Mathematical Actions and Processes
STRAND / STANDARD		Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD		Develop Strategies for Problem Solving
STRAND / STANDARD		Develop Mathematical Reasoning
STRAND / STANDARD		Develop a Productive Mathematical Disposition
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD		Develop the Ability to Communicate Mathematically
CONTENT STANDARD / COURSE	7	Seventh Grade (7)
STRAND / STANDARD	7.GM.	Geometry & Measurement (GM)
OBJECTIVE	7.GM.1.	Develop and understand the concept of surface area and volume of rectangular prisms with rational-valued edge lengths.
SKILL / CONCEPT	7.GM.1.2.	Using a variety of tools and strategies, develop the concept that surface area of a rectangular prism can be found by wrapping the figure with same-sized square units without gaps or overlap. Use appropriate measurements (e.g., cm^2).
SKILL / CONCEPT	7.GM.1.3.	Using a variety of tools and strategies, develop the concept that the volume of rectangular prisms can be found by counting the total number of same-sized unit cubes that fill a shape without gaps or overlaps. Use appropriate measurements (e.g., cm^3).
		Oklahoma Academic Standards

Oklahoma Academic Standards Mathematics

Grade 8 - Adopted: 2022

5	CONTENT STANDARD / COURSE	Mathematical Actions and Processes
	STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
	STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency

STRAND / STANDARD		Develop Strategies for Problem Solving
STRAND / STANDARD		Develop Mathematical Reasoning
STRAND / STANDARD		Develop a Productive Mathematical Disposition
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD		Develop the Ability to Communicate Mathematically
CONTENT STANDARD / COURSE	PA.	Pre-Algebra (PA)
STRAND / STANDARD	PA.GM.	Geometry & Measurement (GM)
OBJECTIVE	PA.GM.2	Justify and use formulas to calculate surface area and volume of three-dimensional figures.
SKILL / CONCEPT	PA.GM.2. 3.	Justify why base area (B) and height (h) in the formula V=Bh are multiplied to find the volume of a rectangular prism. Use appropriate units (e.g., cm^3).
		ose appropriate units (e.g., on 5).
SKILL / CONCEPT	PA.GM.2. 4.	Develop and use the formulas $\mathbb{Q} = (\mathbb{Q})^{\$}$ and $\mathbb{Q} = \mathbb{Q}$ to determine the volume of right cylinders, in terms of π and using approximations for pi (T). Justify why base area (B) and height (h) are multiplied to find the volume of a right cylinder. Use appropriate units (e.g., cm^3).
		Develop and use the formulas $\mathbb{I} = (\mathbb{II})^{\$}$ and $\mathbb{I} = \mathbb{II}$ to determine the volume of right cylinders, in terms of π and using approximations for pi (T). Justify why base area (B) and height (h) are multiplied to find the volume of a right
CONCEPT CONTENT STANDARD /	4.	Develop and use the formulas $\mathbb{I}=(\mathbb{II})^{\$}$ and $\mathbb{I}=\mathbb{II}$ to determine the volume of right cylinders, in terms of π and using approximations for pi (T). Justify why base area (B) and height (h) are multiplied to find the volume of a right cylinder. Use appropriate units (e.g., cm^3).
CONCEPT CONTENT STANDARD / COURSE STRAND /	4. G.	Develop and use the formulas $\mathbb{I}=(\mathbb{I}\mathbb{I})^{\$}$ and $\mathbb{I}=\mathbb{I}\mathbb{I}$ to determine the volume of right cylinders, in terms of π and using approximations for pi (T). Justify why base area (B) and height (h) are multiplied to find the volume of a right cylinder. Use appropriate units (e.g., cm^3).

Oklahoma Academic Standards Science

Grade 7 - Adopted: 2020

CONTENT STANDARD / COURSE	Oklahoma Academic Standards for Science
STRAND / STANDARD	Earth and Human Activity (ESS3)

OBJECTIVE 7.ESS3.4 Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT

Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

SKILL / CONCEPT

Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

SKILL / CONCEPT

Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

SKILL / CONCEPT

Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.CS.	Computing Systems (CS)
SKILL / CONCEPT	5.CS.T.	Troubleshooting (T)

SKILL	5.CS.T.01	Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use.
		Discuss problems with peers and adults, apply strategies for solving these problems and explain why the strategies
		should work.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.A.	Algorithms (A)

SKILL 5.AP.A.0 Model, compare and refine multiple algorithms for the same task and determine which is the most efficient.

1.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.PD.	Program Development (PD)
SKILL	5.AP.PD. 01.	Use an iterative process to plan the development of a program that includes others' perspectives and user preferences while solving simple problems.
SKILL	5.AP.PD. 04.	Communicate and explain program development choices using comments, presentations, and demonstrations.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	5.IC.CU.	Culture (CU)

SKILL 5.IC.CU.0 Develop, test, and refine digital artifacts to improve accessibility and usability.

2.

Grade 5 - Adopted: 2019

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards Technology Education

Grade 6 -	Adopted:	2023
-----------	----------	------

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT

Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

SKILL / CONCEPT

Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Developing a Productive Computing Environment
SKILL / CONCEPT		Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Recognizing and Defining Computational Problems
SKILL / CONCEPT		Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)
OBJECTIVE	6.CS.	Computing Systems (CS)
SKILL / CONCEPT	6.CS.T.	Troubleshooting (T)
SKILL	6.CS.T.01	Identify and resolve software and hardware problems with computing devices and their components involving settings and connections.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)
OBJECTIVE	6.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	6.AP.A.	Algorithms (A)
SKILL	6.AP.A.0 1.	Use an existing algorithm in natural language or pseudocode to solve complex problems.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)

6.AP.PD. Program Development (PD)

Algorithms & Programming (AP)

6.AP.

OBJECTIVE

SKILL / CONCEPT

SKILL

04.

 $\hbox{6.AP.PD.} \quad \hbox{Break down tasks and follow an individual timeline when developing a computational artifact.}$

Grade 6 - Adopted: 2019

		Grade 6 - Adopted. 2019
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards Technology Education Grade 7 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT

Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Developing and Using Abstractions
SKILL / CONCEPT		Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Developing a Productive Computing Environment
SKILL / CONCEPT		Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Recognizing and Defining Computational Problems
SKILL / CONCEPT		Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.CS.	Computing Systems (CS)
SKILL / CONCEPT	7.CS.T.	Troubleshooting (T)
SKILL	7.CS.T.01	Identify and resolve complex software and hardware problems with computing devices and their components utilizing strategies such as developing and analyzing flow diagrams.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.A.	Algorithms (A)

SKILL	7.AP.A.01	Select and modify an existing algorithm in natural language or pseudocode to solve complex problems.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.PD.	Program Development (PD)
SKILL	7.AP.PD. 01.	Seek and incorporate feedback from team members and users to refine a solution to a problem.
SKILL	7.AP.PD. 04.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
		Grade 7 - Adopted: 2019
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.

Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create

OBJECTIVE

ISTE-

S.5.d.

and test automated solutions.

Oklahoma Academic Standards Technology Education

	Technology Education Grade 8 - Adopted: 2023
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions
SKILL / CONCEPT	Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment
SKILL / CONCEPT	Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems
SKILL / CONCEPT	Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science

STRAND / STANDARD

OBJECTIVE

8

8.CS.

Eighth Grade (8)

Computing Systems (CS)

SKILL / CONCEPT	8.CS.T.	Troubleshooting (T)
SKILL	8.CS.T.01	Systematically identify, resolve, and document complex software and hardware problems with computing devices and their components.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.A.	Algorithms (A)
SKILL	8.AP.A.0 1.	Design algorithms in natural language, flow and control diagrams, comments within code, and/or pseudocode to solve complex problems.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.PD.	Program Development (PD)
SKILL	8.AP.PD. 01.	Seek and incorporate feedback from team members and users to refine a solution to a problem that meets the needs of different users.
SKILL	8.AP.PD. 04.	Model effective communication between participants and demonstrate successful collaboration when developing computational artifacts.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	8.IC.CU.	Culture (CU)
SKILL	8.IC.CU.0 1.	Explore careers related to the field of computer science, and explain how computing impacts innovation in various career fields.
		Grade 8 - Adopted: 2019
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)

CONTEN STANDA COURSE	ARD /		ISTE for Students 2016 (ISTE-S)
STRANI STAND		ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECT		ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oregon Academic Content Standards Mathematics

Grade **5** - Adopted: **2021**

		State C Auspieu. 2022
STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.

CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.
STANDARD / CONTENT AREA		Grade 5 Standards
CONTENT STANDARD / PROFICIENCY	5.GM.	Geometric Reasoning and Measurement (5.GM)
BENCHMARK / STRAND	5.GM.D.	Geometric measurement: understand concepts of volume.
EXPECTATION / BENCHMARK	5.GM.D.6	Measure the volume of a rectangular prism by counting unit cubes using standard and nonstandard units.
EXPECTATION / BENCHMARK	5.GM.D.7.	Relate volume of rectangular prisms to the operations of multiplication and addition. Solve problems in authentic contexts involving volume using a variety of strategies.

Oregon Academic Content Standards Mathematics

		Grade 6 - Adopted: 2021
STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.
STANDARD / CONTENT AREA		Grade 6 Standards
CONTENT STANDARD / PROFICIENCY	6.GM.	Geometric Reasoning and Measurement (6.GM)

BENCHMARK / STRAND	6.GM.A.	Solve real-world and mathematical problems involving area, surface area, and volume.
EXPECTATION / BENCHMARK	6.GM.A.2.	Find the volume of a right rectangular prism with fractional edge lengths by filling it with unit cubes of appropriate unit fraction edge lengths. Connect and apply to the formulas $V = I w h$ and $V = b h$ to find volumes of right rectangular prisms with fractional edge lengths to solve problems in authentic contexts.

Oregon Academic Content Standards Mathematics

Grade 7 - Adopted: 2021

STANDARD / CONTENT		Mathematical Practice Standards
AREA		
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.

Oregon Academic Content Standards Mathematics

Grade 8 - Adopted: 2021

STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.

CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.

STANDARD / CONTENT AREA		Grade 8 Standards
CONTENT STANDARD / PROFICIENCY	8.GM.	Geometric Reasoning and Measurement (8.GM)
BENCHMARK / STRAND	8.GM.C.	Solve mathematical problems in authentic contexts involving volume of cylinders, cones, and spheres.

BENCHMARK .

EXPECTATION / 8.GM.C.9 Choose and use the appropriate formula for the volume of cones, cylinders, and spheres to solve problems in authentic contexts.

Oregon Academic Content Standards Science

Grade 5 - Adopted: 2022

STANDARD / CONTENT AREA	OR.3-5- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Oregon Academic Content Standards Science

Grade 6 - Adopted: 2022

STANDARD / CONTENT AREA	OR.MS- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects

CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

EXPECTATION / WHST.6-BENCHMARK 8.2(d)

 ${\tt EXPECTATION\,/\quad WHST.6-\quad Use\ precise\ language\ and\ domain-specific\ vocabulary\ to\ inform\ about\ or\ explain\ the\ topic.}$

STANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Oregon Academic Content Standards Science

Grade 7 - Adopted: 2022

STANDARD / CONTENT AREA	OR.MS- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD I PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK /	WHST.6-	Use technology, including the Internet, to produce and publish writing and present the relationships between

STRAND

8.6.

information and ideas clearly and efficiently.

Oregon Academic Content Standards

Science

Grade 8 - Adopted: 2022

STANDARD / CONTENT AREA	OR.MS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STANDARD / CONTENT AREA	OR.MS- PS4.	Waves and their Applications in Technologies for Information Transfer
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
STANDARD / CONTENT AREA	OR.MS- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects

CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHS1 .6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK /	WHST.6-	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

information and ideas clearly and efficiently.

STRAND

8.6.

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
SUBJECT / STANDARD AREA	PA.CC.2. 4.5.	Measurement, Data, and Probability
STANDARD AREA / STATEMENT	CC.2.4. 5.A.	Measurement and Data

Pennsylvania Core and Academic Standards Mathematics

CC.2.4.5. Apply concepts of volume to solve problems and relate volume to multiplication and to addition.

STANDARD

A.5.

Grade 6 - Adopted: 2014

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.

STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.

Pennsylvania Core and Academic Standards Mathematics

Grade 7 - Adopted: 2014

		Oracle 1 - Adopted. 2014
SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.

Pennsylvania Core and Academic Standards Mathematics

Grade 8 - Adopted: 2014

AREA	STANDARD	PA.CC.M P.	Standards for Mathematical Practice
------	----------	---------------	-------------------------------------

STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
SUBJECT / STANDARD AREA	PA.CC.2. 3.8.	Geometry
STANDARD AREA / STATEMENT	CC.2.3.8 .A.	Geometry

STANDARD

CC.2.3.8. Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems. A.1.

Pennsylvania Core and Academic Standards Science

Grade 5 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology

DESCRIPTOR / STANDARD	3.4.5.A1.	Explain how people use tools and techniques to help them do things.
DESCRIPTOR / STANDARD	3.4.5.A2.	Understand that a subsystem is a system that operates as part of a larger system.
DESCRIPTOR / STANDARD	3.4.5.A3.	Describe how technologies are often combined.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.5.B1.	Explain how the use of technology can have unintended consequences.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.5.C1.	Explain how the design process is a purposeful method of planning practical solutions to problems.
DESCRIPTOR / STANDARD	3.4.5.C2.	Describe how design, as a dynamic process of steps, can be performed in different sequences and repeated.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.5.D1.	Identify ways to improve a design solution.
DESCRIPTOR / STANDARD	3.4.5.D3.	Determine if the human use of a product or system creates positive or negative results.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
		Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	reclinology and Engineering Education

DESCRIPTOR / STANDARD	3.4.5.E3.	Explain how tools, machines, products, and systems use energy in order to do work.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.2.	Watersheds and Wetlands
STANDARD	4.2.5.C.	Identify physical, chemical, and biological factors that affect water quality.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.5.	Humans and the Environment
STANDARD	4.5.5.C.	Explain the difference between point and non-point source pollution.

Pennsylvania Core and Academic Standards Science

Grade 6 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.6.A2.	Describe how systems thinking involves considering how every part relates to others.
DESCRIPTOR / STANDARD	3.4.6.A3.	Explain how knowledge from other fields of study (STEM) integrate to create new technologies.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education

STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.6.B2.	Describe how technologies can be used to repair damage caused by natural disasters and to break down waste from the use of various products and systems.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.6.C1.	Recognize that requirements for a design include such factors as the desired elements and features of a product or system or the limits that are placed on the design.
DESCRIPTOR / STANDARD	3.4.6.C2.	Show how models are used to communicate and test design ideas and processes.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.6.D1.	Apply a design process to solve problems beyond the laboratory classroom.
DESCRIPTOR / STANDARD	3.4.6.D2.	Use computers appropriately to access and organize and apply information.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.2.	Watersheds and Wetlands
STANDARD	4.2.6.C.	Identify natural and human-made factors that affect water quality.
	D4 60 0	Grade 6 - Adopted: 2014
SUBJECT / STANDARD AREA		Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA I STATEMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3. .6-8.	6 Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

STANDARD

CC.3.6.6 Use technology, including the Internet, to produce and publish writing and present the relationships between

-8.E. information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards Science

Grade 7 - Adopted: 2010

		Grade 7 - Adopted: 2010
SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.7.A2.	Explain how different technologies involve different sets of processes.
DESCRIPTOR / STANDARD	3.4.7.A3.	Explain how knowledge gained from other fields of study has a direct effect on the development of technological products and systems.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.7.B1.	Explain how the use of technology can have consequences that affect humans in many ways.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design

STANDARD

DESCRIPTOR / 3.4.7.C1. Describe how design, as a creative planning process, leads to useful products and systems.

DESCRIPTOR / STANDARD	3.4.7.C2.	Explain how modeling, testing, evaluating, and modifying are used to transform ideas into practical solutions.
DESCRIPTOR / STANDARD	3.4.7.C3.	Describe how troubleshooting as a problem-solving method may identify the cause of a malfunction in a technological system.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.7.D1.	Identify and collect information about everyday problems that can be solved by technology and generate ideas and requirements for solving a problem.
DESCRIPTOR / STANDARD	3.4.7.D2.	Select and safely use appropriate tools, products and systems for specific tasks.
DESCRIPTOR / STANDARD	3.4.7.D3.	Use data collected to analyze and interpret trends in order to identify the positive or negative effects of a technology.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.5.	Humans and the Environment
STANDARD	4.5.7.A.	Describe how the development of civilization affects the use of natural resources.
DESCRIPTOR / STANDARD	4.5.7.A.1.	Compare and contrast how people use natural resources in sustainable and nonsustainable ways throughout the world.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.5.	Humans and the Environment
STANDARD	4.5.7.C.	Explain how human actions affect the health of the environment.
DESCRIPTOR / STANDARD	4.5.7.C.1.	Identify residential and industrial sources of pollution and their effects on environmental health.
		Grade 7 - Adonted: 2014

Grade 7 - Adopted: 2014

SUBJECT / STANDARD AREA	5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior

-8.B. knowledge or opinions.

STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA I STATEMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.I.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6	
	-8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA		
STANDARD	PA.CC.3.6	independently and proficiently. 6 Writing: Students write for different purposes and audiences. Students write clear and focused text to
ST ANDARD AREA ST ANDARD AREA I	PA.CC.3.6	independently and proficiently. 6 Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content. Text Types and Purposes
ST ANDARD AREA ST ANDARD AREA I ST AT EMENT	PA.CC.3.6.6.6-8.B.	independently and proficiently. 6 Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content. Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/
ST AND ARD AREA / ST AND AREA / ST AT EMENT ST AND ARD DESCRIPTOR /	PA.CC.3.6.6.6-8.B. CC.3.6.6-8.B.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content. Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
STANDARD AREA / STANDARD AREA / STATEMENT STANDARD DESCRIPTOR / STANDARD SUBJECT / STANDARD	CC.3.6.6-8.B. CC.3.6.6-8.B.4.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content. Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing: Students write for different purposes and audiences. Students write clear and focused text to

STANDARD

CC.3.6.6 Use technology, including the Internet, to produce and publish writing and present the relationships between

information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards Science

		Grade 8 - Adopted: 2010
SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.4.	Formulate and revise explanations and models using logic and evidence.
STANDARD AREA / STATEMENT	SI.5.	Recognize and analyze alternative explanations and models.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.8.B3.	Explain how throughout history, new technologies have resulted from the demands, values, and interests of individuals, businesses, industries, and societies.
DESCRIPTOR / STANDARD	3.4.8.B4.	Explain how societal and cultural priorities and values are reflected in technological devices.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.8.C1.	Evaluate the criteria and constraints of a design.
DESCRIPTOR / STANDARD	3.4.8.C3.	Analyze how a multidisciplinary (STEM) approach to problem solving will yield greater results.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World

DESCRIPTOR / STANDARD	3.4.8.D1.	Test and evaluate the solutions for a design problem.
DESCRIPTOR / STANDARD	3.4.8.D2.	Operate and maintain systems in order to achieve a given purpose.
DESCRIPTOR / STANDARD	3.4.8.D3.	Interpret and evaluate the accuracy of the information obtained and determine its usefulness.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.2.	Watersheds and Wetlands
STANDARD	4.2.8.A.	Describe factors that affect the quality of ground and surface waters.
		Grade 8 - Adopted: 2014
SUBJECT / ST ANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.I.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Pennsylvania Core and Academic Standards Technology Education

information and ideas clearly and efficiently.

CC.3.6.6 Use technology, including the Internet, to produce and publish writing and present the relationships between

STANDARD

-8.E.

Grade 5 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
STANDARD AREA / STATEMENT	1B-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
DESCRIPTOR / STANDARD	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
DESCRIPTOR / STANDARD	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
STANDARD AREA / STATEMENT	1B-IC.	Impacts of Computing
STANDARD		Culture

STANDARD

DESCRIPTOR / 1B-IC-19. Brainstorm ways to improve the accessibility and usability of technology products for the diverse needs and wants of users. (P1.2)

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
STANDARD AREA / STATEMENT	1B-IC.	Impacts of Computing
STANDARD		Social Interactions

DESCRIPTOR / **STANDARD**

1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

Pennsylvania Core and Academic Standards Technology Education

Grade 6 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Algorithms

DESCRIPTOR / STANDARD

2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)

SUBJECT / STANDARD AREA CST A.2. Level 2 (Ages 11-14) STANDARD 2-AP. **Algorithms & Programming** AREA / STATEMENT

DESCRIPTOR / **STANDARD**

STANDARD

Modularity

2-AP-13. Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)

SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development

DESCRIPTOR / STANDARD	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions
DESCRIPTOR / STANDARD	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
		Pennsylvania Core and Academic Standards Technology Education Grade 7 - Adopted: 2017
SUBJECT / ST ANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Algorithms
DESCRIPTOR / STANDARD	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity
DESCRIPTOR / STANDARD	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD	2-IC.	Impacts of Computing

STANDARD		Social Interactions
DESCRIPTOR / STANDARD	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

Pennsylvania Core and Academic Standards Technology Education Grade 8 - Adopted: 2017			
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)	
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming	
STANDARD		Algorithms	
DESCRIPTOR / STANDARD	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)	
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)	
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming	
STANDARD		Modularity	
DESCRIPTOR / STANDARD	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)	
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)	
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming	
STANDARD		Program Development	
DESCRIPTOR / STANDARD	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)	
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)	
STANDARD AREA / STATEMENT	2-IC.	Impacts of Computing	
STANDARD		Social Interactions	
DESCRIPTOR / STANDARD	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)	