Main Criteria: Forward

Secondary Criteria: Pennsylvania Core and Academic Standards, Rhode Island World-Class Standards, South Carolina Standards & Learning, South Dakota Content Standards, Tennessee Academic Standards, Texas Essential Knowledge and Skills (TEKS), Utah Core Standards, Vermont Content Standards, Virginia Standards of Learning, Washington State K-12 Learning Standards and Guidelines, Washington DC Academic Standards, West Virginia College and Career Readiness Standards, Wisconsin Academic Standards, Wyoming Content and Performance Standards

Subjects: Mathematics, Science, Technology Education Grades: 5, 6, 7, 8, Key Stage 2, Key Stage 3

Forward

Solar Water Disinfection (SODIS)

Pennsylvania Core and Academic Standards

Mathematics

Grade 5 - Adopted: 2014

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
SUBJECT / STANDARD AREA	PA.CC.2. 4.5.	Measurement, Data, and Probability
STANDARD AREA / STATEMENT	CC.2.4. 5.A.	Measurement and Data

STANDARD

CC.2.4.5. Apply concepts of volume to solve problems and relate volume to multiplication and to addition. A.5.

Pennsylvania Core and Academic Standards

Mathematics

Grade 6 - Adopted: 2014

PA.CC.M Standards for Mathematical Practice

STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
		Pennsylvania Core and Academic Standards
		Grade 7 - Adopted: 2014
SUBJECT / ST ANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA /	CC.MP.7.	Look for and make use of structure.

Mathematics

Grade 8 - Adopted: 2014

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA /	CC.MP.7.	Look for and make use of structure.

STATEMENT

SUBJECT / STANDARD AREA	PA.CC.2. 3.8.	Geometry
STANDARD AREA / STATEMENT	CC.2.3.8 .A.	Geometry

STANDARD CC.2.3.8. Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems. A.1.

Pennsylvania Core and Academic Standards

Science

Grade 5 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.5.A1.	Explain how people use tools and techniques to help them do things.
DESCRIPTOR / STANDARD	3.4.5.A2.	Understand that a subsystem is a system that operates as part of a larger system.
DESCRIPTOR / STANDARD	3.4.5.A3.	Describe how technologies are often combined.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.5.B1.	Explain how the use of technology can have unintended consequences.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.5.C1.	Explain how the design process is a purposeful method of planning practical solutions to problems.
DESCRIPTOR / STANDARD	3.4.5.C2.	Describe how design, as a dynamic process of steps, can be performed in different sequences and repeated.
SUBJECT / ST ANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.5.D1.	Identify ways to improve a design solution.

DESCRIPTOR / 3.4.5.D3. Determine if the human use of a product or system creates positive or negative results. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.E.	The Designed World

DESCRIPTOR / 3.4.5.E3. Explain how tools, machines, products, and systems use energy in order to do work. STANDARD

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.2.	Watersheds and Wetlands

STANDARD 4.2.5.C. Identify physical, chemical, and biological factors that affect water quality.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.5.	Humans and the Environment

STANDARD 4.5.5.C. Explain the difference between point and non-point source pollution.

Pennsylvania Core and Academic Standards

Science

Grade 6 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology

DESCRIPTOR / 3.4.6.A2. Describe how systems thinking involves considering how every part relates to others. STANDARD

DESCRIPTOR / 3.4.6.A3. Explain how knowledge from other fields of study (STEM) integrate to create new technologies. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society

DESCRIPTOR /3.4.6.B2.Describe how technologies can be used to repair damage caused by natural disasters and to break down wasteSTANDARDfrom the use of various products and systems.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
	0.4.0.04	

DESCRIPTOR /	3.4.6.C1.	Recognize that requirements for a design include such factors as the desired elements and features of a product or
STANDARD		system or the limits that are placed on the design.

DESCRIPTOR / 3.4.6.C2. Show how models are used to communicate and test design ideas and processes. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR /	3.4.6.D1.	Apply a design process to solve problems beyond the laboratory classroom.

STANDARD

DESCRIPTOR / 3.4.6.D2. Use computers appropriately to access and organize and apply information. STANDARD

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.2.	Watersheds and Wetlands
STANDARD	426C	Identify natural and human-made factors that affect water quality

Grade 6 - Adopted: 2014			
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.	

STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

STANDARD AREA / STATEMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Science

Grade 7 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
ST ANDARD	3.4.A. 3.4.7.A2.	The Scope of Technology Explain how different technologies involve different sets of processes.
ST AND ARD DESCRIPTOR / STANDARD DESCRIPTOR / STANDARD	3.4.7.A2. 3.4.7.A3.	The Scope of Technology Explain how different technologies involve different sets of processes. Explain how knowledge gained from other fields of study has a direct effect on the development of technological products and systems.
ST ANDARD DESCRIPTOR / STANDARD DESCRIPTOR / STANDARD SUBJECT / STANDARD AREA	3.4.7.A2. 3.4.7.A3. PA.3.	The Scope of Technology Explain how different technologies involve different sets of processes. Explain how knowledge gained from other fields of study has a direct effect on the development of technological products and systems. Science and Technology and Engineering Education
ST ANDARD DESCRIPTOR / STANDARD DESCRIPTOR / STANDARD SUBJECT / ST ANDARD AREA ST ANDARD AREA / ST AT EMENT	3.4.A. 3.4.7.A2. 3.4.7.A3. PA.3. 3.4.	The Scope of Technology Explain how different technologies involve different sets of processes. Explain how knowledge gained from other fields of study has a direct effect on the development of technological products and systems. Science and Technology and Engineering Education Technology and Engineering Education
ST AND ARD DESCRIPTOR / STANDARD DESCRIPTOR / STANDARD SUBJECT / STANDARD AREA ST AND ARD AREA / ST AND ARD ST AND ARD ST AND ARD	3.4.A. 3.4.7.A2. 3.4.7.A3. PA.3. 3.4. 3.4.	The Scope of Technology Explain how different technologies involve different sets of processes. Explain how knowledge gained from other fields of study has a direct effect on the development of technological products and systems. Science and Technology and Engineering Education Technology and Engineering Education Technology and Society

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education

STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.7.C1.	Describe how design, as a creative planning process, leads to useful products and systems.
DESCRIPTOR / STANDARD	3.4.7.C2.	Explain how modeling, testing, evaluating, and modifying are used to transform ideas into practical solutions.
DESCRIPTOR / STANDARD	3.4.7.C3.	Describe how troubleshooting as a problem-solving method may identify the cause of a malfunction in a technological system.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.7.D1.	Identify and collect information about everyday problems that can be solved by technology and generate ideas and requirements for solving a problem.
DESCRIPTOR / STANDARD	3.4.7.D2.	Select and safely use appropriate tools, products and systems for specific tasks.
DESCRIPTOR / STANDARD	3.4.7.D3.	Use data collected to analyze and interpret trends in order to identify the positive or negative effects of a technology.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.5.	Humans and the Environment
STANDARD	4.5.7.A.	Describe how the development of civilization affects the use of natural resources.
DESCRIPTOR / STANDARD	4.5.7.A.1.	Compare and contrast how people use natural resources in sustainable and nonsustainable ways throughout the world.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.5.	Humans and the Environment
STANDARD	4.5.7.C.	Explain how human actions affect the health of the environment.
DESCRIPTOR / STANDARD	4.5.7.C.1.	Identify residential and industrial sources of pollution and their effects on environmental health.
		Grade 7 - Adopted: 2014

SUBJECT /	PA.CC.3.	Reading Informational Text: Students read, understand, and respond to informational text – with
STANDARD	5.6-8.	emphasis on comprehension, making connections among ideas and between texts with focus on textual
AREA		evidence.

STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

STANDARD AREA / STATEMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Science

Grade 8 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.4.	Formulate and revise explanations and models using logic and evidence.
STANDARD AREA / STATEMENT	SI.5.	Recognize and analyze alternative explanations and models.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.8.B3.	Explain how throughout history, new technologies have resulted from the demands, values, and interests of individuals, businesses, industries, and societies.
DESCRIPTOR / STANDARD	3.4.8.B4.	Explain how societal and cultural priorities and values are reflected in technological devices.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.8.C1.	Evaluate the criteria and constraints of a design.
DESCRIPTOR / STANDARD	3.4.8.C3.	Analyze how a multidisciplinary (STEM) approach to problem solving will yield greater results.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education

STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.8.D1.	Test and evaluate the solutions for a design problem.
DESCRIPTOR / STANDARD	3.4.8.D2.	Operate and maintain systems in order to achieve a given purpose.
DESCRIPTOR / STANDARD	3.4.8.D3.	Interpret and evaluate the accuracy of the information obtained and determine its usefulness.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.2.	Watersheds and Wetlands
STANDARD	4.2.8.A.	Describe factors that affect the quality of ground and surface waters.
		Grade 8 - Adopted: 2014
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas

STANDARD	CC.3.5.6 -8.I.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / ST AND ARD AREA	PA.CC.3.6 .6-8.	SWriting: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Technology Education

		Grade 5 - Adopted: 2017
SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
ST ANDARD AREA / ST AT EMENT	1B-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	1B-AP- 13.	Use an iterative process to plan the development of a program by including others'' perspectives and considering user preferences. (P1.1, P5.1)

DESCRIPTOR /1B-AP-Describe choices made during program development using code comments, presentations, and demonstrations.STANDARD17.(P7.2)

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
STANDARD AREA / STATEMENT	1B-IC.	Impacts of Computing
STANDARD		Culture

DESCRIPTOR / 1B-IC-19. Brainstorm ways to improve the accessibility and usability of technology products for the diverse needs and wants of users. (P1.2)

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
STANDARD AREA / STATEMENT	1B-IC.	Impacts of Computing
STANDARD		Social Interactions

DESCRIPTOR / 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1) STANDARD

Pennsylvania Core and Academic Standards

Technology Education

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Algorithms

DESCRIPTOR / 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1) STANDARD

AREA / STATEMENT

SUBJECT / ST ANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity
DESCRIPTOR / STANDARD	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
SUBJECT / ST ANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD	2-AP.	Algorithms & Programming

STANDARD		Program Development
DESCRIPTOR / STANDARD	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)

STANDARD 2-IC. Impacts of Computing	SUBJECT / ST ANDARD AREA
STATEMENT	ST ANDARD AREA / ST AT EMENT
ST AND ARD Social Interactions	STANDARD

DESCRIPTOR /2-IC-22.Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating aSTANDARDcomputational artifact. (P2.4, P5.2)

Pennsylvania Core and Academic Standards

Technology Education

Grade 7 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Algorithms

DESCRIPTOR / 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1) STANDARD

SUBJECT / ST ANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity

DESCRIPTOR /2-AP-13.Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.STANDARD(P3.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
SUBJECT /	CST A.2.	Level 2 (Ages 11-14)

AREA

ST ANDARD AREA / ST AT EMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions
DESCRIPTOR /	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a

computational artifact. (P2.4, P5.2)

STANDARD

Pennsylvania Core and Academic Standards

Technology Education

Grade 8 - Adopted: 2017

SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Algorithms

DESCRIPTOR / 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1) STANDARD

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity

DESCRIPTOR /	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
STANDARD		(P3.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development

DESCRIPTOR /2-AP-15.Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3,STANDARDP1.1)

SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions

DESCRIPTOR / 2-IC-22. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

Mathematics

Grade 5 - Adopted: 2021

DOMAIN		The Standards for Mathematical Practice
STATEMENT OF ENDURING KNOWLEDGE	MP1	Make sense of problems and persevere in solving them.
STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.
STATEMENT OF ENDURING KNOWLEDGE	MP5	Use appropriate tools strategically.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.
DOMAIN		Grade 5 Content Standards
DOMAIN STATEMENT OF ENDURING KNOWLEDGE	5.MD.	Grade 5 Content Standards Measurement and Data
DOMAIN STATEMENT OF ENDURING KNOWLEDGE GSE STEM	5.MD. 5.MD.C.	Grade 5 Content Standards Measurement and Data Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition.
DOMAIN STATEMENT OF ENDURING KNOWLEDGE GSE STEM SPECIFIC INDICATOR	5.MD. 5.MD.C. 5.MD.C. 5.	Grade 5 Content Standards Measurement and Data Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.
DOMAIN STATEMENT OF ENDURING KNOWLEDGE GSE STEM SPECIFIC INDICATOR	5.MD. 5.MD.C. 5.MD.C. 5. MD.C.5 .a.	Grade 5 Content Standards Measurement and Data Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number edge lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
DOMAIN ST AT EMENT OF ENDURING KNOWLEDGE GSE ST EM SPECIFIC INDICATOR INDICATOR	5.MD.C. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b.	Grade 5 Content Standards Measurement and Data Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number edge lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formula V = I × w × h and V = B × h (where B stands for the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.
DOMAIN ST AT EMENT OF ENDURING KNOWLEDGE GSE ST EM INDICATOR INDICATOR	5.MD. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b.	Grade 5 Content Standards Measurement and Data Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number edge lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formula V = I × w × h and V = B × h (where B stands for the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems. Rhode Island World-Class Standards Mathematics Grade 6 - Adopted: 2021
DOMAIN ST AT EMENT OF ENDURING GSE ST EM SPECIFIC INDICATOR INDICATOR DOMAIN	5.MD.C. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b.	Grade 5 Content Standards Measurement and Data Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number edge lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formula V = I × w × h and V = B × h (where B stands for the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems. Rhode Island World-Class Standards Mathematics Grade 6 - Adopted: 2021 The Standards for Mathematical Practice

STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.
STATEMENT OF ENDURING KNOWLEDGE	MP5	Use appropriate tools strategically.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.

DOMAIN		Grade 6 Content Standards
STATEMENT OF ENDURING KNOWLEDGE	6.G.	Geometry
GSE STEM	6.G.A.	Solve real-world and mathematical problems involving area, surface area, and volume.
SPECIFIC INDICATOR	6.G.A.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = Iwh and V = Bh to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Mathematics

DOMAIN		The Standards for Mathematical Practice
STATEMENT OF ENDURING KNOWLEDGE	MP1	Make sense of problems and persevere in solving them.
STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.

STATEMENT OF ENDURING KNOWLEDGE	MP5	Use appropriate tools strategically.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.
		Rhode Island World-Class Standards Mathematics Grade 8 - Adopted: 2021
DOMAIN		The Standards for Mathematical Practice
STATEMENT OF ENDURING KNOWLEDGE	MP1	Make sense of problems and persevere in solving them.
STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.
STATEMENT OF ENDURING KNOWLEDGE	MP5	Use appropriate tools strategically.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.
DOMAIN		Grade 8 Content Standards
ST AT EMENT OF ENDURING KNOWLEDGE	8.G.	Geometry
GSE STEM	8.G.C.	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
SPECIFIC INDICATOR	8.G.C.9.	Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.

Science

Grade 5 - Adopted: 2013

DOMAIN	NGSS.3- 5-ETS.	ENGINEERING DESIGN
STATEMENT OF ENDURING KNOWLEDGE	3-5- ET S1.	Engineering Design

GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
SPECIFIC INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
SPECIFIC INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science

Grade 6 - Adopted: 2013

DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	MS- ESS3.	Earth and Human Activity
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
DOMAIN	NGSS.MS -ETS.	ENGINEERING DESIGN
STATEMENT OF ENDURING KNOWLEDGE	MS- ET S1.	Engineering Design
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
SPECIFIC INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

SPECIFICMS-Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process suchINDICATORETS1-4.that an optimal design can be achieved.

Grade 6 - Adopted: 2010		
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Key Ideas and Details
GSE STEM	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GSE STEM	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
DOMAIN	DST 6 9	Ponding Standards for Literacy in Science and Technical Subjects

ST AT EMENT OF ENDURING KNOWLEDGE		Craft and Structure
GSE STEM	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GSE STEM	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Integration of Knowledge and Ideas
GSE STEM	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Range of Reading and Level of Text Complexity
GSE STEM	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Text Types and Purposes
GSE STEM	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SPECIFIC INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Production and Distribution of Writing
GSE STEM	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GSE STEM	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		Rhode Island World-Class Standards
		Science Grade 7 - Adopted: 2013
DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE

ST AT EMENT OF ENDURING KNOWLEDGE	MS- ESS3.	Earth and Human Activity
GSE STEM		Students who demonstrate understanding can:
	MC	

SPECIFICMS-Construct an argument supported by evidence for how increases in human population and per-capita consumptionINDICATORESS3-4.of natural resources impact Earth's systems.

DOMAIN	NGSS.MS -ETS.	ENGINEERING DESIGN
ST AT EMENT OF ENDURING KNOWLEDGE	MS- ETS1.	Engineering Design
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
SPECIFIC INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
SPECIFIC INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Key Ideas and Details
GSE STEM	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GSE STEM	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Craft and Structure
GSE STEM	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GSE STEM	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Integration of Knowledge and Ideas

GSE STEM	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Range of Reading and Level of Text Complexity
GSE STEM	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Text Types and Purposes
GSE STEM	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SPECIFIC INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Production and Distribution of Writing
GSE STEM	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GSE STEM	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Science

Grade 8 - Adopted: 2013

DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
ST AT EMENT OF ENDURING KNOWLEDGE	MS- ESS3.	Earth and Human Activity
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

DOMAIN	NGSS.MS -ETS.	ENGINEERING DESIGN
ST AT EMENT OF ENDURING KNOWLEDGE	MS- ETS1.	Engineering Design
GSE STEM		Students who demonstrate understanding can:

SPECIFIC INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
SPECIFIC INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
SPECIFIC INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Key Ideas and Details
GSE STEM	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GSE STEM	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Craft and Structure
GSE STEM	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GSE STEM	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Integration of Knowledge and Ideas
GSE STEM	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Range of Reading and Level of Text Complexity
GSE STEM	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Text Types and Purposes

GSE STEM	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SPECIFIC INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
ST AT EMENT OF ENDURING KNOWLEDGE		Production and Distribution of Writing
GSE STEM	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GSE STEM	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Technology Education Grade 5 - Adopted: 2016

DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GSE STEM	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GSE STEM	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

 GSE STEM
 ISTE Select and use digital tools to plan and manage a design process that considers design constraints and calculated S.4.b.

 risks.
 ISTE risks.

DOMAIN		ISTE Standards for Students
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GSE STEM	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
GSE STEM	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GSE STEM	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	1B-RC.	Responsible Computing & Society
GSE STEM	1B-RC- CU.	Culture

SPECIFIC1B-RC-Identify ways to improve the accessibility and usability of technology products for the diverse needs and wants ofINDICATORCU-2.users.

Rhode Island World-Class Standards

Technology Education

Grade 6 - Adopted: 2016

		ISTE Standards for Students	
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
GSE STEM	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
DOMAIN		ISTE Standards for Students	
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	
GSE STEM	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.	
GSE STEM	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated isks.	
DOMAIN		ISTE Standards for Students	
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.	
GSE STEM	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.	
GSE STEM	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.	
GSE STEM	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.	

Grade	6	_	ohA	nted.	201	8
Oraue	•	_	Auu	pieu.	201	

DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT-A.	Algorithms

Technology Education

Grade 7 - Adopted: 2016

DOMAIN		ISTE Standards for Students
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GSE STEM	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
DOMAIN		ISTE Standards for Students
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GSE STEM	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GSE STEM	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GSE STEM	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
GSE STEM	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GSE STEM	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 7 - Adopted: 2018
DOMAIN		Computer Science
ST AT EMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT-A.	Algorithms
SPECIFIC INDICATOR	2-CT-A-1.	Use diagrams and/or pseudocode to plan, analyze, solve and/or code complex problems as algorithms.
		Disa da Jalan di Wasild, Olasa Sten danda

Rhode Island World-Class Standards

Technology Education

Grade 8 - Adopted: 2016

ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
GSE STEM	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
DOMAIN		ISTE Standards for Students	
ST AT EMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	
GSE STEM	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.	
GSE STEM	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.	
DOMAIN		ISTE Standards for Students	
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.	
GSE STEM	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.	
GSE STEM	ISTE- S.5.b.	collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to acilitate problem-solving and decision-making.	
GSE STEM	ISTE- S.5.d.	Jnderstand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.	
		Grade 8 - Adopted: 2018	
DOMAIN		Computer Science	
ST AT EMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming	
GSE STEM	2-CT-A.	Algorithms	
SPECIFIC INDICATOR	2-CT-A-1.	Use diagrams and/or pseudocode to plan, analyze, solve and/or code complex problems as algorithms.	
		South Carolina Standards & Learning	
		Mathematics	
		Grade 5 - Adopted: 2015	

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.
PERFORMANC E DESCRIPTOR	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.

PERFORMANC E DESCRIPTOR / STANDARD	PS.1c.	Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1d.	Evaluate the success of an approach to solve a problem and refine it if necessary.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.2.	Reason both contextually and abstractly.
PERFORMANC E DESCRIPTOR / STANDARD	PS.2d.	Connect the meaning of mathematical operations to the context of a given situation.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3d.	Reflect on and provide thoughtful responses to the reasoning of others.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4d.	Evaluate the reasonableness of a model and refine if necessary.

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.5.	Use a variety of mathematical tools effectively and strategically.
PERFORMANC E DESCRIPTOR / STANDARD	PS.5a.	Select and use appropriate tools when solving a mathematical problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.5b.	Use technological tools and other external mathematical resources to explore and deepen understanding of concepts.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.7.	Identify and utilize structure and patterns.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7a.	Recognize complex mathematical objects as being composed of more than one simple object.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7c.	Look for structures to interpret meaning and develop solution strategies.
ST ANDARD / COURSE	SC.5.MD A.	Measurement and Data Analysis
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	5.MDA.3	Understand the concept of volume measurement.
PERFORMANC E DESCRIPTOR / STANDARD	5.MDA.3 a.	Recognize volume as an attribute of right rectangular prisms.
PERFORMANC E DESCRIPTOR / STANDARD	5.MDA.3 c.	Determine the volume of right rectangular prisms using the formula derived from packing right rectangular prisms and counting the layers of standard unit cubes.
		South Carolina Standards & Learning Mathematics Grade 6 - Adopted: 2015
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.
PERFORMANC	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.

/ STANDARD

PERFORMANC E DESCRIPTOR / STANDARD	PS.1c.	Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1d.	Evaluate the success of an approach to solve a problem and refine it if necessary.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.2.	Reason both contextually and abstractly.
PERFORMANC E DESCRIPTOR / STANDARD	PS.2d.	Connect the meaning of mathematical operations to the context of a given situation.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3d.	Reflect on and provide thoughtful responses to the reasoning of others.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4d.	Evaluate the reasonableness of a model and refine if necessary.

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.5.	Use a variety of mathematical tools effectively and strategically.
PERFORMANC E DESCRIPTOR / STANDARD	PS.5a.	Select and use appropriate tools when solving a mathematical problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.5b.	Use technological tools and other external mathematical resources to explore and deepen understanding of concepts.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.7.	Identify and utilize structure and patterns.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7a.	Recognize complex mathematical objects as being composed of more than one simple object.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7c.	Look for structures to interpret meaning and develop solution strategies.
ST ANDARD / COURSE	SC.6.GM.	Geometry and Measurement
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	6.GM.2.	Use visual models (e.g., model by packing) to discover that the formulas for the volume of a right rectangular prism (V=lwh, V=Bh) are the same for whole or fractional edge lengths. Apply these formulas to solve real-world and mathematical problems.
		South Carolina Standards & Learning Mathematics Grade 7 - Adopted: 2015
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.
PERFORMANC	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.

/ STANDARD

E DESCRIPTOR

 PERFORMANC
 PS.1c.
 Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.

 / STANDARD
 Standard

PERFORMANC P		
E DESCRIPTOR		
/ STANDARD		

ST ANDARD / COURSE SC.PS. South Carolina College- and Career-Ready Mathematical Process Standards KNOWLEDGE PS.2. Reason both contextually and abstractly. AND SKILLS / ESSENTIAL QUESTION

PERFORMANC PS.2d. E DESCRIPTOR

Connect the meaning of mathematical operations to the context of a given situation.

/ STANDARD

STANDARD / COURSE	50.25.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.

PERFORMANC PS.3d. Reflect on and provide thoughtful responses to the reasoning of others. E DESCRIPTOR

/ STANDARD

STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4d.	Evaluate the reasonableness of a model and refine if necessary.
ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.5.	Use a variety of mathematical tools effectively and strategically.
PERFORMANC E DESCRIPTOR / STANDARD	PS.5a.	Select and use appropriate tools when solving a mathematical problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.5b.	Use technological tools and other external mathematical resources to explore and deepen understanding of concepts.

STANDARD / SC.PS. South Carolina College- and Career-Ready Mathematical Process Standards COURSE KNOWLEDGE PS.7. Identify and utilize structure and patterns. AND SKILLS / ESSENTIAL QUESTION Recognize complex mathematical objects as being composed of more than one simple object. PERFORMANC PS.7a. E DESCRIPTOR / STANDARD PERFORMANC PS.7c. Look for structures to interpret meaning and develop solution strategies. E DESCRIPTOR / STANDARD STANDARD / SC.7.GM. Geometry and Measurement COURSE **KNOWLEDGE** 7.GM.6. Apply the concepts of two- and three-dimensional figures to real-world and mathematical situations. AND SKILLS / ESSENTIAL QUESTION

PERFORMANC7.GM.6b.Understand that the concepts of volume and surface area are applied to three-dimensional figures such as cubes,
right rectangular prisms, and right triangular prisms./ STANDARD

South Carolina Standards & Learning

Mathematics

Grade 8 - Adopted: 2015

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1c.	Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.

PERFORMANC P		
E DESCRIPTOR		
/ STANDARD		

ST ANDARD / COURSE SC.PS. South Carolina College- and Career-Ready Mathematical Process Standards KNOWLEDGE PS.2. Reason both contextually and abstractly. AND SKILLS / ESSENTIAL QUESTION

PERFORMANC PS.2d. E DESCRIPTOR

Connect the meaning of mathematical operations to the context of a given situation.

/ STANDARD

STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.
PERFORMANC	PS.3d.	Reflect on and provide thoughtful responses to the reasoning of others.

```
E DESCRIPTOR
```

/ STANDARD

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4d.	Evaluate the reasonableness of a model and refine if necessary.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.5.	Use a variety of mathematical tools effectively and strategically.
PERFORMANC E DESCRIPTOR / STANDARD	PS.5a.	Select and use appropriate tools when solving a mathematical problem.
PERFORMANC E DESCRIPTOR	PS.5b.	Use technological tools and other external mathematical resources to explore and deepen understanding of concepts.

/ STANDARD

/ STANDARD

ST ANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.7.	Identify and utilize structure and patterns.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7a.	Recognize complex mathematical objects as being composed of more than one simple object.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7c.	Look for structures to interpret meaning and develop solution strategies.
ST ANDARD / COURSE	SC.8.GM.	Geometry and Measurement
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	8.GM.9.	Solve real-world and mathematical problems involving volumes of cones, cylinders, and spheres and the surface area of cylinders.

South Carolina Standards & Learning

Science

Grade 7 - Adopted: 2021

ST ANDARD / COURSE		Earth and Space Science (ESS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Earth and Human Activity (ESS3)
PERFORMANC E DESCRIPTOR	7-ESS3- 4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

South Carolina Standards & Learning

Technology Education

Grade 5 - Adopted: 2017

ST ANDARD / COURSE	Process Standards	
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	A computer science literate student can:	
PERFORMANC E DESCRIPTOR / STANDARD	3	Recognize, define, and analyze computational problems.
--	------	---
GRADE LEVEL EXAMPLE / STAGE	3.a.	Recognize when it is appropriate to solve a problem computationally.
GRADE LEVEL EXAMPLE / STAGE	3.b.	Make sense of computational problems and persevere in solving them.
GRADE LEVEL EXAMPLE / STAGE	3.c.	Relate computational problems to prior knowledge.
GRADE LEVEL EXAMPLE / STAGE	3.d.	Recognize that there may be multiple approaches to solving a problem.
GRADE LEVEL EXAMPLE / STAGE	3.e.	Approach problem solving iteratively, using a cyclical process.
ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:

PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.b.	Recognize when to use the same solution for multiple problems.

GRADE LEVEL	4.c.	Test computational artifacts systematically by considering multiple scenarios and using test cases.
EXAMPLE /		
STAGE		

STANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / ST ANDARD	5	Communicate about computing.

 GRADE LEVEL
 5.a.
 Select and use appropriate technological tools to convey solutions to computing problems.

 EXAMPLE /
 STAGE

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Recognize that many daily tasks can be described as step-by-step instructions (i.e., algorithms).

PERFORMANC 5.AP.1.1. Execute a sequence of instructions (i.e., algorithm) that mimic a daily task. E DESCRIPTOR

/ STANDARD

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3.	Explore how tasks can be decomposed into simple tasks and simple tasks can be composed to form complex tasks.

PERFORMANC5.AP.3.1.Compose multiple levels of simple tasks (e.g., eating breakfast can include going to the table, sitting down in a chair,
and picking up a spoon; brushing your teeth; walking to the bus stop) to make a more complex task./ STANDARD

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4.	Develop a program to express an idea or address a problem.

PERFORMANC 5.AP.4.1. Use a visual language to design and test a program that solves a simple task (e.g., online coding activity). E DESCRIPTOR

/ STANDARD

ST ANDARD / COURSE		Impact of Computing
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Discuss how computing has impacted society.

PERFORMANC 5.IC.1.1. Discuss the positive and negative impacts of computing on society. E DESCRIPTOR / STANDARD

South Carolina Standards & Learning

Technology Education

Grade 6 - Adopted: 2017

ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	3	Recognize, define, and analyze computational problems.

GRADE LEVEL EXAMPLE / STAGE	3.a.	Recognize when it is appropriate to solve a problem computationally.
GRADE LEVEL EXAMPLE / STAGE	3.b.	Make sense of computational problems and persevere in solving them.
GRADE LEVEL EXAMPLE / STAGE	3.c.	Relate computational problems to prior knowledge.
GRADE LEVEL EXAMPLE / STAGE	3.d.	Recognize that there may be multiple approaches to solving a problem.
GRADE LEVEL EXAMPLE / STAGE	3.e.	Approach problem solving iteratively, using a cyclical process.
STANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.b.	Recognize when to use the same solution for multiple problems.
GRADE LEVEL EXAMPLE / STAGE	4.c.	Test computational artifacts systematically by considering multiple scenarios and using test cases.
ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPT OR / ST ANDARD	5	Communicate about computing.
GRADE LEVEL EXAMPLE / STAGE	5.a.	Select and use appropriate technological tools to convey solutions to computing problems.

COURSE

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Design, evaluate, and modify simple algorithms (e.g., steps to make a sandwich; steps to a popular dance; steps for sending an email).
PERFORMANC E DESCRIPTOR / STANDARD	6.AP.1.1.	Recognize that there are multiple ways to sequence instructions that can lead to the same result.
ST ANDARD / COURSE		Algorithms and Programming

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4.	Design and code programs to solve problems.
PERFORMANC	6.AP.4.1.	Use a beginner coding language (e.g., drag-and-drop, block-based) to design and code a simple program that
E DESCRIPTOR		solves a problem.

/ STANDARD

ST ANDARD / COURSE		Impact of Computing
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Evaluate the tradeoffs of computing in everyday activities.
PERFORMANC E DESCRIPTOR / STANDARD	6.IC.1.2.	Discover positive and negative impacts of computing on society (e.g., personal, health, workforce, economy, education, culture, environment).

South Carolina Standards & Learning

Technology Education Grade 7 - Adopted: 2017

ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	3	Recognize, define, and analyze computational problems.
GRADE LEVEL EXAMPLE / STAGE	3.a.	Recognize when it is appropriate to solve a problem computationally.
GRADE LEVEL EXAMPLE / STAGE	3.b.	Make sense of computational problems and persevere in solving them.
GRADE LEVEL EXAMPLE / STAGE	3.c.	Relate computational problems to prior knowledge.

GRADE LEVEL EXAMPLE / STAGE	3.d.	Recognize that there may be multiple approaches to solving a problem.
GRADE LEVEL EXAMPLE / STAGE	3.e.	Approach problem solving iteratively, using a cyclical process.
ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.b.	Recognize when to use the same solution for multiple problems.
GRADE LEVEL EXAMPLE / STAGE	4.c.	Test computational artifacts systematically by considering multiple scenarios and using test cases.
STANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	5	Communicate about computing.
GRADE LEVEL EXAMPLE / STAGE	5.a.	Select and use appropriate technological tools to convey solutions to computing problems.
STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Design, evaluate, and modify simple algorithms (e.g., steps to make a sandwich; steps to a popular dance; steps for sending an email).
PERFORMANC E DESCRIPTOR / STANDARD	7.AP.1.1.	Write sequences of instructions for others to perform tasks.
PERFORMANC E DESCRIPTOR / STANDARD	7.AP.1.2.	Suggest changes to the sequence of instructions that can lead to the same result (e.g., explore different ways to tying shoes).

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3.	Decompose problems into subproblems and write code to solve the subproblems (i.e., break down a problem into smaller parts).
PERFORMANC E DESCRIPTOR	7.AP.3.2.	Identify the parts of a program (e.g., components of creating a video game include keeping score, determining winners/losers, moving characters, designing game art, and advancing level).

/ STANDARD

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4.	Design and code programs to solve problems.
PERFORMANC E DESCRIPTOR	7.AP.4.1.	Use a beginner coding language (e.g., drag-and-drop, block-based) to design and code a moderately complex program that solves a problem.

/ STANDARD

ST ANDARD / COURSE		Impact of Computing
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Evaluate the tradeoffs of computing in everyday activities.
PERFORMANC E DESCRIPTOR / STANDARD	7.IC.1.1.	Understand how computer science is and can be used to solve problems in students' daily lives (e.g., voter identification website, online tax filing).
PERFORMANC E DESCRIPTOR / STANDARD	7.IC.1.2.	Compare positive and negative impacts of computing on society (e.g., personal, health, workforce, economy, education, culture, environment).

South Carolina Standards & Learning

Technology Education

ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	3	Recognize, define, and analyze computational problems.
GRADE LEVEL EXAMPLE / STAGE	3.a.	Recognize when it is appropriate to solve a problem computationally.
GRADE LEVEL EXAMPLE / STAGE	3.b.	Make sense of computational problems and persevere in solving them.

GRADE LEVEL EXAMPLE / STAGE	3.c.	Relate computational problems to prior knowledge.
GRADE LEVEL EXAMPLE / STAGE	3.d.	Recognize that there may be multiple approaches to solving a problem.
GRADE LEVEL EXAMPLE / STAGE	3.e.	Approach problem solving iteratively, using a cyclical process.
ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.b.	Recognize when to use the same solution for multiple problems.

GRADE LEVEL	4.c.	Test computational artifacts systematically by considering multiple scenarios and using test cases.
EXAMPLE /		
STAGE		

ST ANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENT IAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	5	Communicate about computing.
GRADE LEVEL EXAMPLE /	5.a.	Select and use appropriate technological tools to convey solutions to computing problems.

STAGE

ST ANDARD / COURSE		Data and Analysis
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3.	Analyze various ways to visually represent data.
PERFORMANC E DESCRIPTOR / STANDARD	8.DA.3.3.	Explain how models are used to predict specific behaviors and/or outcomes (e.g., weather data presented in a model used to predict future weather conditions and activity).

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Design, evaluate, and modify simple algorithms (e.g., steps to make a sandwich; steps to a popular dance; steps for sending an email).
PERFORMANC E DESCRIPTOR / STANDARD	8.AP.1.1.	Modify a sequence of instructions to solve problems.

PERFORMANC 8.AP.1.2. Make changes to the sequence of instructions that can lead to the same result. E DESCRIPTOR

/ STANDARD	
------------	--

ST ANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3.	Decompose problems into subproblems and write code to solve the subproblems (i.e., break down a problem into smaller parts).

PERFORMANC 8.AP.3.2. Compose a program with multiple parts. E DESCRIPTOR / STANDARD

STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4.	Design and code programs to solve problems.

PERFORMANC8.AP.4.1.Use a beginner coding language (e.g., drag-and-drop, block-based) to design and code a complex program thatE DESCRIPTORsolves a problem./ STANDARD

ST ANDARD / COURSE		Impact of Computing
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Evaluate the tradeoffs of computing in everyday activities.
PERFORMANC E DESCRIPTOR / STANDARD	8.IC.1.2.	Analyze positive and negative impacts of computing on society (e.g., personal, health, workforce, economy, education, culture, environment).
		South Dakota Content Standards

Mathematics

		Grade 5 - Adopted: 2018
GOAL/STRAND		Standards for Mathematical Practice
INDICATOR/BE NCHMARK	1	Make sense of problems and persevere in solving them.

INDICATOR/BE NCHMARK	2	Reason abstractly and quantitatively.
INDICATOR/BE NCHMARK	3	Construct viable arguments and critique the reasoning of others.
INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	5	Use appropriate tools strategically.
INDICATOR/BE NCHMARK	7	Look for and make use of structure.
GOAL/STRAND	5.MD.	Measurement and Data
INDICATOR/B ENCHMARK	5.MD.C.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
STANDARD	5.MD.C.4	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
GOAL/STRAND	5.MD.	Measurement and Data
GOAL/STRAND INDICATOR/BE NCHMARK	5.MD. 5.MD.C.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GOAL/STRAND INDICATOR/BE NCHMARK STANDARD	5.MD. 5.MD.C. 5.MD.C. 5.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
GOAL/STRAND INDICATOR/BE NCHMARK STANDARD SUPPORTING SKILLS	5.MD. 5.MD.C. 5.MD.C. 5.MD.C.5 .a.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base.
GOAL/STRAND INDICATOR/BE NCHMARK STANDARD SUPPORTING SKILLS	5.MD. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
GOAL/STRAND INDICATOR/BE NCHMARK STANDARD SUPPORTING SKILLS SUPPORTING SKILLS	5.MD. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b. 5.MD.C.5 .c.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formulas V = I × w × h and V = B × h (where B is the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems.
GOAL/STRAND INDICATOR/BE NCHMARK STANDARD SUPPORTING SKILLS SUPPORTING SKILLS	5.MD. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b. 5.MD.C.5 .c.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formulas V = I × w × h and V = B × h (where B is the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems. South Dakota Content Standards
GOAL/STRAND INDICATOR/BE NCHMARK STANDARD SUPPORTING SKILLS SUPPORTING SKILLS	5.MD. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b. 5.MD.C.5 .c.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formulas V = I × w × h and V = B × h (where B is the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems. South Dakota Content Standards Mathematics Grade 6 - Adopted: 2018
GOAL/STRAND INDICATOR/BE NCHMARK STANDARD SUPPORTING SKILLS SUPPORTING SKILLS SUPPORTING SKILLS	5.MD. 5.MD.C. 5.MD.C.5 .a. 5.MD.C.5 .b. 5.MD.C.5 .c.	Measurement and Data Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formulas V = I × w × h and V = B × h (where B is the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems. South Dakota Content Standards Mathematics Grade 6 - Adopted: 2018 Standards for Mathematical Practice

INDICATOR/BE 2 Reason abstractly and quantitatively. NCHMARK

NCHMARK

INDICATOR/BE 3 Construct viable arguments and critique the reasoning of others. NCHMARK

INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	5	Use appropriate tools strategically.
INDICATOR/BE NCHMARK	7	Look for and make use of structure.

GOAL/STRAND	6.G.	Geometry
INDICATOR/B ENCHMARK	6.G.A.	Solve real-world and mathematical problems involved area, surface area, and volume.
STANDARD	6.G.A.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = Iwh and V = Bh where B is the area of the base to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

South Dakota Content Standards

Mathematics

Grade 7 - Adopted: 2018

GOAL/STRAND		Standards for Mathematical Practice
INDICATOR/BE NCHMARK	1	Make sense of problems and persevere in solving them.
INDICATOR/BE NCHMARK	2	Reason abstractly and quantitatively.
INDICATOR/BE NCHMARK	3	Construct viable arguments and critique the reasoning of others.
INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	5	Use appropriate tools strategically.
INDICATOR/BE NCHMARK	7	Look for and make use of structure.

South Dakota Content Standards

Mathematics

GOAL/STRAND		Standards for Mathematical Practice
INDICATOR/BE NCHMARK	1	Make sense of problems and persevere in solving them.
INDICATOR/BE NCHMARK	2	Reason abstractly and quantitatively.

INDICATOR/BE NCHMARK	3	Construct viable arguments and critique the reasoning of others.
INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	5	Use appropriate tools strategically.
INDICATOR/BE	7	Look for and make use of structure.

NCHMARK

INDICATOR/B ENCHMARK

Craft and Structure

GOAL/STRAND	8.G.	Geometry
INDICATOR/B ENCHMARK	8.G.C.	Solve real-world and mathematical problems involving volume of cylinders, cones and spheres.
STANDARD	8.G.C.9.	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

South Dakota Content Standards

Grade 6 - Adopted: 2015		
GOAL/STRAND	SD.6- 8.PSS.	Middle School Physical Science Standards
INDICATOR/BE NCHMARK	MS-PS4- 3.	Obtain, evaluate and communicate information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (SEP: 8; DCI: PS4.C; CCC: Structure, Technology)
GOAL/STRAND	SD.6- 8.ESS.	Middle School Earth and Space Science Standards
INDICATOR/BE NCHMARK	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. (SEP: 7; DCI: ESS3.C; CCC: Cause/Effect, Technology, Nature Science/Consequence-Actions)

Grade 6 - Adopted: 2010		
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Key Ideas and Details
STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects

STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Integration of Knowledge and Ideas
STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Range of Reading and Level of Text Complexity
STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/BE NCHMARK		Text Types and Purposes
STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SUPPORTING SKILLS	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Production and Distribution of Writing
STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		South Dakota Content Standards Science Grade 7 - Adopted: 2015
GOAL/STRAND	SD.6- 8.PSS.	Middle School Physical Science Standards
INDICATOR/BE NCHMARK	MS-PS4- 3.	Obtain, evaluate and communicate information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (SEP: 8; DCI: PS4.C; CCC: Structure, Technology)
GOAL/STRAND	SD.6- 8.ESS.	Middle School Earth and Space Science Standards

INDICATOR/BE	MS-	Construct an argument supported by evidence for how increases in human population and per-capita consumption of
NCHMARK	ESS3-4.	natural resources impact Earth's systems. (SEP: 7; DCI: ESS3.C; CCC: Cause/Effect, Technology, Nature
		Science/Consequence-Actions)

		Grade 7 - Adopted: 2010
GOAL/ST RAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Key Ideas and Details
STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
GOAL/ST RAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Craft and Structure
STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Integration of Knowledge and Ideas
STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
GOAL/ST RAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Range of Reading and Level of Text Complexity
STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
GOAL/ST RAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/BE NCHMARK		Text Types and Purposes
STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
SUPPORTING	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.

GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Production and Distribution of Writing
STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

South Dakota Content Standards

Science

	Grade 8 - Adopted: 2015		
GOAL/STRAND	SD.6- 8.PSS.	Middle School Physical Science Standards	
INDICATOR/BE NCHMARK	MS-PS4- 3.	Obtain, evaluate and communicate information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (SEP: 8; DCI: PS4.C; CCC: Structure, Technology)	
GOAL/STRAND	SD.6- 8.ESS.	Middle School Earth and Space Science Standards	
INDICATOR/BE NCHMARK	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. (SEP: 7; DCI: ESS3.C; CCC: Cause/Effect, Technology, Nature Science/Consequence-Actions)	

		Grade 8 - Adopted: 2010
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Key Ideas and Details
STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Craft and Structure
STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Integration of Knowledge and Ideas

STANDARD	RST.6-	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
	8.9.	gained from reading a text on the same topic.

GOAL/ST RAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Range of Reading and Level of Text Complexity
STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/BE NCHMARK		Text Types and Purposes
STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

SUPPORTINGWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.SKILLS8.2(d)

GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Production and Distribution of Writing
STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

South Dakota Content Standards Technology Education Grade 8 - Adopted: 2015

GOAL/STRAND	SD.ET.	Educational Technology
INDICATOR/BE NCHMARK	ET.CT.	Eighth Grade Critical Thinking, Problem Solving, and Decision Making
STANDARD	8.ET.CT .3.	Students evaluate and select technology tools based on the specific tasks.

SUPPORTING8.ET.CT.3Develop, analyze, and integrate a repertoire of strategies to apply new technologies to tasks.SKILLS.1.

0	GOAL/STRAND	SD.ET.	Educational Technology
	INDICATOR/BE NCHMARK	ET.OC.	Eighth Grade Technology Operations and Concepts
	STANDARD	8.ET.OC .1.	Students interpret the history and progression of technology.

SUPPORTING8.ET.OC. Critique the progression of technology systems and peripherals to improve the user experienceSKILLS1.1.

SUPPORTING	8.ET.OC.	Predict the effects that may result from society's increasing reliance on technology.
SKILLS	1.2.	

Tennessee Academic Standards Mathematics

Grade 5 - Adopted: 2021

STRAND / STANDARD / COURSE		Standards for Mathematical Practice
CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	5	Use appropriate tools strategically.
CONCEPTUAL STRAND / GUIDING QUESTION	7	Look for and make use of structure.
STRAND / STANDARD / COURSE		Mathematics Grade 5
CONCEPTUAL STRAND / GUIDING QUESTION	5.MD.	Measurement and Data (MD)

 EXPECT AT ION

 LEARNING

 5.MD.C.4

 Measure volume by counting unit cubes, using cubic centimeters, cubic inches, cubic feet, and improvised units.

Geometric measurement: understand concepts of volume and relate volume to multiplication and to

5.MD.C.

addition.

GUIDING

QUESTION /

LEARNING

LEARNING5.MD.C.4Measure volume by counting unit cubes, using cubic centimeters, cubic inches, cubic feet, and improvised units.EXPECTATION.

STRAND /	Mathematics Grade 5
STANDARD / COURSE	

CONCEPTUAL STRAND / GUIDING QUESTION	5.MD.	Measurement and Data (MD)
GUIDING QUESTION / LEARNING EXPECTATION	5.MD.C.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
LEARNING EXPECT AT ION	5.MD.C. 5.	Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume of right rectangular prisms.
INDICATOR	5.MD.C.5 .a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent whole-number products of three factors as volumes (e.g., to represent the associative property of multiplication).
INDICATOR	5.MD.C.5 .b.	Know and apply the formulas $V = I \times w \times h$ and $V = B \times h$ (where B represents the area of the base) for rectangular prisms with whole number edge lengths in the context of solving real-world and mathematical problems.

Tennessee Academic Standards

Mathematics

		Grade 6 - Adopted: 2021
STRAND / STANDARD / COURSE		Standards for Mathematical Practice
CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	5	Use appropriate tools strategically.
CONCEPTUAL STRAND / GUIDING QUESTION	7	Look for and make use of structure.
STRAND / STANDARD / COURSE		Mathematics Grade 6

CONCEPTUAL STRAND / GUIDING QUESTION	6.G.	Geometry (G)
GUIDING QUESTION / LEARNING EXPECTATION	6.G.A.	Solve real-world and mathematical problems involving area, surface area, and volume.
LEARNING EXPECTATION	6.G.A.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = Iwh and V = Bh where B is the area of the base to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Tennessee Academic Standards Mathematics Grade 7 - Adopted: 2021

Grade 7 - Adopted: 2021			
STRAND / STANDARD / COURSE		Standards for Mathematical Practice	
CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.	
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.	
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.	
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.	
CONCEPTUAL STRAND / GUIDING QUESTION	5	Use appropriate tools strategically.	
CONCEPTUAL STRAND / GUIDING QUESTION	7	Look for and make use of structure.	
		Tennessee Academic Standards	
		Mathematics	
		Grade 8 - Adopted: 2021	

Standards for Mathematical Practice

STRAND / STANDARD / COURSE

CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	5	Use appropriate tools strategically.
CONCEPTUAL STRAND / GUIDING QUESTION	7	Look for and make use of structure.

STRAND / STANDARD / COURSE		Mathematics Grade 8
CONCEPTUAL STRAND / GUIDING QUESTION	8.G.	Geometry (G)
GUIDING QUESTION / LEARNING EXPECTATION	8.G.C.	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

LEARNING 8.G.C.6. Apply the formulas for the volumes of cones, cylinders, and spheres to solve real-world and mathematical problems. EXPECTATION

Tennessee Academic Standards				
		Science		
		Grade 5 - Adopted: 2016		
STRAND / STANDARD / COURSE	TN.5.ETS	Engineering, Technology, and Applications of Science (ETS)		
CONCEPTUAL STRAND / GUIDING QUESTION	5.ET S1.	Engineering Design		

GUIDING QUESTION / LEARNING EXPECTATION	5.ETS1.1.	Research, test, re-test, and communicate a design to solve a problem.
GUIDING QUESTION / LEARNING EXPECTATION	5.ETS1.2.	Plan and carry out tests on one or more elements of a prototype in which variables are controlled and failure points are considered to identify which elements need to be improved. Apply the results of tests to redesign the prototype.
GUIDING QUESTION / LEARNING EXPECTATION	5.ETS1.3.	Describe how failure provides valuable information toward finding a solution.
STRAND / STANDARD / COURSE	TN.5.ETS	Engineering, Technology, and Applications of Science (ETS)
CONCEPTUAL STRAND / GUIDING QUESTION	5.ET S2.	Links Among Engineering, Technology, Science, and Society
GUIDING QUESTION / LEARNING EXPECTATION	5.ETS2.1.	Use appropriate measuring tools, simple hand tools, and fasteners to construct a prototype of a new or improved technology.
GUIDING QUESTION / LEARNING EXPECTATION	5.ETS2.3.	Identify how scientific discoveries lead to new and improved technologies.
		Tennessee Academic Standards
		Science Grade 6 - Adopted: 2016
STRAND / STANDARD / COURSE	TN.6.ESS	Earth and Space Sciences (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	6.ESS2.	Earth's Systems
GUIDING QUESTION / LEARNING EXPECTATION	6.ESS2.4	Apply scientific principles to design a method to analyze and interpret the impact of humans and other organisms on the hydrologic cycle.

Tennessee Academic Standards Technology Education Grade 5 - Adopted: 2022

STRAND / STANDARD / COURSE	Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION	Fifth Grade: Computer Science Standards

GUIDING QUESTION / LEARNING EXPECTATION	5.AT.	Algorithmic Thinking
LEARNING EXPECTATION	5.AT.1.	Analyze and improve an algorithm that includes sequencing and simple patterns with or without a computing device.
LEARNING EXPECTATION	5.AT.2.	Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.
LEARNING EXPECTATION	5.AT.3.	Develop and recommend solutions to a given problem and explain the process to an audience.
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		Fifth Grade: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	5.PC.	Programming Concepts
LEARNING EXPECTATION	5.PC.1.	Create simple animated stories or solve pre-existing problems using a precise sequence of instructions and simple loops, collaboratively or individually.

Tennessee Academic Standards Technology Education

Grade 6 - Adopted: 2022

STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.AT.	Algorithmic Thinking
LEARNING EXPECTATION	MS.AT.1.	Use clearly named variables of various data types to create generalized algorithms.
LEARNING EXPECTATION	MS.AT.2.	Create algorithms which include methods of controlling the flow of computation using "ifthen else" type conditional statements to perform different operations depending on the values of inputs.
LEARNING EXPECTATION	MS.AT.3.	Identify algorithms that make use of sequencing, selection, or iteration.
LEARNING EXPECTATION	MS.AT.4.	Describe how algorithmic processes and automation increase efficiency.
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards

CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.PC.	Programming Concepts

LEARNING MS.PC.1. Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. EXPECTATION

Tennessee Academic Standards

Technology Education

Grade 7 - Adopted: 2022

STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.AT.	Algorithmic Thinking
LEARNING EXPECTATION	MS.AT.1.	Use clearly named variables of various data types to create generalized algorithms.
LEARNING EXPECTATION	MS.AT.2.	Create algorithms which include methods of controlling the flow of computation using "ifthen else" type conditional statements to perform different operations depending on the values of inputs.
LEARNING EXPECTATION	MS.AT.3.	Identify algorithms that make use of sequencing, selection, or iteration.
LEARNING EXPECTATION	MS.AT.4.	Describe how algorithmic processes and automation increase efficiency.
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.PC.	Programming Concepts

LEARNING MS.PC.1. Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. EXPECTATION

> Tennessee Academic Standards Technology Education Grade 8 - Adopted: 2022

CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.AT.	Algorithmic Thinking
LEARNING EXPECTATION	MS.AT.1.	Use clearly named variables of various data types to create generalized algorithms.
LEARNING EXPECTATION	MS.AT.2.	Create algorithms which include methods of controlling the flow of computation using "ifthen else" type conditional statements to perform different operations depending on the values of inputs.
LEARNING EXPECTATION	MS.AT.3.	Identify algorithms that make use of sequencing, selection, or iteration.
LEARNING EXPECTATION	MS.AT.4.	Describe how algorithmic processes and automation increase efficiency.
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.PC.	Programming Concepts

LEARNING MS.PC.1. Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. EXPECTATION

Texas Essential Knowledge and Skills (TEKS)

Mathematics

TEKS	111.7.	Grade 5, Adopted 2012.
STUDENT EXPECTATION	111.7.b. 1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.7.b.1. B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.7.b.1. C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.7.b.1. F.	Analyze mathematical relationships to connect and communicate mathematical ideas.

TEKS	111.7.	Grade 5, Adopted 2012.
STUDENT EXPECTATION	111.7.b. 4.	Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:

GRADE LEVEL111.7.b.4.Use concrete objects and pictorial models to develop the formulas for the volume of a rectangular prism, includingEXPECTATIONG.the special form for a cube (V = I x w x h, V = s x s x s, and V = Bh).

TEKS	111.7.	Grade 5, Adopted 2012.
STUDENT EXPECTATION	111.7.b. 6.	Geometry and measurement. The student applies mathematical process standards to understand, recognize, and quantify volume. The student is expected to:
GRADE LEVEL	111.7.b.6.	Determine the volume of a rectangular prism with whole number side lengths in problems related to the number of

layers times the number of unit cubes in the area of the base.

EXPECTATION B.

Texas Essential Knowledge and Skills (TEKS)

Mathematics

Grade 6 - Adopted: 2012

TEKS	111.26.	Grade 6, Adopted 2012.
STUDENT EXPECTATION	111.26. b.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.26.b. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.26.b. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.26.b. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.

TEKS	111.26.	Grade 6, Adopted 2012.
STUDENT EXPECTATION	111.26. b.8.	Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:
GRADE LEVEL EXPECTATION	111.26.b. 8.C.	Write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.
GRADE LEVEL EXPECTATION	111.26.b. 8.D.	Determine solutions for problems involving the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.

Texas Essential Knowledge and Skills (TEKS)

Mathematics

Grade 7 - Adopted: 2012

TEKS	111.27.	Grade 7, Adopted 2012.
STUDENT EXPECTATION	111.27. b.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.27.b. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.27.b. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.

GRADE LEVEL 111.27.b. Analyze mathematical relationships to connect and communicate mathematical ideas. **EXPECTATION** 1.F.

EXPECTATION 9.A.

6.B.

pyramids.

TEKS	111.27.	Grade 7, Adopted 2012.
STUDENT EXPECTATION	111.27. b.9.	Expressions, equations, and relationships. The student applies mathematical process standards to solve geometric problems. The student is expected to:
GRADE LEVEL	111.27.b.	Solve problems involving the volume of rectangular prisms, triangular prisms, rectangular pyramids, and triangular

Texas Essential Knowledge and Skills (TEKS)

Mathematics

Grade 8 - Adopted: 2012

TEKS	111.28.	Grade 8, Adopted 2012.
STUDENT EXPECTATION	111.28. b.1.	Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
GRADE LEVEL EXPECTATION	111.28.b. 1.B.	Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
GRADE LEVEL EXPECTATION	111.28.b. 1.C.	Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
GRADE LEVEL EXPECTATION	111.28.b. 1.F.	Analyze mathematical relationships to connect and communicate mathematical ideas.

TEKS 111.28. Grade 8, Adopted 2012. Expressions, equations, and relationships. The student applies mathematical process standards to STUDENT 111.28. EXPECTATION b.6. develop mathematical relationships and make connections to geometric formulas. The student is expected to: 111.28.b. Describe the volume formula V = Bh of a cylinder in terms of its base area and its height. GRADE LEVEL EXPECTATION 6.A. 111.28.b. Model the relationship between the volume of a cylinder and a cone having both congruent bases and heights and GRADE LEVEL EXPECTATION connect that relationship to the formulas.

TEKS	111.28.	Grade 8, Adopted 2012.
STUDENT EXPECTATION	111.28. b.7.	Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to:
GRADE LEVEL EXPECTATION	111.28.b. 7.A.	Solve problems involving the volume of cylinders, cones, and spheres.

Texas Essential Knowledge and Skills (TEKS)

Science

Grade 5 - Adopted: 2017

TEKS	§112.16	Science, Grade 5, Adopted 2017 – The provisions of §§112.11-112.16 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.16. b	Knowledge and skills.

GRADE LEVEL EXPECTATION	§112.16. b.2	Scientific investigation and reasoning. The student uses scientific practices during laboratory and outdoor investigations. The student is expected to:
INDICATOR	§112.16.b .2.B	ask well defined questions, formulate testable hypotheses, and select and use appropriate equipment and technology
TEKS	§112.16	Science, Grade 5, Adopted 2017 – The provisions of §§112.11-112.16 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.16. b	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.16. b.3	Scientific investigation and reasoning. The student uses critical thinking and scientific problem solving to make informed decisions. The student is expected to:
INDICATOR	§112.16.b .3.A	analyze, evaluate, and critique scientific explanations by using evidence, logical reasoning, and experimental and observational testing

INDICATOR §112.16.b draw .3.B syste

§112.16.b draw or develop a model that represents how something that cannot be seen such as the Sun, Earth, and Moon.3.B system and formation of sedimentary rock works or looks

TEKS	§112.16	Science, Grade 5, Adopted 2017 – The provisions of §§112.11-112.16 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.16. b	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.16. b.4	Scientific investigation and reasoning. The student knows how to use a variety of tools and methods to conduct science inquiry. The student is expected to:

INDICATOR
 §112.16.b
 collect, record, and analyze information using tools, including calculators, microscopes, cameras, computers, hand

 .4.A
 lenses, metric rulers, Celsius thermometers, prisms, mirrors, balances, spring scales, graduated cylinders, beakers, hot plates, meter sticks, magnets, collecting nets, and notebooks; timing devices; and materials to support observations of habitats or organisms such as terrariums and aquariums

Texas Essential Knowledge and Skills (TEKS)

Science

Grade 6 - Adopted: 2017

TEKS	§112.18	Science, Grade 6, Adopted 2017 – The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.18. b	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.18. b.3	Scientific investigation and reasoning. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions and knows the contributions of relevant scientists. The student is expected to:
INDICATOR	§112.18.b .3.A	analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student
INDICATOR	§112.18.b .3.D	relate the impact of research on scientific thought and society, including the history of science and contributions of scientists as related to the content
TEKS	§112.18	Science, Grade 6, Adopted 2017 – The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.18. b	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.18. b.4	Scientific investigation and reasoning. The student knows how to use a variety of tools and safety equipment to conduct science inquiry. The student is expected to:

.4.A

\$112.18.b use appropriate tools, including journals/notebooks, beakers, Petri dishes, meter sticks, graduated cylinders, hot plates, test tubes, balances, microscopes, thermometers, calculators, computers, timing devices, and other necessary equipment to collect, record, and analyze information

Texas Essential Knowledge and Skills (TEKS)

Science

Grade 7 - Adopted: 2017 Science, Grade 7, Adopted 2017 – The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year. TEKS §112.19 STUDENT §112.19. Knowledge and skills. **EXPECTATION** b GRADE LEVEL §112.19. Scientific investigation and reasoning. The student uses critical thinking, scientific reasoning, and EXPECTATION problem solving to make informed decisions and knows the contributions of relevant scientists. The b.3 student is expected to: INDICATOR \$112.19.b analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student .3.A INDICATOR \$112.19.b relate the impact of research on scientific thought and society, including the history of science and contributions of .3.D scientists as related to the content TEKS §112.19 Science, Grade 7, Adopted 2017 – The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year. STUDENT §112.19. Knowledge and skills. **EXPECTATION** b

GRADE LEVEL §112.19. Science investigation and reasoning. The student knows how to use a variety of tools and safety EXPECT ATION b.4 equipment to conduct science inquiry. The student is expected to: INDICATOR \$112.19.b use appropriate tools, including life science models, hand lenses, stereoscopes, microscopes, beakers, Petri dishes, microscope slides, graduated cylinders, test tubes, meter sticks, metric rulers, metric tape measures, timing 4 A

devices, hot plates, balances, thermometers, calculators, water test kits, computers, temperature and pH probes, collecting nets, insect traps, globes, digital cameras, journals/notebooks, and other necessary equipment to collect, record, and analyze information

TEKS	§112.19	Science, Grade 7, Adopted 2017 – The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.19. b	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.19. b.8	Earth and space. The student knows that natural events and human activity can impact Earth systems. The student is expected to:

INDICATOR \$112.19.b model the effects of human activity on groundwater and surface water in a watershed .8.C

Texas Essential Knowledge and Skills (TEKS)

Science

Grade 8 - Adopted: 2017

TEKS	§112.20	Science, Grade 8, Adopted 2017 – The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT EXPECTATION	§112.20. b	Knowledge and skills.
GRADE LEVEL EXPECTATION	§112.20. b.3	Scientific investigation and reasoning. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions and knows the contributions of relevant scientists. The student is expected to:

INDICATOR	§112.20.b .3.A	analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student
INDICATOR	§112.20.b .3.D	relate the impact of research on scientific thought and society, including the history of science and contributions of scientists as related to the content
TEKS	§112.20	Science, Grade 8, Adopted 2017 – The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.
STUDENT	§112.20. b	Knowledge and skills.
LALECTATION	~	
GRADE LEVEL EXPECTATION	§112.20. b.4	Scientific investigation and reasoning. The student knows how to use a variety of tools and safety equipment to conduct science inquiry. The student is expected to:

.

INDICATOR

\$112.20.b use appropriate tools, including lab journals/notebooks, beakers, meter sticks, graduated cylinders, anemometers,
 .4.A psychrometers, hot plates, test tubes, spring scales, balances, microscopes, thermometers, calculators, computers,
 spectroscopes, timing devices, and other necessary equipment to collect, record, and analyze information

Texas Essential Knowledge and Skills (TEKS)

Technology Education

Grade 5 - Adopted: 2011

TEKS	§126.7.	Technology Applications, Grades 3-5
STUDENT EXPECTATION	§126.7. (1)	Creativity and innovation. The student uses creative thinking and innovative processes to construct knowledge and develop digital products. The student is expected to:
GRADE LEVEL EXPECTATION	§126.7. (1)(C)	Use virtual environments to explore systems and issues.
TEKS	§126.7.	Technology Applications, Grades 3-5
STUDENT EXPECTATION	§126.7. (4)	Critical thinking, problem solving, and decision making. The student researches and evaluates projects using digital tools and resources. The student is expected to:
GRADE LEVEL EXPECTATION	§126.7. (4)(A)	Identify information regarding a problem and explain the steps toward the solution.
		Texas Essential Knowledge and Skills (TEKS)
		Technology Education
		Grade 6 - Adopted: 2011

TEKS	§126.14.	Technology Applications, Grade 6
STUDENT EXPECTATION	§126.14 .(4)	Critical thinking, problem solving, and decision making. The student makes informed decisions by applying critical-thinking and problem-solving skills. The student is expected to:
GRADE LEVEL EXPECTATION	§126.14. (4)(A)	Identify and define relevant problems and significant questions for investigation.

Texas Essential Knowledge and Skills (TEKS)

Technology Education

Grade 7 - Adopted: 2011

TEKS	§126.15.	Technology Applications, Grade 7
STUDENT EXPECTATION	§126.15. (4)	Critical thinking, problem solving, and decision making. The student makes informed decisions by applying critical-thinking and problem-solving skills. The student is expected to:

GRADE LEVEL	§126.15.	Identify and define relevant problems and significant questions for investigation.
EXPECTATION	(4)(A)	

Texas Essential Knowledge and Skills (TEKS)

TEKS	§126.16.	Technology Applications, Grade 8
STUDENT EXPECTATION	§126.16. (4)	Critical thinking, problem solving, and decision making. The student makes informed decisions by applying critical-thinking and problem-solving skills. The student is expected to:
GRADE LEVEL EXPECTATION	§126.16. (4)(A)	Identify and define relevant problems and significant questions for investigation.
		Utah Core Standards
		Mathematics
		Grade 5 - Adopted: 2016
ST ANDARD / AREA OF LEARNING	UT.5.MP.	MATHEMATICAL PRACTICES (5.MP)
OBJECTIVE / STRAND	5.MP.1.	Make sense of problems and persevere in solving them.
OBJECTIVE / STRAND	5.MP.2.	Reason abstractly and quantitatively.
OBJECTIVE / STRAND	5.MP.3.	Construct viable arguments and critique the reasoning of others.
OBJECTIVE / STRAND	5.MP.4.	Model with mathematics.
OBJECTIVE / STRAND	5.MP.5.	Use appropriate tools strategically.
OBJECTIVE / STRAND	5.MP.7.	Look for and make use of structure.
ST ANDARD / AREA OF LEARNING	UT.5.MD.	MEASUREMENT AND DATA (5.MD)
OBJECTIVE / STRAND		Convert like measurement units within a given measurement system (Standard 5.MD.1). Represent and interpret data (Standard 5.MD.2). Understand concepts of geometric measurement and volume, as well as how multiplication and addition relate to volume (Standard 5.MD.3).
INDICATOR / CLUSTER	5.MD.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in., cubic ft., and improvised units.
ST ANDARD / AREA OF LEARNING	UT.5.MD.	MEASUREMENT AND DATA (5.MD)

OBJECTIVE / STRAND	Convert like measurement units within a given measurement system (Standard 5.MD.1). Represent and interpret data (Standard 5.MD.2). Understand concepts of geometric measurement and volume, as well as how multiplication and addition relate to volume (Standard 5.MD.3).

CLUSTER S.MD.S. Rela	Ite volume to the operations of multiplication and addition and solve real-world and mathematical plems involving volume.
EXPECTATION / 5.MD.5.a. Find that the standard strain of the standard strain of the standard strain of the strain	the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show he volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height e area of the base. Represent threefold whole-number products as volumes, for example, to represent the ciative property of multiplication.
EXPECTATION / 5.MD.5.b. Apply STANDARD whole	y the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with e-number edge lengths in the context of solving real-world and mathematical problems.
	Utah Core Standards
	Grade 6 - Adopted: 2016
STANDARD / UT.6.MP. MATH AREA OF LEARNING	IEMATICAL PRACTICES (6.MP)
OBJECTIVE / 6.MP.1. Make STRAND	sense of problems and persevere in solving them.
OBJECTIVE / 6.MP.2. Reaso STRAND	on abstractly and quantitatively.
OBJECTIVE / 6.MP.3. Const STRAND	truct viable arguments and critique the reasoning of others.
OBJECTIVE / 6.MP.4. Mode STRAND	I with mathematics.
OBJECTIVE / 6.MP.5. Use a STRAND	appropriate tools strategically.
OBJECTIVE / 6.MP.7. Look f STRAND	for and make use of structure.
STANDARD / UT.6.G. GEOM AREA OF LEARNING	/ETRY (6.G)
OBJECTIVE / Solve STRAND 6.G.1	e real-world and mathematical problems involving area, surface area, and volume (Standards .–4).
INDICATOR / 6.G.2. Find the CLUSTER appro found rectant Mode	the volume of a right rectangular prism with appropriate unit fraction edge lengths by packing it with cubes of the priate unit fraction edge lengths (for example, $3\frac{1}{2} \times 2 \times 6$), and show that the volume is the same as would be by multiplying the edge lengths of the prism. Apply the formulas V = lwh and V = bh to find volumes of right ngular prisms with fractional edge lengths in the context of solving real-world and mathematical problems. (Note: et the packing using drawings and diagrams.)
	Utah Core Standards Mathematics Grade 7 - Adopted: 2016
STANDARD / UT.7.MP. MATH AREA OF LEARNING	IEMATICAL PRACTICES (7.MP)

OBJECTIVE / STRAND	7.MP.1.	Make sense of problems and persevere in solving them. Explain the meaning of a problem and look for entry points to its solution. Analyze givens, constraints, relationships, and goals. Make conjectures about the form and meaning of the solution, plan a solution pathway, and continually monitor progress asking, "Does this make sense?" Consider analogous problems, make connections between multiple representations, identify the correspondence between different approaches, look for trends, and transform algebraic expressions to highlight meaningful mathematics. Check answers to problems using a different method.
OBJECTIVE / STRAND	7.MP.2.	Reason abstractly and quantitatively. Make sense of the quantities and their relationships in problem situations. Translate between context and algebraic representations by contextualizing and decontextualizing quantitative relationships. This includes the ability to decontextualize a given situation, representing it algebraically and manipulating symbols fluently as well as the ability to contextualize algebraic representations to make sense of the problem.
OBJECTIVE / STRAND	7.MP.3.	Construct viable arguments and critique the reasoning of others. Understand and use stated assumptions, definitions, and previously established results in constructing arguments. Make conjectures and build a logical progression of statements to explore the truth of their conjectures. Justify conclusions and communicate them to others. Respond to the arguments of others by listening, asking clarifying questions, and critiquing the reasoning of others.
OBJECTIVE / STRAND	7.MP.4.	Model with mathematics. Apply mathematics to solve problems arising in everyday life, society, and the workplace. Make assumptions and approximations, identifying important quantities to construct a mathematical model. Routinely interpret mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
OBJECTIVE / STRAND	7.MP.5.	Use appropriate tools strategically. Consider the available tools and be sufficiently familiar with them to make sound decisions about when each tool might be helpful, recognizing both the insight to be gained as well as the limitations. Identify relevant external mathematical resources and use them to pose or solve problems. Use tools to explore and deepen their understanding of concepts.
OBJECTIVE / STRAND	7.MP.7.	Look for and make use of structure. Look closely at mathematical relationships to identify the underlying structure by recognizing a simple structure within a more complicated structure. See complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Utah Core Standards Mathematics Grade 8 - Adopted: 2016

ST ANDARD / AREA OF LEARNING	UT.8.MP.	MATHEMATICAL PRACTICES (8.MP)
OBJECTIVE / STRAND		The Standards for Mathematical Practice in Eighth Grade describe mathematical habits of mind that teachers should seek to develop in their students. Students become mathematically proficient in engaging with mathematical content and concepts as they learn, experience, and apply these skills and attitudes (Standards 8.MP.1–8).
INDICATOR / CLUSTER	8.MP.1.	Make sense of problems and persevere in solving them. Explain the meaning of a problem and look for entry points to its solution. Analyze givens, constraints, relationships, and goals. Make conjectures about the form and meaning of the solution, plan a solution pathway, and continually monitor progress asking, "Does this make sense?" Consider analogous problems, make connections between multiple representations, identify the correspondence between different approaches, look for trends, and transform algebraic expressions to highlight meaningful mathematics. Check answers to problems using a different method.
INDICATOR / CLUSTER	8.MP.2.	Reason abstractly and quantitatively. Make sense of the quantities and their relationships in problem situations. Translate between context and algebraic representations by contextualizing and decontextualizing quantitative relationships. This includes the ability to decontextualize a given situation, representing it algebraically and manipulating symbols fluently as well as the ability to contextualize algebraic representations to make sense of the problem.

INDICATOR / CLUSTER	8.MP.3.	Construct viable arguments and critique the reasoning of others. Understand and use stated assumptions, definitions, and previously established results in constructing arguments. Make conjectures and build a logical progression of statements to explore the truth of their conjectures. Justify conclusions and communicate them to others. Respond to the arguments of others by listening, asking clarifying questions, and critiquing the reasoning of others.
INDICATOR / CLUSTER	8.MP.4.	Model with mathematics. Apply mathematics to solve problems arising in everyday life, society, and the workplace. Make assumptions and approximations, identifying important quantities to construct a mathematical model. Routinely interpret mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
INDICATOR / CLUSTER	8.MP.5.	Use appropriate tools strategically. Consider the available tools and be sufficiently familiar with them to make sound decisions about when each tool might be helpful, recognizing both the insight to be gained as well as the limitations. Identify relevant external mathematical resources and use them to pose or solve problems. Use tools to explore and deepen their understanding of concepts.
INDICATOR / CLUSTER	8.MP.7.	Look for and make use of structure. Look closely at mathematical relationships to identify the underlying structure by recognizing a simple structure within a more complicated structure. See complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

ST ANDARD / AREA OF LEARNING	UT.8.G.	GEOMETRY (8.G)
OBJECTIVE / STRAND		Understand congruence and similarity using physical models, transparencies, or geometry software (Standards 8.G.1–5). Understand and apply the Pythagorean Theorem and its converse (Standards 8.G.6–8). Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres (Standard 8.G.9).
INDICATOR / CLUSTER	8.G.9.	Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.

Utah Core Standards

Science

	Grade 6 - Adopted: 2013		
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / STRAND		Key Ideas and Details	
INDICATOR / CLUSTER	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.	
INDICATOR / CLUSTER	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.	
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / STRAND		Craft and Structure	
INDICATOR /	RST.6-	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a	

8.4. specific scientific or technical context relevant to grades 6-8 texts and topics.

CLUSTER

INDICATOR / CLUSTER	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / STRAND		Integration of Knowledge and Ideas	
INDICATOR / CLUSTER	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.	
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / STRAND		Range of Reading and Level of Text Complexity	
INDICATOR / CLUSTER	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.	
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / STRAND		Text Types and Purposes	
INDICATOR / CLUSTER	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.	
EXPECTATION / STANDARD	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.	
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / STRAND		Production and Distribution of Writing	
INDICATOR / CLUSTER	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.	
INDICATOR / CLUSTER	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.	
Utah Core Standards Science Grade 7 - Adopted: 2013			
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects	
OBJECTIVE / STRAND		Key Ideas and Details	
INDICATOR /	RST.6-	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior	

^{8.2.}

CLUSTER

RST.6- Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

INDICATOR / CLUSTER	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Craft and Structure
INDICATOR / CLUSTER	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / CLUSTER	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Integration of Knowledge and Ideas
INDICATOR / CLUSTER	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Range of Reading and Level of Text Complexity
INDICATOR / CLUSTER	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Text Types and Purposes
INDICATOR / CLUSTER	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / STANDARD	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Production and Distribution of Writing
INDICATOR / CLUSTER	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / CLUSTER	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Utah Core Standards

Science

Grade 8 - Adopted: 2015

	Grade 8 - Adopted: 2015			
ST ANDARD / AREA OF LEARNING		SEEd - Grade 8 (2017)		
OBJECTIVE / STRAND	Strand 8.4:	INTERACTIONS WITH NATURAL SYSTEMS AND RESOURCES		
INDICATOR / CLUSTER		Interactions of matter and energy through geologic processes have led to the uneven distribution of natural resources. Many of these resources are nonrenewable, and per-capita use can cause positive or negative consequences. Global temperatures change due to various factors, and can cause a change in regional climates. As energy flows through the physical world, natural disasters can occur that affect human life. Humans can study patterns in natural systems to anticipate and forecast some future disasters and work to mitigate the outcomes.		
EXPECTATION / STANDARD	Standard 8.4.2	Engage in argument supported by evidence about the effect of per-capita consumption of natural resources on Earth's systems. Emphasize that these resources are limited and may be non-renewable. Examples of evidence include rates of consumption of food and natural resources such as freshwater, minerals, and energy sources. Grade 8 - Adopted: 2013		
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects		
OBJECTIVE / STRAND		Key Ideas and Details		

INDICATOR /	RST.6-	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior
CLUSTER	8.2.	knowledge or opinions.

INDICATOR /	RST.6-	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical
CLUSTER	8.3.	tasks.

ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Craft and Structure
INDICATOR / CLUSTER	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

INDICATOR /	RST.6-	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and
CLUSTER	8.5.	to an understanding of the topic.

ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Integration of Knowledge and Ideas
INDICATOR / CLUSTER	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Range of Reading and Level of Text Complexity

INDICATOR /	RST.6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band
CLUSTER	8.10.	independently and proficiently.

ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Text Types and Purposes
INDICATOR / CLUSTER	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

EXPECTATION / WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic. STANDARD 8.2(d)

ST ANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Production and Distribution of Writing
INDICATOR / CLUSTER	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / CLUSTER	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Utah Core Standards Technology Education Grade 5 - Adopted: 2019

ST ANDARD / AREA OF LEARNING	Utah K-5 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Data and Analysis (DA):

EXPECTATION / STANDARD Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be analyzed to better understand the world and make more accurate predictions.

ST ANDARD / AREA OF LEARNING	Utah K-5 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Algorithms and Programming (AP):

EXPECTATION / STANDARD An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.
ST ANDARD / AREA OF LEARNING		Utah K-5 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECTATION / STANDARD		By the end of Grade 5, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.

ST ANDARD / AREA OF LEARNING		Utah K-5 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 2:	Collaborating Around Computing
EXPECT ATION / ST ANDARD		By the end of Grade 5, students should be able to:

2

Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.

ST ANDARD / AREA OF LEARNING		Utah K-5 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems
EXPECTATION / STANDARD		By the end of Grade 5, students should be able to:
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
INDICATOR	3	Evaluate whether it is appropriate and feasible to solve a problem computationally.
ST ANDARD / AREA OF LEARNING		Utah K-5 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 5, students should be able to:

INDICATOR	1	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, considering key features, time and resource constraints, and user expectations.
INDICATOR	2	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
ST ANDARD / AREA OF LEARNING		Utah K-5 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 5, students should be able to:

1

 $\label{eq:systematically test computational artifacts by considering all scenarios and using test cases.$

ST ANDARD / AREA OF LEARNING		Utah K-5 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 5.AP.1.	Compare and refine multiple algorithms for the same task and determine which is the most appropriate. (Practice 3: Recognizing and Defining Computational Problems and Practice 6: Testing and Refining Computational Artifacts)

EXPECTATION / STANDARD

Students will compare different algorithms that achieve the same result, and determine which algorithm is more appropriate. For example, students will compare different ways to get ready in the morning before school or which is the best route to get to the lunchroom.

ST ANDARD / AREA OF LEARNING		Utah K-5 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 5.AP.4.	Use an iterative process to plan and develop a program by considering the perspectives and preferences of others. (Practice 1: Fostering an Inclusive Computing Culture and Practice 5: Creating Computational Artifacts)
EXPECTATION / STANDARD		Students will plan and develop a solution for another person's problem. For example, a student has a hard time completing homework. The team designs a solution for how to manage time in order to complete homework, gathers data on the new solution, and revises the solution.

Utah Core Standards Technology Education Grade 6 - Adopted: 2019

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Data and Analysis (DA):

EXPECTATION / STANDARD

Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be analyzed to better understand the world and make more accurate predictions.

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Algorithms and Programming (AP):

EXPECTATION / STANDARD An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 2:	Collaborating Around Computing
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems

EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
INDICATOR	3	Evaluate whether it is appropriate and feasible to solve a problem computationally.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 4:	Developing and Using Abstractions
EXPECT AT ION / ST ANDARD		By the end of Grade 12, students should be able to:
INDICATOR	3	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts
EXPECT ATION / ST AND ARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
INDICATOR	2	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:

Systematically test computational artifacts by considering all scenarios and using test cases.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Computing Systems (CS):
INDICATOR / CLUSTER	Standar d 6.CS.1.	Utilize troubleshooting strategies to resolve hardware and software issues in a logical order. (Practice 4: Developing and Using Abstractions)

EXPECTATION / STANDARD

Students will be able to utilize a step-by-step approach to identify and resolve problems with hardware and software. For example, a checklist can be used to ensure that possible solutions are not overlooked such as checking for writing conventions before finalizing a writing assignment. Students may refer to the order of operations when solving a math equation. Students may search for technical information online when solving problems. A flow diagram may be used to determine possible next steps.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 6.AP.1.	Design and illustrate algorithms to efficiently solve complex problems by utilizing pseudocode and/or other descriptive methods. (Practice 3: Recognizing and defining computational problems)

EXPECTATION / STANDARD

Students will decompose or design algorithms (how to instructions) utilizing pseudocode to solve complex problems. Students will be able to decompose a real-world problem and illustrate the decision-making process in a wellorganized flowchart, storyboard, ordered directions, notations, or other method. For example, the students might create a flowchart to illustrate which equipment to use for recess based on the weather, play preference, and a student's energy level.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 6.AP.2.	Create naming conventions for variables that support the debugging process and incorporate these variables into a simple program. (Practice 7: Communicating about Computing)
EXPECTATION / STANDARD		To make the debugging process easier, students will create and name variables that store data in a meaningful and logical way. For example, when writing an algorithm, students will incorporate names based on the command

Utah Core Standards Technology Education

function such as use the variable "turn" to describe direction, "loop" for repeating tasks.

 ST ANDARD /
 Vtah 6-12 Computer Science Standards

 OBJECTIVE /
 Core Concepts

 INDICATOR /
 Data and Analysis (DA):

EXPECTATION / STANDARD Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be analyzed to better understand the world and make more accurate predictions.

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Algorithms and Programming (AP):

EXPECTATION / STANDARD An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECT ATION / ST AND ARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 2:	Collaborating Around Computing
EXPECT ATION / ST ANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
INDICATOR	3	Evaluate whether it is appropriate and feasible to solve a problem computationally.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices

INDICATOR / CLUSTER	Practic e 4:	Developing and Using Abstractions
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	3	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
INDICATOR	2	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Systematically test computational artifacts by considering all scenarios and using test cases.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 7.AP.3.	Systematically test and refine programs using a range of test cases. (Practice 6: Testing and Refining Computational Artifacts.)
EXPECTATION / STANDARD		Students will use a variety of problem-solving processes such as the engineering design process, decision matrix, pros and cons, or DMAIC (define, measure, analyze, improve and control) to test and refine a project or program. Students will test and refine a computer program, an engineering artifact, or solution. For example, students may test and refine a math program solving for surface area of different shapes (triangles, quadrilaterals, polygons, cubes).

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 7.AP.4.	Select and assign tasks to maintain a project timeline when collaboratively developing computational artifacts. (Practice 2: Collaborating Around Computing. Practice 5: Creating Computational Artifacts.)

EXPECTATION / STANDARD

Students will select, assign, and manage tasks within a project timeline of milestones and due dates while collaboratively working on projects. For example, students will use tools such as storyboards, to-do lists, team roles, and other project management tools to organize their projects and share the work across team members and help them be more efficient in managing time and resources.

Utah Core Standards Technology Education Grade 8 - Adopted: 2019

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Data and Analysis (DA):

EXPECTATION / STANDARD

Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be analyzed to better understand the world and make more accurate predictions.

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Algorithms and Programming (AP):

EXPECTATION / STANDARD

An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECT ATION / ST AND ARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices

INDICATOR / CLUSTER	Practic e 2:	Collaborating Around Computing
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
INDICATOR	3	Evaluate whether it is appropriate and feasible to solve a problem computationally.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 4:	Developing and Using Abstractions
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	3	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
INDICATOR	2	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices

INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Systematically test computational artifacts by considering all scenarios and using test cases.

Vermont Content Standards Mathematics

Grade 5 - Adopted: 2010 (CCSS)

ST ANDARD / ST RAND	VT.MP.	Mathematical Practices
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.5.	Use appropriate tools strategically.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.
ST ANDARD / ST RAND	VT.5.MD.	Measurement and Data
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	5.MD.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

STANDARD / STRAND VT.5.MD. Measurement and Data

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	5.MD.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
GRADE LEVEL EXPECTATION	5.MD.5(a)	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
GRADE LEVEL EXPECTATION	5.MD.5(b)	Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.
		Vermont Content Standards
		Mathematics Grade 6 - Adopted: 2010 (CCSS)
STANDARD / STRAND	VT.MP.	Mathematical Practices
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.5.	Use appropriate tools strategically.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.
STANDARD / STRAND	VT.6.G.	Geometry
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Solve real-world and mathematical problems involving area, surface area, and volume.

GRADE LEVEL 6.G.2. EXPECTATION / KNOWLEDGE AND SKILL Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = I w h and V = b h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Vermont Content Standards Mathematics Grade 7 - Adopted: 2010 (CCSS)

STANDARD / STRAND	VT.MP.	Mathematical Practices
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.5.	Use appropriate tools strategically.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.

Vermont Content Standards

Mathematics

Grade 8 - Adopted: 2010 (CCSS)

STANDARD / STRAND	VT.MP.	Mathematical Practices
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.5.	Use appropriate tools strategically.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.

ST ANDARD / ST RAND	VT.8.G.	Geometry
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	8.G.9.	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Vermont Content Standards Science Grade 5 - Adopted: 2014

ST ANDARD / ST RAND	VT.3-5- ETS.	ENGINEERING DESIGN
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	3-5- ET S1.	Engineering Design
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

STANDARD / STRAND	VT.MS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:

GRADE LEVELMS-EXPECTATIONESS3-4.

- Construct an argument supported by evidence for how increases in human population and per-capita consumption 3-4. of natural resources impact Earth's systems.

STANDARD / STRAND	VT.MS- ETS.	ENGINEERING DESIGN
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	MS- ET S1.	Engineering Design
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Craft and Structure

GRADE LEVEL RST.6-EXPECTATION / 8.4. KNOWLEDGE AND SKILL

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

GRADE LEVEL RST.6-Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and EXPECTATION / 8.5. to an understanding of the topic. KNOWLEDGE AND SKILL

ST ANDARD / ST RAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / KNOWLEDGE	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

AND SKILL

ST ANDARD / ST RAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION / KNOWLEDGE	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

AND SKILL

STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Text Types and Purposes
GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVEL WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic. EXPECTATION 8.2(d)

STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

EXPECTATION / 8.6. KNOWLEDGE AND SKILL

GRADE LEVEL WHST.6- Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Vermont Content Standards

Science

Grade 7 - Adopted: 2014			
ST ANDARD / ST RAND	VT.MS- ESS.	EARTH AND SPACE SCIENCE	
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	MS- ESS3.	Earth and Human Activity	
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:	
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	
ST ANDARD / ST RAND	VT.MS- ETS.	ENGINEERING DESIGN	
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	MS- ET S1.	Engineering Design	
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:	
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	
		Grade 7 - Adopted: 2010	
ST ANDARD / ST RAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects	
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Key Ideas and Details	
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.	

GRADE LEVEL	RST.6-	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical
EXPECTATION /	8.3.	tasks.
KNOWLEDGE		
AND SKILL		

STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

ST ANDARD / ST RAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Text Types and Purposes
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVEL WHST EXPECTATION 8.2(d)

WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic.

STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Vermont Content Standards

Science

Grade 8 - Adopted: 2014

ST ANDARD / ST RAND	VT.MS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECT AT ION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:

GRADE LEVELMS-Construct an argument supported by evidence for how increases in human population and per-capita consumptionEXPECTATIONESS3-4.of natural resources impact Earth's systems.

ST ANDARD / ST RAND	VT.MS- ETS.	ENGINEERING DESIGN
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects

ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Range of Reading and Level of Text Complexity

GRADE LEVEL	RST.6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band
EXPECTATION /	8.10.	independently and proficiently.
KNOWLEDGE		
AND SKILL		

STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Text Types and Purposes	
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.	
GRADE LEVEL EXPECTATION	WHST.6- 8.2(d)	- Use precise language and domain-specific vocabulary to inform about or explain the topic.	
STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects	
ESSENTIAL KNOWLEDGE AND SKILL / ST ANDARD		Production and Distribution of Writing	
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.	
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.	
		Vermont Content Standards Technology Education Grade 5 - Adopted: 2017	
ST ANDARD / ST RAND	ISTE-S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to	
		construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others. Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD ST ANDARD / ST RAND	ISTE- S.3.d. ISTE-S.4.	construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others. Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD / STANDARD / ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d. ISTE-S.4. ISTE- S.4.a.	Construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others. Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions. Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions. Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD / STANDARD / ESSENTIAL KNOWLEDGE AND SKILL / STANDARD ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d. ISTE-S.4. ISTE- S.4.a. ISTE- S.4.b.	construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others. Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions. Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions. Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems. Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.	

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.	
		Vermont Content Standards Technology Education Grade 6 - Adopted: 2017	
ST ANDARD / ST RAND	ISTE-S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
STANDARD / STRAND	ISTE-S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.	
STANDARD / STRAND	ISTE-S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.	

Vermont Content Standards Technology Education

Grade 7 - Adopted: 2017

STANDARD / STRAND	ISTE-S.3.	. Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
STANDARD / STRAND	ISTE-S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.	
ST ANDARD / ST RAND	ISTE-S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.	
		Vermont Content Standards Technology Education Grade 8 - Adopted: 2017	
STANDARD / STRAND	IST E-S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
STANDARD / STRAND	ISTE-S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.	
ST ANDARD / ST RAND	ISTE-S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.	
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.	

ESSENTIALISTE-Students understand how automation works and use algorithmic thinking to develop a sequence of steps to createKNOWLEDGES.5.d.and test automated solutions.AND SKILL /

Virginia Standards of Learning

STANDARD

INDICATOR

Mathematics

Grade 7 - Adopted: 2016

STRAND / TOPIC	VA.MG.7.	Measurement and Geometry	
STANDARD / STRAND	7.4.	Fhe student will	
INDICATOR / STANDARD	7.4.a.	Describe and determine the volume and surface area of rectangular prisms and cylinders.	
INDICATOR / STANDARD	7.4.b.	Solve problems, including practical problems, involving the volume and surface area of rectangular prisms and cylinders.	

Virginia Standards of Learning

Science

Grade 5 - Adopted: 2018			
STRAND / TOPIC		Grade Five – Transforming matter and energy	
STANDARD / STRAND		Scientific and Engineering Practices	
INDICATOR / STANDARD	5.1.	The student will demonstrate an understanding of scientific and engineering practices by:	
INDICATOR	5.1.b.	planning and carrying out investigations	
PROGRESS	5.1.b.5.	use tools and/or materials to design and/or build a device that solves a specific problem	

STRAND / TOPIC		Grade Five – Transforming matter and energy	
STANDARD / STRAND		Scientific and Engineering Practices	
INDICATOR / STANDARD	5.1.	The student will demonstrate an understanding of scientific and engineering practices by:	
INDICATOR	5.1.f.	obtaining, evaluating, and communicating information	
PROGRESS INDICATOR	5.1.f.2.	communicate scientific information, design ideas, and/or solutions with others	

Virginia Standards of Learning

Science

Grade 6 - Adopted: 2018

STRAND / TOPIC		Grade Six – Our world; our responsibility	
ST ANDARD / ST RAND	6.1.	The student will demonstrate an understanding of scientific and engineering practices by:	
INDICATOR / STANDARD	6.1.a.	asking questions and defining problems	
INDICATOR	6.1.a.3.	offer simple solutions to design problems	
STRAND / TOPIC		Grade Six – Our world; our responsibility	
STANDARD /	6.1.	The student will demonstrate an understanding of scientific and engineering practices by:	

STRAND		
INDICATOR / STANDARD	6.1.b.	planning and carrying out investigations

INDICATOR	6.1.b.4.	use tools
	0.1.0.1.	

and materials to design and/or build a device to solve a specific problem

STRAND / TOPIC		Grade Six – Our world; our responsibility
ST AND ARD ST RAND	6.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR STANDARD	/ 6.1.c.	interpreting, analyzing, and evaluating data

INDICATOR 6.1.c.4. use data to evaluate and refine design solutions

STRAND / TOPIC		Grade Six – Our world; our responsibility
STANDARD / STRAND	6.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	6.1.d.	constructing and critiquing conclusions and explanations

INDICATOR 6.1.d.3. generate and compare multiple solutions to problems based on how well they meet the criteria and constraints

STRAND / TOPIC		Grade Six – Our world; our responsibility
-------------------	--	---

ST ANDARD / ST RAND	6.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	6.1.e.	developing and using models
INDICATOR	6.1.e.2.	use, develop, and revise models to predict and explain phenomena

INDICATOR 6.1.e.3. evaluate limitations of models

STRAND / TOPIC		Grade Six – Our world; our responsibility
STANDARD / STRAND	6.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	6.1.f.	obtaining, evaluating, and communicating information

INDICATOR 6.1.f.1.

read scientific texts, including those adapted for classroom use, to obtain scientific and/or technical information

STRAND / TOPIC		Grade Six – Our world; our responsibility
STANDARD / STRAND	6.6.	The student will investigate and understand that water has unique physical properties and has a role in the natural and human-made environment. Key ideas include:
INDICATOR / STANDARD	6.6.b.	water has specific properties;
INDICATOR / STANDARD	6.6.f.	water is important for agriculture, power generation, and public health.

STRAND / TOPIC		Grade Six – Our world; our responsibility
STANDARD / STRAND	6.8.	The student will investigate and understand that land and water have roles in watershed systems. Key ideas include:
INDICATOR /	6.8.d.	natural processes, human activities, and biotic and abiotic factors influence the health of a watershed system.

STRAND / TOPIC		Grade Six – Our world; our responsibility
STANDARD / STRAND	6.9.	The student will investigate and understand that humans impact the environment and individuals can influence public policy decisions related to energy and the environment. Key ideas include:
INDICATOR / STANDARD	6.9.c.	major health and safety issues are associated with air and water quality;

Virginia Standards of Learning

Science

Grade 7 - Adopted: 2018

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.a.	asking questions and defining problems

LS.1.a.2. offer simple solutions to design problems

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.c.	interpreting, analyzing, and evaluating data
INDICATOR	LS.1.c.4.	consider limitations of data analysis and/or seek to improve precision and accuracy of data
INDICATOR	LS.1.c.5.	use data to evaluate and refine design solutions

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.d.	constructing and critiquing conclusions and explanations

INDICATOR

LS.1.d.2. construct scientific explanations based on valid and reliable evidence obtained from sources (including the students' own investigations)

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.e.	developing and using models
INDICATOR	LS.1.e.1.	construct and use models and simulations to illustrate, predict, and/or explain observable and unobservable phenomena, life processes, or mechanisms

INDICATOR LS.1.e.2. evaluate limitations of models

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.f.	obtaining, evaluating, and communicating information
INDICATOR	LS.1.f.1.	read scientific texts, including those adapted for classroom use, to obtain scientific and/or technical information

Virginia Standards of Learning

Science

Grade 8 - Adopted: 2018

STRAND / TOPIC		Life Science
ST ANDARD / ST RAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:

INDICATOR / STANDARD	LS.1.a.	asking questions and defining problems
-------------------------	---------	--

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.c.	interpreting, analyzing, and evaluating data
INDICATOR	LS.1.c.4.	consider limitations of data analysis and/or seek to improve precision and accuracy of data

INDICATOR LS.1.c.5. use data to evaluate and refine design solutions

LS.1.a.2. offer simple solutions to design problems

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.d.	constructing and critiquing conclusions and explanations

```
INDICATOR
```

INDICATOR

LS.1.d.2. construct scientific explanations based on valid and reliable evidence obtained from sources (including the students' own investigations)

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.e.	developing and using models
INDICATOR	LS.1.e.1.	construct and use models and simulations to illustrate, predict, and/or explain observable and unobservable

INDICATOR LS.1.e.2. evaluate limitations of models

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.1.	The student will demonstrate an understanding of scientific and engineering practices by:
INDICATOR / STANDARD	LS.1.f.	obtaining, evaluating, and communicating information

INDICATOR

LS.1.f.1. read scientific texts, including those adapted for classroom use, to obtain scientific and/or technical information

phenomena, life processes, or mechanisms

Virginia Standards of Learning

Technology Education

Grade 5 - Adopted: 2017

ЗΤ	RAND	I
ГО	PIC	

STANDARD / STRAND		Algorithms and Programming
INDICATOR / STANDARD	5.1.	The student will construct sets of step-by-step instructions (algorithms) both independently and collaboratively,
INDICATOR	5.1.a.	Using sequencing.
STRAND / TOPIC	VA.CS.	Computer Science
ST ANDARD / ST RAND		Algorithms and Programming
INDICATOR / STANDARD	5.2.	The student will construct programs to accomplish a task as a means of creative expression using a block or text based programming language, both independently and collaboratively
INDICATOR	5.2.a.	Using sequencing.
STRAND / TOPIC	VA.CS.	Computer Science
ST ANDARD / ST RAND		Algorithms and Programming
INDICATOR / STANDARD	5.3.	The student will analyze, correct, and improve (debug) an algorithm that includes sequencing, events, loops, conditionals, and variables. [Related SOL areas - Math: Problem Solving, English: Editing]
STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND		Data and Analysis
INDICATOR / STANDARD	5.11.	The student will answer a question by using a computer to manipulate data in order for the student to draw conclusions and make predictions. [Related SOL: Math 5.16, 5.17, VS.1c and j]
		Grade 5 - Adopted: 2020
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	KC.	Knowledge Constructor (KC)
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.
PROGRESS INDICATOR	KC.D.i.	Students use digital resources and tools to explore real-world issues and problems and collaborate with others to find answers or solutions.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems.

PROGRESS	ID.A.i.	With guidance from an educator, students use appropriate technologies to explore and practice how a design
INDICATOR		process works to generate ideas, consider solutions, plan to solve a problem, or create innovative products that are
		shared with others.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.B.	Select and use appropriate technologies to plan and manage a design process that considers design constraints and calculated risks.
PROGRESS INDICATOR	ID.B.i.	With guidance from an educator, students select and use appropriate technologies to plan and manage a design process.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.
PROGRESS INDICATOR	ID.C.i.	With guidance from an educator, students use appropriate technologies in a cyclical design process to develop prototypes and reflect on the role of trial and error.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.D.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
PROGRESS INDICATOR	ID.D.i.	With guidance from an educator, students demonstrate perseverance when working with open-ended problem.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESS	CT.A.i.	With guidance from an educator, students create, identify, explore, and solve problems by selecting technology- assisted methods such as data analysis, modeling, and algorithmic thinking.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.C.	Break problems into component parts, extract key information, and develop descriptive models, using technologies when appropriate, to understand complex systems or facilitate problem-solving.
PROGRESS INDICATOR	CT.C.i.	Students break down problems into smaller parts, identify key information, and propose solutions using technologies, when appropriate.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	cc.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.
PROGRESS INDICATOR	CC.B.i.	Students use appropriate technologies to create original works and learn strategies for remixing other digital works to create new digital works.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	CC.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.C.	Communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models, or simulations.
PROGRESS	CC.C.i.	Students create digital works to communicate ideas visually and graphically.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
PROGRESS	GC.D.i.	Students use collaborative technologies to work with others to understand problems and investigate solutions to local and global issues.

Virginia Standards of Learning Technology Education Grade 6 - Adopted: 2020

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	KC.	Knowledge Constructor (KC)
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.
PROGRESS	KC.D.m.	Students use digital resources and tools to explore real-world issues and problems and actively pursue solutions.

INDICATOR

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems.
PROGRESS	ID.A.m.	In collaboration with an educator, students use appropriate technologies in a design process to generate ideas,

create innovative products, or solve authentic problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.B.	Select and use appropriate technologies to plan and manage a design process that considers design constraints and calculated risks.
PROGRESS	ID.B.m.	In collaboration with an educator, students select and use appropriate technologies to plan and manage a design process that identifies design constraints and trade-offs and weighs risks.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.
PROGRESS	ID.C.m.	In collaboration with an educator, students use appropriate technologies in a cyclical design process to develop prototypes and demonstrate the use of setbacks as potential opportunities for improvement.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)

INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.D.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
PROGRESS INDICATOR	ID.D.m.	In collaboration with an educator, students demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
STRAND /		Digital Learning Integration Standards of Learning for Virginia Public Schools

TOPIC		Digital Learning integration standards of Learning for Virginia Fubic Schools
STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESS INDICATOR	CT.A.m.	Students create, identify, explore, and solve problems using technology-assisted methods such as data analysis, modeling, or algorithmic thinking.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	CT.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.B.	Collect data or identify relevant data sets, use appropriate technologies to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
PROGRESS INDICATOR	CT.B.m.	Students find or organize data and use appropriate technologies to interpret, analyze, and represent data to construct models, predict outcomes, solve problems, and make evidence-based decisions.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	СТ.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.C.	Break problems into component parts, extract key information, and develop descriptive models, using technologies when appropriate, to understand complex systems or facilitate problem-solving.
PROGRESS	CT.C.m.	Students break problems into component parts, identify key pieces and use that information to problem solve using technologies, when appropriate.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	cc.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.

PROGRESS CC.B.m. Students use appropriate technologies to create new digital works or responsibly repurpose or remix other digital NDICATOR works into new digital works.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
PROGRESS INDICATOR	GC.D.m.	Students use collaborative technologies to work with others to understand problems, investigate and develop solutions related to local and global issues.

Virginia Standards of Learning Technology Education

Grade 7 - Adopted: 2020

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	KC.	Knowledge Constructor (KC)
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.
PROGRESS INDICATOR	KC.D.m.	Students use digital resources and tools to explore real-world issues and problems and actively pursue solutions.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	Know and use appropriate technologies in a purposeful design process for generating ideas, testing

 INDICATOR
 ID.A.
 Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems.

 PROGRESS
 ID.A.m.
 In collaboration with an educator, students use appropriate technologies in a design process to generate ideas,

INDICATOR create innovative products, or solve authentic problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.B.	Select and use appropriate technologies to plan and manage a design process that considers design constraints and calculated risks.

PROGRESS INDICATOR	ID.B.m.	In collaboration with an educator, students select and use appropriate technologies to plan and manage a design process that identifies design constraints and trade-offs and weighs risks.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools

INDICATOR / STANDARD Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations. INDICATOR ID.C. Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.	ST ANDARD / ST RAND	ID.	Innovative Designer (ID)
INDICATOR ID.C. Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.	INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
	INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.

PROGRESS	ID.C.m.
INDICATOR	

In collaboration with an educator, students use appropriate technologies in a cyclical design process to develop prototypes and demonstrate the use of setbacks as potential opportunities for improvement.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.D.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
PROGRESS INDICATOR	ID.D.m.	In collaboration with an educator, students demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	СТ.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESS INDICATOR	CT.A.m.	Students create, identify, explore, and solve problems using technology-assisted methods such as data analysis, modeling, or algorithmic thinking.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.B.	Collect data or identify relevant data sets, use appropriate technologies to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
PROGRESS	CT.B.m.	Students find or organize data and use appropriate technologies to interpret, analyze, and represent data to construct models, predict outcomes, solve problems, and make evidence-based decisions.

STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.C.	Break problems into component parts, extract key information, and develop descriptive models, using technologies when appropriate, to understand complex systems or facilitate problem-solving.

PROGRESS	CT.C.m.	Students break problems into component parts, identify key pieces and use that information to problem solve using
INDICATOR		technologies, when appropriate.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	CC.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.
PROGRESS	CC.B.m.	Students use appropriate technologies to create new digital works or responsibly repurpose or remix other digital works into new digital works.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
PROGRESS	GC.D.m.	Students use collaborative technologies to work with others to understand problems, investigate and develop solutions related to local and global issues.

Virginia Standards of Learning Technology Education

Grade 8 - Adopted: 2020

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	KC.	Knowledge Constructor (KC)
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.
PROGRESS	KC.D.m.	Students use digital resources and tools to explore real-world issues and problems and actively pursue solutions.

STRAND / FOPIC	Digital Learning Integration Standards of Learning for Virginia Public Schools

ST ANDARD / ST RAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems.
PROGRESS INDICATOR	ID.A.m.	In collaboration with an educator, students use appropriate technologies in a design process to generate ideas, create innovative products, or solve authentic problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.B.	Select and use appropriate technologies to plan and manage a design process that considers design constraints and calculated risks.
PROGRESS	ID.B.m.	In collaboration with an educator, students select and use appropriate technologies to plan and manage a design

ID.B.m. In collaboration with an educator, students select and use appropriate technologies to plan and manage a design process that identifies design constraints and trade-offs and weighs risks.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.
PROGRESS INDICATOR	ID.C.m.	In collaboration with an educator, students use appropriate technologies in a cyclical design process to develop prototypes and demonstrate the use of setbacks as potential opportunities for improvement.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.D.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
PROGRESS	ID.D.m.	In collaboration with an educator, students demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	СТ.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESSCT.A.m.Students create, identify, explore, and solve problems using technology-assisted methods such as data analysis,INDICATORmodeling, or algorithmic thinking.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	СТ.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.B.	Collect data or identify relevant data sets, use appropriate technologies to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
PROGRESS	CT.B.m.	Students find or organize data and use appropriate technologies to interpret, analyze, and represent data to

 INDICATOR
 construct models, predict outcomes, solve problems, and make evidence-based decisions.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	СТ.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.C.	Break problems into component parts, extract key information, and develop descriptive models, using technologies when appropriate, to understand complex systems or facilitate problem-solving.
PROGRESS	CT.C.m.	Students break problems into component parts, identify key pieces and use that information to problem solve using

INDICATOR technologies, when appropriate.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
ST ANDARD / ST RAND	CC.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.
PROGRESS INDICATOR	CC.B.m.	Students use appropriate technologies to create new digital works or responsibly repurpose or remix other digital works into new digital works.

STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
PROGRESS	GC.D.m.	Students use collaborative technologies to work with others to understand problems, investigate and develop solutions related to local and global issues.

Mathematics

Grade 5 - Adopted: 2010

CONTENT ST ANDARD / ST RAND / DISCIPLINE	DC.CC.5. MP.	Mathematical Practices
STANDARD / ESSENTIAL SKILL	5.MP.1.	Make sense of problems and persevere in solving them.
STANDARD / ESSENTIAL SKILL	5.MP.2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	5.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	5.MP.4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	5.MP.5.	Use appropriate tools strategically.
STANDARD / ESSENTIAL SKILL	5.MP.7.	Look for and make use of structure.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.5. MD.	Measurement and Data
ST ANDARD / ESSENT IAL SKILL		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
STUDENT EXPECTATION /	5.MD.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

ESSENTIAL

SKILL

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.5. MD.	Measurement and Data
ST ANDARD / ESSENT IAL SKILL		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
STUDENT EXPECTATION / ESSENTIAL SKILL	5.MD.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.

EXPECTATION	5.MD.5.a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show
		that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height
		by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative
		property of multiplication.

EXPECTATION 5.MD.5.b. Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

Washington DC Academic Standards

Mathematics

Grade 6 - Adopted: 2010

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.6. MP.	Mathematical Practices
STANDARD / ESSENTIAL SKILL	6.MP.1.	Make sense of problems and persevere in solving them.
STANDARD / ESSENTIAL SKILL	6.MP.2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	6.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	6.MP.4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	6.MP.5.	Use appropriate tools strategically.
STANDARD / ESSENTIAL SKILL	6.MP.7.	Look for and make use of structure.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.6. G.	Geometry
STANDARD / ESSENTIAL SKILL		Solve real-world and mathematical problems involving area, surface area, and volume.
STUDENT EXPECTATION / ESSENTIAL SKILL	6.G.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w h$ and $V = b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Washington DC Academic Standards Mathematics Grade 7 - Adopted: 2010

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.7. MP.	Mathematical Practices
STANDARD / ESSENTIAL SKILL	7.MP.1.	Make sense of problems and persevere in solving them.
STANDARD / ESSENTIAL SKILL	7.MP.2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	7.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	7.MP.4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	7.MP.5.	Use appropriate tools strategically.
STANDARD / ESSENTIAL SKILL	7.MP.7.	Look for and make use of structure.

Washington DC Academic Standards

Mathematics

Grade 8 - Adopted: 2010

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.8. MP.	Mathematical Practices
STANDARD / ESSENTIAL SKILL	8.MP.1.	Make sense of problems and persevere in solving them.
STANDARD / ESSENTIAL SKILL	8.MP.2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	8.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	8.MP.4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	8.MP.5.	Use appropriate tools strategically.

STANDARD / 8.M ESSENTIAL

8.MP.7. Look for and make use of structure.

SKILL

ESSENTIAL SKILL

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.8. G.	Geometry
ST ANDARD / ESSENT IAL SKILL		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
STUDENT EXPECTATION /	8.G.9.	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Washington DC Academic Standards

Science

Grade 5 - Adopted: 2013

CONTENT STANDARD / STRAND / DISCIPLINE	DC.3-5- ET S.	ENGINEERING DESIGN
ST ANDARD / ESSENTIAL SKILL	3-5- ETS1.	Engineering Design
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Washington DC Academic Standards

Science

Grade 6 - Adopted: 2013

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / ESSENTIAL SKILL	MS- ESS3.	Earth and Human Activity
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:

EXPECTATION MS-

MS- Construct an argument supported by evidence for how increases in human population and per-capita consumption ESS3-4. of natural resources impact Earth's systems.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ETS.	
STANDARD / ESSENTIAL SKILL	MS- ETS1.	Engineering Design
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Key Ideas and Details
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Craft and Structure
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Integration of Knowledge and Ideas
STUDENT	6-	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that

 STUDENT
 6 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that

 EXPECTATION / 8.RST.9.
 gained from reading a text on the same topic.

 ESSENTIAL
 SKILL

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Range of Reading and Level of Text Complexity
	0	

 STUDENT
 6 By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

 EXPECTATION /
 8.RST.10.
 independently and proficiently.

 ESSENTIAL
 SKILL
 SKILL

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Text Types and Purposes
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects

ESSENTIAL SKILL		
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Production and Distribution of Writing

STANDARD /

Science

Grade 7 - Adopted: 2013

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ESS.	EARTH AND SPACE SCIENCE
STANDARD / ESSENTIAL SKILL	MS- ESS3.	Earth and Human Activity
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:

EXPECTATION MS-

MS- Construct an argument supported by evidence for how increases in human population and per-capita consumption ESS3-4. of natural resources impact Earth's systems.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ETS.	ENGINEERING DESIGN
ST ANDARD / ESSENTIAL SKILL	MS- ETS1.	Engineering Design
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

		Grade 7 - Adopted: 2010
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Key Ideas and Details
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Craft and Structure
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Integration of Knowledge and Ideas
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / STRAND /	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects

DISCIPLINE		
ST ANDARD / ESSENT IAL SKILL		Range of Reading and Level of Text Complexity
STUDENT EXPECTATION / ESSENTIAL	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

SKILL

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Text Types and Purposes
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

EXPECTATION

Use precise language and domain-specific vocabulary to inform about or explain the topic.

8.WHST.2. d.

6-

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Production and Distribution of Writing
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STUDENT EXPECTATION /	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Washington DC Academic Standards

ESSENTIAL .

SKILL

Science

Grade 8 - Adopted: 2013

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ESS.	EARTH AND SPACE SCIENCE
STANDARD / ESSENTIAL SKILL	MS- ESS3.	Earth and Human Activity
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ETS.	ENGINEERING DESIGN
ST ANDARD / ESSENT IAL SKILL	MS- ETS1.	Engineering Design
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Key Ideas and Details
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENTIAL SKILL		Craft and Structure
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Integration of Knowledge and Ideas
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Range of Reading and Level of Text Complexity

STUDENT6-By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity bandEXPECTATION /8.RST.10.independently and proficiently.ESSENTIALSKILLState

CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Text Types and Purposes
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
ST ANDARD / ESSENT IAL SKILL		Production and Distribution of Writing
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Washington State K-12 Learning Standards and Guidelines

Mathematics

Grade 5 - Adopted: 2011

EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.
BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.

BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.5.	Use appropriate tools strategically.
BIG IDEA / CORE	MP.7.	Look for and make use of structure.

CONTENT

EALR	WA.5.MD.	Measurement and Data
BIG IDEA / CORE CONTENT		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
CORE CONTENT / CONTENT	5.MD.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

STANDARD

EALR	WA.5.MD.	Measurement and Data
BIG IDEA / CORE CONTENT		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
CORE CONTENT / CONTENT STANDARD	5.MD.5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
CONTENT STANDARD / PERFORMANCE EXPECTATION	5.MD.5(a)	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
CONTENT STANDARD / PERFORMANCE EXPECTATION	5.MD.5(b)	Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

Washington State K-12 Learning Standards and Guidelines

Mathematics

Grade 6 - Adopted: 2011

EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.

BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.
BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.5.	Use appropriate tools strategically.
BIG IDEA / CORE CONTENT	MP.7.	Look for and make use of structure.

EALR	WA.6.G.	Geometry
BIG IDEA / CORE CONTENT		Solve real-world and mathematical problems involving area, surface area, and volume.
CORE CONTENT / CONTENT STANDARD	6.G.2.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w h$ and $V = b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Washington State K-12 Learning Standards and Guidelines

Mathematics

Grade 7 - Adopted: 2011

EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.
BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.
BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.5.	Use appropriate tools strategically.
BIG IDEA / CORE CONTENT	MP.7.	Look for and make use of structure.

Washington State K-12 Learning Standards and Guidelines

Mathematics

Grade 8 - Adopted: 2011

EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.
BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.
BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.5.	Use appropriate tools strategically.
BIG IDEA / CORE CONTENT	MP.7.	Look for and make use of structure.

EALR	WA.8.G.	Geometry
BIG IDEA / CORE CONTENT		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
CORE CONTENT / CONTENT STANDARD	8.G.9.	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Washington State K-12 Learning Standards and Guidelines

Science

Grade 5 - Adopted: 2014

EALR	WA.3-5- ET S.	ENGINEERING DESIGN
BIG IDEA / CORE CONTENT	3-5- ETS1.	Engineering Design
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT3-5-Define a simple design problem reflecting a need or a want that includes specified criteria for success andSTANDARD /ETS1-1.constraints on materials, time, or cost.PERFORMANCEEXPECTATION

CONTENT STANDARD / PERFORMANCE EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STANDARD / PERFORMANCE EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Washington State K-12 Learning Standards and Guidelines

Science

EALR	WA.MS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	MS- ESS3.	Earth and Human Activity
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD /	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

PERFORMANCE EXPECTATION

EALR	WA.MS- ET S.	ENGINEERING DESIGN
BIG IDEA / CORE CONTENT	MS- ETS1.	Engineering Design
CORE CONTENT / CONTENT ST ANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
EALR	WA.RST.	Reading Standards for Literacy in Science and Technical Subjects

BIG IDEA / CORE CONTENT		Key Ideas and Details
CORE CONTENT / CONTENT STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
CORE CONTENT / CONTENT	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

STANDARD

EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Craft and Structure
CORE CONTENT / CONTENT STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
CORE CONTENT / CONTENT STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Integration of Knowledge and Ideas
CORE CONTENT / CONTENT STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Range of Reading and Level of Text Complexity
CORE CONTENT / CONTENT STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

EALR	WA.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Text Types and Purposes

CORE CONTENT / CONTENT STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

CONTENT WH STANDARD / 8.2(c PERFORMANCE EXPECTATION

PERFORMANCE EXPECTATION

PERFORMANCE EXPECTATION

WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic. 8.2(d)

EALR	WA.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Production and Distribution of Writing
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Washington State K-12 Learning Standards and Guidelines

Science

Grade 7 - Adopted: 2014

EALR	WA.MS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	MS- ESS3.	Earth and Human Activity
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD /	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

EALR	WA.MS- ETS.	ENGINEERING DESIGN
BIG IDEA / CORE CONTENT	MS- ET S1.	Engineering Design
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD /	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

possible solutions.

CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Key Ideas and Details

CORE CONTENT / CONTENT STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
CORE CONTENT / CONTENT	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

STANDARD		
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Craft and Structure
CORE CONTENT / CONTENT STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
CORE CONTENT / CONTENT	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

STANDARD

EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Integration of Knowledge and Ideas
CORE CONTENT / CONTENT STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

EALR WA 6-8	/A.RST. R 8.	leading Standards for Literacy in Science and Technical Subjects
----------------	-----------------	--

BIG IDEA / CORE CONTENT		Range of Reading and Level of Text Complexity
CORE CONTENT / CONTENT STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

EALR	WA.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Text Types and Purposes
CORE CONTENT / CONTENT STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

CONTENTWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.STANDARD /8.2(d)PERFORMANCEEXPECTATION

EALR	WA.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Production and Distribution of Writing
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Washington State K-12 Learning Standards and Guidelines

Science

Grade 8 - Adopted: 2014

EALR	WA.MS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	MS- ESS3.	Earth and Human Activity
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

EALR

BIG IDEA / CORE CONTENT	MS- ET S1.	Engineering Design
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Key Ideas and Details
CORE CONTENT / CONTENT STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
CORE CONTENT / CONTENT STANDARD	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Craft and Structure
CORE CONTENT / CONTENT STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
CORE CONTENT / CONTENT STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Integration of Knowledge and Ideas
CORE CONTENT / CONTENT STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

EALRWA.RST.Reading Standards for Literacy in Science and Technical SubjectsBIG IDEA /
CORE
CONTENTRange of Reading and Level of Text ComplexityCORE
CONTENT /
STANDARDRST.6-
8.10.By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band
independently and proficiently.

EALRWA.WHST
.6-8.Writing Standards for Literacy in Science and Technical SubjectsBIG IDEA /
CORE
CONTENTText Types and PurposesCORE
CONTENT /
CONTENT /
STANDARDWHST.6
-8.2.Write informative/explanatory texts, including the narration of historical events, scientific procedures/
experiments, or technical processes.

CONTENTWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.STANDARD /8.2(d)PERFORMANCEEXPECTATION

EALR	WA.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Production and Distribution of Writing
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Washington State K-12 Learning Standards and Guidelines

Technology Education Grade 5 - Adopted: 2018

BIG IDEA / CORE CONTENT	3-5.4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
CORE CONTENT / CONTENT STANDARD	3-5.4.b.	Students use digital and non-digital tools to plan and manage a design process.
EALR	WA.ET.3-	Educational Technology Learning Standards

	J.	
BIG IDEA / CORE CONTENT	3-5.5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
CORE CONTENT / CONTENT STANDARD	3-5.5.a.	Students explore or solve problems by selecting technology for data analysis, modeling and algorithmic thinking, with guidance from an educator.

CORE	3-5.5.d.	Students understand and explore basic concepts related to automation, patterns and algorithmic thinking.
CONTENT /		
CONTENT		
STANDARD		

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 1B: 3-5
CORE CONTENT / CONTENT STANDARD	1B-CS.	Computing Systems

CONTENT1B-CS-Determine potential solutions to solve simple hardware and software problems using common troubleshootingSTANDARD /03.strategies. (P. 6.2)PERFORMANCEEXPECTATIONStrategies. (P. 6.2)

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 1B: 3-5
CORE CONTENT / CONTENT STANDARD	1B-AP.	Algorithms and Programming
CONTENT STANDARD / PERFORMANCE EXPECTATION	1B-AP- 08.	Compare and refine multiple algorithms for the same task and determine which is the most appropriate. (P. 6.3, P. 3.3)
CONTENT STANDARD / PERFORMANCE EXPECTATION	1B-AP- 11.	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. (P. 3.2)

CONTENT STANDARD / PERFORMANCE EXPECTATION	1B-AP- 12.	Modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features. (P. 5.3)
CONTENT STANDARD / PERFORMANCE EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. (P. 1.1, P. 5.1)

CONTENT1B-AP-Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended. (P. 6.1, P. 6.2)STANDARD /15.PERFORMANCEEXPECTATION

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 1B: 3-5
CORE CONTENT / CONTENT STANDARD	1B-IC.	Impacts of Computing
CONTENT STANDARD / PERFORMANCE EXPECTATION	1B-IC-18.	Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices. (P. 3.1)
CONTENT STANDARD / PERFORMANCE EXPECTATION	1B-IC-19.	Brainstorm ways to improve the accessibility and usability of technology products for the diverse needs and wants of users. (P. 1.2)

Washington State K-12 Learning Standards and Guidelines

Technology Education				
	Grade 6 - Adopted: 2018			
EALR	WA.ET.6- 8.	Educational Technology Learning Standards		
BIG IDEA / CORE CONTENT	6-8.3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.		
CORE CONTENT / CONTENT STANDARD	6-8.3.d.	Students explore real-world issues and problems and actively pursue an understanding of them and solutions for them.		

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

CORE	6-8.4.a.	Students engage in a design process and employ it to generate ideas, create innovative products or solve authentic
CONTENT /		problems.
CONTENT		
STANDARD		

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
CORE CONTENT / CONTENT STANDARD	6-8.5.a.	Students practice defining problems to solve by computing for data analysis, modeling or algorithmic thinking.

CORE	6-8.5.d.	Students demonstrate an understanding of how automation works and use algorithmic thinking to design and
CONTENT /		automate solutions.
CONTENT		
STANDARD		

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-CS.	Computing Systems
CONTENT STANDARD / PERFORMANCE	2-CS-01.	Recommend improvements to the design of computing devices, based on an analysis of how users interact with the devices. (P. 3.3)

CONTENT	2-CS-03.	Systematically identify and fix problems with computing devices and their components. (P. 6.2)
STANDARD /		
PERFORMANCE		
EXPECTATION		

EXPECTATION

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-AP.	Algorithms and Programming

CONTENT 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P. 4.4, 4.1) STANDARD / PERFORMANCE EXPECTATION

CONTENT	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P. 2.2)
STANDARD /		
PERFORMANCE		
EXPECTATION		

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-IC.	Impacts of Computing
CONTENT	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a

STANDARD / PERFORMANCE EXPECTATION

2-IC-22. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P. 2.4, P. 5.2)

Washington State K-12 Learning Standards and Guidelines

Technology Education

Grade 7 - Adopted: 2018

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
CORE CONTENT / CONTENT STANDARD	6-8.3.d.	Students explore real-world issues and problems and actively pursue an understanding of them and solutions for them.

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
CORE CONTENT / CONTENT STANDARD	6-8.4.a.	Students engage in a design process and employ it to generate ideas, create innovative products or solve authentic problems.

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
CORE CONTENT / CONTENT STANDARD	6-8.5.a.	Students practice defining problems to solve by computing for data analysis, modeling or algorithmic thinking.

CORE
CONTENT /
CONTENT
STANDARD

6-8.5.d. Students demonstrate an understanding of how automation works and use algorithmic thinking to design and automate solutions.

EALR Computer Science **BIG IDEA /** Level 2: 6-8 CORE CONTENT CORE 2-CS. **Computing Systems** CONTENT / CONTENT STANDARD CONTENT 2-CS-01. Recommend improvements to the design of computing devices, based on an analysis of how users interact with the devices. (P. 3.3) STANDARD /

PERFORMANCE EXPECTATION

CONTENT2-CS-03.Systematically identify and fix problems with computing devices and their components. (P. 6.2)STANDARD /PERFORMANCEEXPECTATION

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-AP.	Algorithms and Programming
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P. 4.4, 4.1)

CONTENT 2-AP-18. Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P. 2.2) STANDARD / PERFORMANCE EXPECTATION

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-IC.	Impacts of Computing
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P. 2.4, P. 5.2)

Grade 8 - Adopted: 2018

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
CORE CONTENT / CONTENT STANDARD	6-8.3.d.	Students explore real-world issues and problems and actively pursue an understanding of them and solutions for them.

EALRWA.ET.6-
8.Educational Technology Learning StandardsBIG IDEA /
CORE
CONTENT6-8.4.Innovative Designer - Students use a variety of technologies within a design process to identify and
solve problems by creating new, useful or imaginative solutions.CORE
CONTENT /
CONTENT6-8.4.a.Students engage in a design process and employ it to generate ideas, create innovative products or solve authentic
problems.

STANDARD

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
CORE CONTENT / CONTENT STANDARD	6-8.5.a.	Students practice defining problems to solve by computing for data analysis, modeling or algorithmic thinking.
CORE CONTENT / CONTENT STANDARD	6-8.5.d.	Students demonstrate an understanding of how automation works and use algorithmic thinking to design and automate solutions.
EALR		Computer Science

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-CS.	Computing Systems
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-CS-01.	Recommend improvements to the design of computing devices, based on an analysis of how users interact with the devices. (P. 3.3)

CONTENT 2-CS-03. Systematically identify and fix problems with computing devices and their components. (P. 6.2) STANDARD / PERFORMANCE EXPECTATION

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-AP.	Algorithms and Programming
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P. 4.4, 4.1)

CONTENT 2-AP-18. Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P. 2.2) STANDARD / PERFORMANCE EXPECTATION

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-IC.	Impacts of Computing
CONTENT STANDARD / PERFORMANCE	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P. 2.4, P. 5.2)

West Virginia College and Career Readiness Standards

EXPECTATION

Mathematics

Grade 5	Adopted: 2016
----------------	---------------

CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	MHM3.	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / OBJECTIVE	MHM4.	Model with mathematics.

CONTENT STANDARD / OBJECTIVE	MHM5.	Use appropriate tools strategically.
CONTENT STANDARD / OBJECTIVE	MHM7.	Look for and make use of structure.
CONTENT STANDARD / COURSE	WV.M.5.M D.	Measurement and Data
CONTENT STANDARD / OBJECTIVE		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
OBJECTIVE / EXPECTATION	M.5.21.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
CONTENT STANDARD / COURSE	WV.M.5.M D.	Measurement and Data
CONTENT STANDARD / OBJECTIVE		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
OBJECTIVE / EXPECTATION	M.5.22.	Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.
GRADE LEVEL EXPECTATION	M.5.22.a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes (e.g., to represent the associative property of multiplication).
GRADE LEVEL EXPECTATION	M.5.22.b.	Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real-world and mathematical problems.
		West Virginia College and Career Readiness Standards Mathematics Grade 6 - Adopted: 2016
CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	MHM3.	Construct viable arguments and critique the reasoning of others.

CONTENT STANDARD / OBJECTIVE	MHM4.	Model with mathematics.
CONTENT STANDARD / OBJECTIVE	MHM5.	Use appropriate tools strategically.
CONTENT STANDARD /	MHM7.	Look for and make use of structure.

OBJECTIVE

CONTENT STANDARD / COURSE	WV.M.6.G	Geometry
CONTENT STANDARD / OBJECTIVE		Solve real-world and mathematical problems involving area, surface area, and volume.
OBJECTIVE / EXPECTATION	M.6.22.	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w h$ and $V = B h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

West Virginia College and Career Readiness Standards

Mathematics

Grade 7 - Adopted: 2016

CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	MHM3.	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / OBJECTIVE	MHM4.	Model with mathematics.
CONTENT STANDARD / OBJECTIVE	MHM5.	Use appropriate tools strategically.
CONTENT STANDARD / OBJECTIVE	MHM7.	Look for and make use of structure.

Grade 8 - Adopted: 2016

CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	MHM3.	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / OBJECTIVE	MHM4.	Model with mathematics.
CONTENT STANDARD / OBJECTIVE	MHM5.	Use appropriate tools strategically.
CONTENT STANDARD / OBJECTIVE	MHM7.	Look for and make use of structure.

CONTENT STANDARD / COURSE	WV.M.8.G	Geometry
CONTENT STANDARD / OBJECTIVE		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
OBJECTIVE / EXPECTATION	M.8.24.	Know the formulas for the volumes of cones, cylinders and spheres and use them to solve real-world and mathematical problems.

West Virginia College and Career Readiness Standards

Science Grade 5 - Adopted: 2021

Glade 5 - Aubpieu. 2021			
CONTENT STANDARD / COURSE		Science Indicators Grades 3-5	
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science	
OBJECTIVE / EXPECTATION		Nature of Science	
GRADE LEVEL EXPECTATION		Science is a creative human endeavor which is influenced by social and cultural biases.	

Science Indicators Grades 3-5

CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers
GRADE LEVEL EXPECTATION	Developing and using models
GRADE LEVEL EXPECTATION	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION	Obtaining, evaluating, and communicating information
CONTENT STANDARD / COURSE	Science Indicators Grades 3-5
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Connecting Concepts
GRADE LEVEL EXPECTATION	Investigating and explaining cause and effect
CONTENT ST ANDARD / COURSE	Science Indicators Grades 3-5
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Literacy
GRADE LEVEL EXPECTATION	Utilizing and connecting ideas among informational (factual) scientific texts
GRADE LEVEL EXPECTATION	Integrating and applying information presented in various media formats when writing and speaking
GRADE LEVEL EXPECTATION	Building and appropriately using science domain vocabulary and phrases
CONTENT ST ANDARD / COURSE	Science – Grade 5
CONTENT STANDARD / OBJECTIVE	Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION	Engineering Design

GRADE LEVELS.5.15.Define a simple design problem reflecting a need or a want that includes specified criteria for success and
constraints on materials, time, or cost.

GRADE LEVEL EXPECTATION	S.5.16.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	S.5.17.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

West Virginia College and Career Readiness Standards

Science

Grade 6 - Adopted: 2021

CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Nature of Science
GRADE LEVEL EXPECTATION	Science is a creative human endeavor which is influenced by social and cultural biases.
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers
GRADE LEVEL EXPECTATION	Developing and using models
GRADE LEVEL EXPECTATION	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION	Obtaining, evaluating, and communicating information
CONTENT ST ANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Connecting Concepts
GRADE LEVEL EXPECTATION	Investigating and explaining cause and effect

CONTENT STANDARD / COURSE

Science Indicators Grades 6-8

CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Literacy

GRADE LEVEL EXPECTATION Reading with understanding articles about science in the popular press and engaging in social conversation about the validity of the conclusions

CONTENT STANDARD / COURSE	Science – Grade 6
CONTENT STANDARD / OBJECTIVE	PHYSICAL Science
OBJECTIVE / EXPECTATION	Waves and Electromagnetic Radiation

GRADE LEVEL S.6.12. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable EXPECTATION way to encode and transmit information than analog signals.

CONTENT STANDARD / COURSE		Science – Grade 6
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
	S 6 20	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution

GRADE LEVEL S.6.20. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution. EXPECTATION

West Virginia College and Career Readiness Standards

Science

Grade 7 -	Adopted: 2021
-----------	---------------

CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Nature of Science

GRADE LEVEL

Science is a creative human endeavor which is influenced by social and cultural biases.

EXPECTATION

CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers

GRADE LEVEL EXPECTATION		Developing and using models
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Obtaining, evaluating, and communicating information
CONTENT STANDARD / COURSE		Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION		Science Connecting Concepts
GRADE LEVEL EXPECTATION		Investigating and explaining cause and effect
CONTENT STANDARD / COURSE		Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION		Science Literacy
GRADE LEVEL EXPECTATION		Reading with understanding articles about science in the popular press and engaging in social conversation about the validity of the conclusions
CONTENT STANDARD / COURSE		Science – Grade 7
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.7.22.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, considering limitations to solutions including scientific principles and potential relevant possible impacts on people and the environment.
GRADE LEVEL EXPECTATION	S.7.23.	Analyze data from tests to determine which characteristics of design can be combined into a new solution to better meet the criteria for success.
		West Virginia College and Career Readiness Standards Science
CONTENT STANDARD / COURSE		Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science	
------------------------------------	--	
OBJECTIVE / EXPECTATION	Nature of Science	

```
GRADE LEVEL EXPECTATION
```

Science is a creative human endeavor which is influenced by social and cultural biases.

CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers
GRADE LEVEL EXPECTATION	Developing and using models
GRADE LEVEL EXPECTATION	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION	Obtaining, evaluating, and communicating information
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Connecting Concepts
GRADE LEVEL EXPECTATION	Investigating and explaining cause and effect
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8

CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Literacy

GRADE LEVELReading with understanding articles about science in the popular press and engaging in social conversation aboutEXPECTATIONthe validity of the conclusions

CONTENT STANDARD / COURSE	Science – Grade 8
CONTENT STANDARD / OBJECTIVE	Earth and Space Science

OBJECTIVE / EXPECTATION		Human Impacts
GRADE LEVEL EXPECTATION	S.8.17.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD / COURSE		Science – Grade 8
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.8.18.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	S.8.19.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		West Virginia College and Career Readiness Standards
		Technology Education
		Grade 5 - Adopted: 2019

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Technology 3-5
OBJECTIVE / EXPECTATION		Innovative Designer

GRADE LEVEL T.3-5.13. With support and guidance, select appropriate technology tools to solve problems and communicate information. EXPECTATION

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 3-5
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.3-5.1.	Verbalize the steps to solve a problem.

GRADE LEVEL CS.3-5.2. Work together in a team to solve a problem. EXPECTATION

West Virginia College and Career Readiness Standards

Technology Education

Grade 6 - Adopted: 2019

CONTENT STANDARD / OBJECTIVE	Computer Science 6-8
OBJECTIVE / EXPECTATION	Computer Systems and Computational Thinking

GRADE LEVEL CS.6-8.1. Analyze and devise problem-solving strategies cooperatively and collaboratively. EXPECTATION

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 6-8
OBJECTIVE / EXPECTATION		Programming and Algorithms

GRADE LEVELCS.6-Analyze the problem and use a tool (e.g., flow chart) to design an algorithm to solve complex problems.EXPECTATION8.10.

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.DCS. 1.	Use the basic steps in algorithmic problem-solving to design solutions (e.g., problem statement and exploration, examination of sample instances, design, implementing a solution, testing, and evaluation).
GRADE LEVEL EXPECTATION	CS.DCS. 3.	Define an algorithm as a sequence of instructions that can be processed by a computer.
GRADE LEVEL EXPECTATION	CS.DCS. 5.	Act out searching and sorting algorithms.
GRADE LEVEL EXPECTATION	CS.DCS. 9.	Interact with content-specific models and simulations (e.g., ecosystems, epidemics, molecular dynamics) to support learning and research.
GRADE LEVEL EXPECTATION	CS.DCS. 10.	Evaluate what kinds of problems can be solved using modeling and simulation.
GRADE LEVEL EXPECTATION	CS.DCS. 12.	Use abstraction to decompose a problem into sub problems.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Programming and Algorithms

GRADE LEVEL EXPECTATION	CS.DCS. 20.	Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems.
GRADE LEVEL EXPECTATION	CS.DCS. 23.	Demonstrate an understanding of algorithms and their practical application.
GRADE LEVEL EXPECTATION	CS.DCS. 27.	Demonstrate characteristics used in open ended problem-solving and programming (e.g., comfort with complexity, persistence, brainstorming, adaptability, patience, propensity to tinker, creativity, accepting challenge).
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
		Discovering Computer Science

STANDARD / OBJECTIVE		
OBJECTIVE / EXPECTATION		Computers and Communications Devices
GRADE LEVEL	CS.DCS.	Describe ways in which computers use models of intelligent behavior (e.g., robot motion, speech and language

GRADE LEVELCS.DCS.Describe ways in which computers use models of intelligent behavior (e.g., robot motion, speech and languageEXPECTATION36.understanding, and computer vision).

West Virginia College and Career Readiness Standards

Technology Education Grade 7 - Adopted: 2019

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 6-8
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking

GRADE LEVEL CS.6-8.1. Analyze and devise problem-solving strategies cooperatively and collaboratively. EXPECTATION

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science	
CONTENT STANDARD / OBJECTIVE		nputer Science 6-8	
OBJECTIVE / EXPECTATION		Programming and Algorithms	
GRADE LEVEL EXPECTATION	CS.6- 8.10.	Analyze the problem and use a tool (e.g., flow chart) to design an algorithm to solve complex problems.	
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science	
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science	
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking	

GRADE LEVEL EXPECTATION	CS.DCS. 1.	Use the basic steps in algorithmic problem-solving to design solutions (e.g., problem statement and exploration, examination of sample instances, design, implementing a solution, testing, and evaluation).	
GRADE LEVEL EXPECTATION	CS.DCS. 3.	Define an algorithm as a sequence of instructions that can be processed by a computer.	
GRADE LEVEL EXPECTATION	CS.DCS. 5.	Act out searching and sorting algorithms.	
GRADE LEVEL EXPECTATION	CS.DCS. 9.	Interact with content-specific models and simulations (e.g., ecosystems, epidemics, molecular dynamics) to support learning and research.	
GRADE LEVEL EXPECTATION	CS.DCS. 10.	Evaluate what kinds of problems can be solved using modeling and simulation.	
GRADE LEVEL EXPECTATION	CS.DCS. 12.	Use abstraction to decompose a problem into sub problems.	
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science	
CONTENT STANDARD /		Discovering Computer Science	
OBJECTIVE			
OBJECTIVE / EXPECTATION		Programming and Algorithms	
OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION	CS.DCS. 20.	Programming and Algorithms Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems.	
OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION	CS.DCS. 20. CS.DCS. 23.	Programming and Algorithms Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems. Demonstrate an understanding of algorithms and their practical application.	
OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION	CS.DCS. 20. CS.DCS. 23. CS.DCS. 27.	Programming and Algorithms Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems. Demonstrate an understanding of algorithms and their practical application. Demonstrate characteristics used in open ended problem-solving and programming (e.g., comfort with complexity, persistence, brainstorming, adaptability, patience, propensity to tinker, creativity, accepting challenge).	
OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION	CS.DCS. 20. CS.DCS. 23. CS.DCS. 27. 2520.14.	Programming and Algorithms Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems. Demonstrate an understanding of algorithms and their practical application. Demonstrate characteristics used in open ended problem-solving and programming (e.g., comfort with complexity, persistence, brainstorming, adaptability, patience, propensity to tinker, creativity, accepting challenge). West Virginia College- and Career-Readiness Standards for Technology and Computer Science	
OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION CONTENT STANDARD / OBJECTIVE	CS.DCS. 20. CS.DCS. 23. CS.DCS. 27. 2520.14.	Programming and Algorithms Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems. Demonstrate an understanding of algorithms and their practical application. Demonstrate characteristics used in open ended problem-solving and programming (e.g., comfort with complexity, persistence, brainstorming, adaptability, patience, propensity to tinker, creativity, accepting challenge). West Virginia College- and Career-Readiness Standards for Technology and Computer Science Discovering Computer Science	
OBJECTIVE / EXPECTATION GRADE LEVEL EXPECTATION CONTENT STANDARD / OBJECTIVE / EXPECTATION	CS.DCS. 20. CS.DCS. 23. CS.DCS. 27. 2520.14.	Programming and Algorithms Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems. Demonstrate an understanding of algorithms and their practical application. Demonstrate characteristics used in open ended problem-solving and programming (e.g., comfort with complexity, persistence, brainstorming, adaptability, patience, propensity to tinker, creativity, accepting challenge). West Virginia College- and Career-Readiness Standards for Technology and Computer Science Discovering Computer Science Computers and Communications Devices	

West Virginia College and Career Readiness Standards

Technology Education

Grade 8 - Adopted: 2019

2520.14. West Virginia College- and Career-Readiness Standards for Technology and Computer Science

CONTENT STANDARD / OBJECTIVE	Computer Science 6-8
OBJECTIVE / EXPECTATION	Computer Systems and Computational Thinking

GRADE LEVEL CS.6-8.1. Analyze and devise problem-solving strategies cooperatively and collaboratively. EXPECTATION

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 6-8
OBJECTIVE / EXPECTATION		Programming and Algorithms

GRADE LEVELCS.6-Analyze the problem and use a tool (e.g., flow chart) to design an algorithm to solve complex problems.EXPECTATION8.10.

CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science		
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking		
GRADE LEVEL EXPECTATION	CS.DCS. 1.	he basic steps in algorithmic problem-solving to design solutions (e.g., problem statement and exploration, nination of sample instances, design, implementing a solution, testing, and evaluation).		
GRADE LEVEL EXPECTATION	CS.DCS. 3.	Define an algorithm as a sequence of instructions that can be processed by a computer.		
GRADE LEVEL EXPECTATION	CS.DCS. 5.	Act out searching and sorting algorithms.		
GRADE LEVEL EXPECTATION	CS.DCS. 9.	Interact with content-specific models and simulations (e.g., ecosystems, epidemics, molecular dynamics) to support learning and research.		
GRADE LEVEL EXPECTATION	CS.DCS. 10.	Evaluate what kinds of problems can be solved using modeling and simulation.		
GRADE LEVEL EXPECTATION	CS.DCS. 12.	Use abstraction to decompose a problem into sub problems.		
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science		
OBJECTIVE / EXPECTATION		Programming and Algorithms		

GRADE LEVEL EXPECTATION	CS.DCS. 20.	Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems.
GRADE LEVEL EXPECTATION	CS.DCS. 23.	Demonstrate an understanding of algorithms and their practical application.
GRADE LEVEL EXPECTATION	CS.DCS. 27.	Demonstrate characteristics used in open ended problem-solving and programming (e.g., comfort with complexity, persistence, brainstorming, adaptability, patience, propensity to tinker, creativity, accepting challenge).
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science

CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Computers and Communications Devices
GRADE LEVEL	CS.DCS.	Describe ways in which computers use models of intelligent behavior (e.g., robot motion, speech and language

		-		-		-
FXPECTATION	36.	understanding, and co	mputer vision).			
	00.	and orotationing; and oo	inputor riotoriji			

Wisconsin Academic Standards Mathematics

Grade 5 - Adopted: 2021

Grade 5	- Adopted: 2021	

DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT STANDARD	Math Practice 2:	Reason abstractly and quantitatively.
CONTENT STANDARD	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT STANDARD	Math Practice 4:	Model with mathematics.
CONTENT STANDARD	Math Practice 5:	Use appropriate tools strategically.
CONTENT STANDARD	Math Practice 7:	Look for and make use of structure.

DOMAIN		Grade 5 Content Standards
CONTENT STANDARD	M.5.MD.	Measurement and Data (5.MD)

PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	M.5.MD. C.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
--	---------------	---

DESCRIPTOR / M.5.MD. Measure volumes by counting unit cubes, using cubic cm, cubic in., cubic ft., and improvised units. FOCUS AREA C.4.

DOMAIN		Grade 5 Content Standards
CONTENT STANDARD	M.5.MD.	Measurement and Data (5.MD)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	M.5.MD. C.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
DESCRIPTOR / FOCUS AREA	M.5.MD. C.5.	Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.
LEARNING CONTINUUM	M.5.MD. C.5.a.	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
LEARNING CONTINUUM	M.5.MD. C.5.b.	Apply the formulas $V = I \times w \times h$ and $V = B \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real-world and mathematical problems.

Wisconsin Academic Standards

Mathematics

Grade 6 - Adopted: 2021

DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT STANDARD	Math Practice 2:	Reason abstractly and quantitatively.
CONTENT STANDARD	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT STANDARD	Math Practice 4:	Model with mathematics.
CONTENT STANDARD	Math Practice 5:	Use appropriate tools strategically.
CONTENT STANDARD	Math Practice 7:	Look for and make use of structure.

DOMAIN		Grade 6 Content Standards
CONTENT STANDARD	M.6.G.	Geometry (6.G)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	M.6.G.A.	Solve real-world and mathematical problems involving area, surface area, and volume. (M)
DESCRIPTOR / FOCUS AREA	M.6.G.A.2	Find volumes of right rectangular prisms with fractional edge lengths by using physical or virtual unit cubes. Develop (construct) and apply the formulas $V = Iwh$ and $V = Bh$ to find volumes of right rectangular prisms in the context of solving real-world and mathematical problems.

Wisconsin Academic Standards

Mathematics

Grade 7 - Adopted: 2021		
DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT STANDARD	Math Practice 2:	Reason abstractly and quantitatively.
CONTENT STANDARD	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT STANDARD	Math Practice 4:	Model with mathematics.
CONTENT STANDARD	Math Practice 5:	Use appropriate tools strategically.
CONTENT STANDARD	Math Practice 7:	Look for and make use of structure.

Wisconsin Academic Standards

Mathematics

Grade 8 - Adopted: 2021

DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT STANDARD	Math Practice 2:	Reason abstractly and quantitatively.

CONTENT STANDARD	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT STANDARD	Math Practice 4:	Model with mathematics.
CONTENT STANDARD	Math Practice 5:	Use appropriate tools strategically.
CONTENT STANDARD	Math Practice 7:	Look for and make use of structure.
DOMAIN		Grade 8 Content Standards
CONTENT STANDARD	M.8.G.	Geometry (8.G)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	M.8.G.C.	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres. (M)
DESCRIPTOR / FOCUS AREA	M.8.G.C. 9.	Know the relationship among the formulas for the volumes of cones, cylinders, and spheres (given the same height and diameter) and use them to solve real-world and mathematical problems.

Wisconsin Academic Standards

Science

Grade 5 - Adopted: 2017

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.CC2	Students use science and engineering practices, disciplinary core ideas, and cause and effect relationships to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Cause and Effect
LEARNING	SCI.CC2.	Students routinely identify and test causal relationships and use these relationships to explain change. They

CONTINUUM 3-5. understand events that occur together with regularity may or may not signify a cause and effect relationship.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students build and revise simple models and use models to represent events and design solutions. This includes the following:
LEARNING	SCI.SEP2 .A.3-5.1.	Identify limitations of models.

LEARNING

SCI.SEP2 Develop a diagram or simple physical prototype to convey a proposed object, tool, or process.

LEARNING SCI.SEP CONTINUUM .A.3-5.5.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 3.	Students plan and carry out investigations, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 3.A.	Planning and Conducting Investigations – Students plan and carry out investigations that control variables and provide evidence to support explanations or design solutions. This includes the following:
LEARNING CONTINUUM	SCI.SEP3 .A.3-5.2.	Evaluate appropriate methods and tools for collecting data.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students use evidence to construct explanations that specify variables which describe and predict phenomena. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.A.3-5.1.	Construct an explanation of observed relationships (e.g., the distribution of plants in the back yard).
LEARNING CONTINUUM	SCI.SEP 6.A.3-5.2.	Use evidence (e.g., measurements, observations, patterns) to construct or support an explanation.
LEARNING CONTINUUM	SCI.SEP 6.A.3-5.3.	Identify the evidence that supports particular points in an explanation.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students use evidence to create multiple solutions to design problems. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.B.3-5.1.	Apply scientific ideas to solve design problems.
LEARNING CONTINUUM	SCI.SEP 6.B.3-5.2.	Generate multiple solutions to a problem and compare how well they meet the criteria and constraints.
DOMAIN	WI.SCI.	Science

CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the merit and accuracy of ideas and methods. This includes the following:
LEARNING CONTINUUM	SCI.SEP 8.A.3-5.1.	Read and comprehend grade-appropriate complex texts and other reliable media to summarize and obtain scientific and technical ideas, and describe how they are supported by evidence.
LEARNING CONTINUUM	SCI.SEP 8.A.3-5.5.	Communicate scientific and technical information orally or in written formats, including various forms of media, which may include tables, diagrams, and charts.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.A.	Defining and Delimiting Engineering Problems
LEARNING CONTINUUM	SCI.ETS1 .A.3-5.	Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ET S 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions
LEARNING CONTINUUM	SCI.ETS1 .B.3-5.1.	Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions.
LEARNING CONTINUUM	SCI.ETS1 .B.3-5.3.	Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.

DOMAIN	wi.sci.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology

LEARNING CONTINUUM	SCI.ETS2 .A.3-5.1.	Science and technology support each other.
LEARNING CONTINUUM	SCI.ETS2 .A.3-5.2.	Tools and instruments are used to answer scientific questions, while scientific discoveries lead to the development of new technologies.
DOMAIN	WI.SCI.	Science
DOMAIN CONTENT STANDARD	WI.SCI. SCI.ETS	Science Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)

DESCRIPTOR / FOCUS AREA	SCI.ETS 2.B.	Influence of Engineering, Technology, and Science on Society and the Natural World
LEARNING CONTINUUM	SCI.ETS2 .B.3-5.1.	People's needs and wants change over time, as do their demands for new and improved technologies.

LEARNING	SCI.ETS2	When new technologies become available, they can bring about changes in the way people live and interact with
CONTINUUM	.B.3-5.3.	one another.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ET S 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.A.	Science and Engineering Are Human Endeavors
LEARNING	SCI.ETS3	Science and engineering affect everyday life.

```
CONTINUUM
                .A.3-5.3.
```

PRIORITY

WI.SCI. DOMAIN Science SCI.ETS Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS) CONTENT **STANDARD** PERFORMANC SCI.ETS Students use science and engineering practices, crosscutting concepts, and an understanding of the E STANDARD / 3. nature of science and engineering to make sense of phenomena and solve problems. LEARNING **PRIORITY** DESCRIPTOR / SCI.ETS Science and Engineering Use Multiple Approaches to Create New Knowledge and Solve Problems FOCUS AREA 3.C. SCI.ETS3 The products of science and engineering are not developed through one set "scientific method" or "engineering LEARNING CONTINUUM .C.3-5.1. design process." Instead, they use a variety of approaches described in the Science and Engineering Practices. LEARNING SCI.ETS3 There is no perfect design in engineering. Designs that are best in some ways (e.g. safety or ease of use) may be CONTINUUM .C.3-5.3. inferior in other ways (e.g. cost or aesthetics).

> Wisconsin Academic Standards Science Grade 6 - Adopted: 2017

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.CC2	Students use science and engineering practices, disciplinary core ideas, and cause and effect relationships to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Cause and Effect
LEARNING	SCI.CC2.	Students classify relationships as causal or correlational, and recognize correlation does not necessarily imply

LEARNING SCI.CC2. Students classify relationships as causal or correlational, and recognize correlation does not necessarily imply CONTINUUM m. causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be explained using probability.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students develop, use, and revise models to describe, test, and predict more abstract phenomena and design systems. This includes the following:
LEARNING CONTINUUM	SCI.SEP2 .A.m.1.	Evaluate limitations of a model for a proposed object or tool.
LEARNING CONTINUUM	SCI.SEP2 .A.m.2.	Develop or modify a model – based on evidence – to match what happens if a variable or component of a system is changed.
LEARNING CONTINUUM	SCI.SEP2 .A.m.3.	Use and develop a model of simple systems with uncertain and less predictable factors.
LEARNING CONTINUUM	SCI.SEP2 .A.m.4.	Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.5.	Develop and use a model to predict and describe phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.6.	Develop a model to describe unobservable mechanisms.
LEARNING CONTINUUM	SCI.SEP2 .A.m.7.	Develop and use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 5.	Students use mathematics and computational thinking, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.

DESCRIPTOR / FOCUS AREA	SCI.SEP 5.A.	Qualitative and Quantitative Data – Students identify patterns in large data sets and use mathematical concepts to support explanations and arguments. This includes the following:
LEARNING CONTINUUM	SCI.SEP 5.A.m.2.	Use digital tools (e.g., computers) to analyze very large data sets for patterns and trends.
LEARNING CONTINUUM	SCI.SEP 5.A.m.3.	Use mathematical representations to describe and support scientific conclusions and design solutions.
LEARNING CONTINUUM	SCI.SEP 5.A.m.4.	Create algorithms (a series of ordered steps) to solve a problem.
LEARNING CONTINUUM	SCI.SEP 5.A.m.6.	Use digital tools and mathematical concepts and arguments to test and compare proposed solutions to an engineering design problem.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students construct explanations supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.A.m.1.	Construct an explanation that includes qualitative or quantitative relationships between variables that predict and describe phenomena.
LEARNING CONTINUUM	SCI.SEP 6.A.m.2.	Construct an explanation using models or representations.
LEARNING CONTINUUM	SCI.SEP 6.A.m.3.	Construct a scientific explanation based on valid and reliable evidence obtained from sources, including the students' own experiments. Solutions should build on the following assumption: theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
LEARNING CONTINUUM	SCI.SEP 6.A.m.4.	Apply scientific ideas, principles, and evidence to construct, revise, or use an explanation for real world phenomena, examples, or events.
LEARNING CONTINUUM	SCI.SEP 6.A.m.5.	Apply scientific reasoning to show why the data or evidence is adequate for the explanation.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students design solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:

LEARNINGSCI.SEPApply scientific ideas or principles to design, construct, and test a design of an object, tool, process, or system.CONTINUUM6.B.m.1.

LEARNINGSCI.SEPUndertake a design project, engaging in the design cycle, to construct and implement a solution that meets specificCONTINUUM6.B.m.2.design criteria and constraints.

LEARNING CONTINUUM

SCI.SEP Optimize performance of a design by prioritizing criteria, making trade-offs, testing, revising, and retesting. 6.B.m.3.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the merit and validity of ideas and methods. This includes the following:
LEARNING CONTINUUM	SCI.SEP 8.A.m.1.	Critically read scientific texts adapted for classroom use to determine the central ideas, to obtain scientific and technical information, and to describe patterns in and evidence about the natural and designed world(s).

LEARNINGSCI.SEPCommunicate scientific and technical information (e.g. about a proposed object, tool, process, or system) in writingCONTINUUM8.A.m.5.and through oral presentations.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.A.	Defining and Delimiting Engineering Problems
	COLETCI	The many provide her design to ble with the and a sector into any less defined, the many likely it is that the designed

LEARNINGSCI.ETS1The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designedCONTINUUM.A.m.solution will be successful. Specification of constraints includes consideration of scientific principles and other
relevant knowledge that are likely to limit possible solutions.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions
LEARNING CONTINUUM	SCI.ETS1 .B.m.1.	A solution needs to be tested and then modified on the basis of the test results in order to improve it.
LEARNING CONTINUUM	SCI.ETS1 .B.m.2.	There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
LEARNING CONTINUUM	SCI.ETS1 .B.m.3.	Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.

SCI.ETS1 Models of all kinds are important for testing solutions.

CONTINUUM .B.m.4.

DOMAIN	wi.sci.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.C.	Optimizing the Design Solution
LEARNING	SCI.ETS1	The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test

LEARING	JUIL 191	The herative process of learning the most promising solutions and mounying what is propose
CONTINUUM	.C.m.2.	results leads to greater refinement and ultimately to an optimal solution.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ET S 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology
LEARNING CONTINUUM	SCI.ETS2 .A.m.1.	Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.

LEARNING	SCI.ETS2	Science and technology	drive	each other	forward.
CONTINUUM	.A.m.2.				

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ET S 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.B.	Influence of Engineering, Technology, and Science on Society and the Natural World
LEARNING CONTINUUM	SCI.ETS2 .B.m.2.	The uses of technologies are driven by people's needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

LEARNING	SCI.ETS2	Technology use v	varies over	time and	from re	egion to	region.
CONTINUUM	.B.m.3.						

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.

DESCRIPTOR / FOCUS AREA	SCI.ETS 3.A.	Science and Engineering Are Human Endeavors
LEARNING CONTINUUM	SCI.ETS3 .A.m.2.	Scientists and engineers are persistent, use creativity, reasoning, and skepticism, and remain open to new ideas.

LEARNINGSCI.ETS3Science and engineering are influenced by what is valued in society.CONTINUUM.A.m.3.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.B.	Science and Engineering Are Unique Ways of Thinking with Different Purposes
LEARNING CONTINUUM	SCI.ETS3 .B.m.2.	Engineering seeks solutions to human problems, including issues that arise due to human interaction with the environment. It uses some of the same practices as science and often applies scientific principles to solutions.
LEARNING CONTINUUM	SCI.ETS3 .B.m.3.	Science and engineering have direct impacts on the quality of life for all people. Therefore, scientists and engineers need to pursue their work in an ethical manner that requires honesty, fairness and dedication to public health, safety and welfare.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.C.	Science and Engineering Use Multiple Approaches to Create New Knowledge and Solve Problems
LEARNING CONTINUUM	SCI.ETS3 .C.m.3.	Engineers develop solutions using multiple approaches and evaluate their solutions against criteria such as cost, safety, time and performance. This evaluation often involves trade-offs between constraints to find the optimal solution.

Wisconsin Academic Standards

Science

Grade 7 - Adopted: 2017

DOMAIN	WI.SCI.	Science
CONTENT ST ANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.CC2	Students use science and engineering practices, disciplinary core ideas, and cause and effect relationships to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Cause and Effect

LEARNING	SCI.CC2.	Students classify relationships as causal or correlational, and recognize correlation does not necessarily imply
CONTINUUM	m.	causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also
		understand that phenomena may have more than one cause, and some cause and effect relationships in systems
		can only be explained using probability.

DOMAIN	WI.SCI.	Science			
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)			
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.			
DESCRIPTOR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students develop, use, and revise models to describe, test, and predict more abstract phenomena and design systems. This includes the following:			
LEARNING CONTINUUM	SCI.SEP2 .A.m.1.	Evaluate limitations of a model for a proposed object or tool.			
LEARNING CONTINUUM	SCI.SEP2 .A.m.2.	Develop or modify a model – based on evidence – to match what happens if a variable or component of a system is changed.			
LEARNING CONTINUUM	SCI.SEP2 .A.m.3.	Use and develop a model of simple systems with uncertain and less predictable factors.			
LEARNING CONTINUUM	SCI.SEP2 .A.m.4.	Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.			
LEARNING CONTINUUM	SCI.SEP2 .A.m.5.	Develop and use a model to predict and describe phenomena.			
LEARNING CONTINUUM	SCI.SEP2 .A.m.6.	Develop a model to describe unobservable mechanisms.			
LEARNING CONTINUUM	SCI.SEP2 .A.m.7.	Develop and use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.			
DOMAIN	wi.sci.	Science			
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)			
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 5.	Students use mathematics and computational thinking, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.			
DESCRIPTOR / FOCUS AREA	SCI.SEP 5.A.	Qualitative and Quantitative Data – Students identify patterns in large data sets and use mathematical concepts to support explanations and arguments. This includes the following:			
LEARNING CONTINUUM	SCI.SEP 5.A.m.2.	Use digital tools (e.g., computers) to analyze very large data sets for patterns and trends.			
LEARNING CONTINUUM	SCI.SEP 5.A.m.3.	Use mathematical representations to describe and support scientific conclusions and design solutions.			
LEARNING CONTINUUM	SCI.SEP 5.A.m.4.	Create algorithms (a series of ordered steps) to solve a problem.			

LEARNING CONTINUUM SCI.SEP Use digital tools and mathematical concepts and arguments to test and compare proposed solutions to an 5.A.m.6. engineering design problem.

DOMAIN	WI.SCI.	Science			
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)			
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.			
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students construct explanations supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:			
LEARNING CONTINUUM	SCI.SEP 6.A.m.1.	Construct an explanation that includes qualitative or quantitative relationships between variables that predict and describe phenomena.			
LEARNING CONTINUUM	SCI.SEP 6.A.m.2.	Construct an explanation using models or representations.			
LEARNING CONTINUUM	SCI.SEP 6.A.m.3.	Construct a scientific explanation based on valid and reliable evidence obtained from sources, including the students' own experiments. Solutions should build on the following assumption: theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.			
LEARNING CONTINUUM	SCI.SEP 6.A.m.4.	Apply scientific ideas, principles, and evidence to construct, revise, or use an explanation for real world phenomena, examples, or events.			
LEARNING CONTINUUM	SCI.SEP 6.A.m.5.	Apply scientific reasoning to show why the data or evidence is adequate for the explanation.			
DOMAIN	WI.SCI.	Science			
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)			
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.			
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students design solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:			
LEARNING CONTINUUM	SCI.SEP 6.B.m.1.	Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process, or system.			
LEARNING CONTINUUM	SCI.SEP 6.B.m.2.	Undertake a design project, engaging in the design cycle, to construct and implement a solution that meets specific design criteria and constraints.			
LEARNING CONTINUUM	SCI.SEP 6.B.m.3.	Optimize performance of a design by prioritizing criteria, making trade-offs, testing, revising, and retesting.			

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)

PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the merit and validity of ideas and methods. This includes the following:
LEARNING CONTINUUM	SCI.SEP 8.A.m.1.	Critically read scientific texts adapted for classroom use to determine the central ideas, to obtain scientific and technical information, and to describe patterns in and evidence about the natural and designed world(s).
LEARNING CONTINUUM	SCI.SEP 8.A.m.5.	Communicate scientific and technical information (e.g. about a proposed object, tool, process, or system) in writing and through oral presentations.

DOMAIN	WI.SCI.	Science			
CONTENT STANDARD	SCI.ET S	iplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)			
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 1.	tudents use science and engineering practices, crosscutting concepts, and an understanding of ngineering design to make sense of phenomena and solve problems.			
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.A.	Defining and Delimiting Engineering Problems			
LEARNING CONTINUUM	SCI.ETS1 .A.m.	The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other			

solution will be successful. Specification of constraints includes con
relevant knowledge that are likely to limit possible solutions.

DOMAIN	WI.SCI.	Science			
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)			
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.			
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions			
LEARNING CONTINUUM	SCI.ETS1 .B.m.1.	A solution needs to be tested and then modified on the basis of the test results in order to improve it.			
LEARNING CONTINUUM	SCI.ETS1 .B.m.2.	There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.			
LEARNING CONTINUUM	SCI.ETS1 .B.m.3.	Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.			
LEARNING CONTINUUM	SCI.ETS1 .B.m.4.	Models of all kinds are important for testing solutions.			
DOMAIN	WI.SCI.	Science			
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)			
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.			

DESCRIPTOR /	SCI.ETS	Optimizing the Design Solution
FOCUS AREA	1.C.	

LEARNINGSCI.ETS1The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the testCONTINUUM.C.m.2.results leads to greater refinement and ultimately to an optimal solution.

DOMAIN	WI.SCI.	Science		
CONTENT STANDARD	SCI.ETS	isciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)		
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.		
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology		
LEARNING CONTINUUM	SCI.ETS2 .A.m.1.	Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.		

LEARNING	SCI.ETS2	Science and technology drive	each other forward.
CONTINUUM	.A.m.2.		

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ET S 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.B.	Influence of Engineering, Technology, and Science on Society and the Natural World
LEARNING CONTINUUM	SCI.ETS2 .B.m.2.	The uses of technologies are driven by people's needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

LEARNING	SCI.ETS2	Technology use vari	es over time	and fro	om region to	region.
CONTINUUM	.B.m.3.					

DOMAIN	wi.sci.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.A.	Science and Engineering Are Human Endeavors
LEARNING CONTINUUM	SCI.ETS3 .A.m.2.	Scientists and engineers are persistent, use creativity, reasoning, and skepticism, and remain open to new ideas.
LEARNING CONTINUUM	SCI.ETS3 .A.m.3.	Science and engineering are influenced by what is valued in society.
DOMAIN	WI.SCI.	Science

CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.B.	Science and Engineering Are Unique Ways of Thinking with Different Purposes
LEARNING CONTINUUM	SCI.ETS3 .B.m.2.	Engineering seeks solutions to human problems, including issues that arise due to human interaction with the environment. It uses some of the same practices as science and often applies scientific principles to solutions.
LEARNING CONTINUUM	SCI.ETS3 .B.m.3.	Science and engineering have direct impacts on the quality of life for all people. Therefore, scientists and engineers need to pursue their work in an ethical manner that requires honesty, fairness and dedication to public health, safety and welfare.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ET S 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.C.	Science and Engineering Use Multiple Approaches to Create New Knowledge and Solve Problems
LEARNING CONTINUUM	SCI.ETS3 .C.m.3.	Engineers develop solutions using multiple approaches and evaluate their solutions against criteria such as cost, safety, time and performance. This evaluation often involves trade-offs between constraints to find the optimal solution.

Wisconsin Academic Standards

Science

Grade 8 - Adopted: 2017

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.CC2	Students use science and engineering practices, disciplinary core ideas, and cause and effect relationships to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Cause and Effect
LEARNING CONTINUUM	SCI.CC2. m.	Students classify relationships as causal or correlational, and recognize correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be explained using probability.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students develop, use, and revise models to describe, test, and predict more abstract phenomena and design systems. This includes the following:

LEARNING CONTINUUM	SCI.SEP2 .A.m.1.	Evaluate limitations of a model for a proposed object or tool.
LEARNING CONTINUUM	SCI.SEP2 .A.m.2.	Develop or modify a model – based on evidence – to match what happens if a variable or component of a system is changed.
LEARNING CONTINUUM	SCI.SEP2 .A.m.3.	Use and develop a model of simple systems with uncertain and less predictable factors.
LEARNING CONTINUUM	SCI.SEP2 .A.m.4.	Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.5.	Develop and use a model to predict and describe phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.6.	Develop a model to describe unobservable mechanisms.
LEARNING CONTINUUM	SCI.SEP2 .A.m.7.	Develop and use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 5.	Students use mathematics and computational thinking, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 5.A.	Qualitative and Quantitative Data – Students identify patterns in large data sets and use mathematical concepts to support explanations and arguments. This includes the following:
LEARNING CONTINUUM	SCI.SEP 5.A.m.2.	Use digital tools (e.g., computers) to analyze very large data sets for patterns and trends.
LEARNING CONTINUUM	SCI.SEP 5.A.m.3.	Use mathematical representations to describe and support scientific conclusions and design solutions.
LEARNING CONTINUUM	SCI.SEP 5.A.m.4.	Create algorithms (a series of ordered steps) to solve a problem.
LEARNING CONTINUUM	SCI.SEP 5.A.m.6.	Use digital tools and mathematical concepts and arguments to test and compare proposed solutions to an engineering design problem.
DOMAIN	WI.SCI.	Science

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students construct explanations supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:

DOMAIN	WI.SCI.	Science
LEARNING CONTINUUM	SCI.SEP 8.A.m.5.	Communicate scientific and technical information (e.g. about a proposed object, tool, process, or system) in writing and through oral presentations.
LEARNING CONTINUUM	SCI.SEP 8.A.m.1.	Critically read scientific texts adapted for classroom use to determine the central ideas, to obtain scientific and technical information, and to describe patterns in and evidence about the natural and designed world(s).
DESCRIPTOR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the merit and validity of ideas and methods. This includes the following:
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
DOMAIN	WI.SCI.	Science
LEARNING CONTINUUM	SCI.SEP 6.B.m.3.	Optimize performance of a design by prioritizing criteria, making trade-offs, testing, revising, and retesting.
LEARNING CONTINUUM	SCI.SEP 6.B.m.2.	Undertake a design project, engaging in the design cycle, to construct and implement a solution that meets specific design criteria and constraints.
LEARNING CONTINUUM	SCI.SEP 6.B.m.1.	Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process, or system.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students design solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
DOMAIN	WI.SCI.	Science
LEARNING CONTINUUM	SCI.SEP 6.A.m.5.	Apply scientific reasoning to show why the data or evidence is adequate for the explanation.
LEARNING CONTINUUM	SCI.SEP 6.A.m.4.	Apply scientific ideas, principles, and evidence to construct, revise, or use an explanation for real world phenomena, examples, or events.
LEARNING CONTINUUM	SCI.SEP 6.A.m.3.	Construct a scientific explanation based on valid and reliable evidence obtained from sources, including the students' own experiments. Solutions should build on the following assumption: theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
LEARNING CONTINUUM	SCI.SEP 6.A.m.2.	Construct an explanation using models or representations.
LEARNING CONTINUUM	SCI.SEP 6.A.m.1.	Construct an explanation that includes qualitative or quantitative relationships between variables that predict and describe phenomena.

CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.A.	Defining and Delimiting Engineering Problems
LEARNING CONTINUUM	SCI.ETS1 .A.m.	The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions
LEARNING CONTINUUM	SCI.ETS1 .B.m.1.	A solution needs to be tested and then modified on the basis of the test results in order to improve it.
LEARNING CONTINUUM	SCI.ETS1 .B.m.2.	There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
LEARNING CONTINUUM	SCI.ETS1 .B.m.3.	Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.
LEARNING CONTINUUM	SCI.ETS1 .B.m.4.	Models of all kinds are important for testing solutions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ET S	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.C.	Optimizing the Design Solution
LEARNING CONTINUUM	SCI.ETS1 .C.m.2.	The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
DOMAIN	WI.SCI.	Science

CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORIT Y	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.

DESCRIPTOR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology
LEARNING CONTINUUM	SCI.ETS2 .A.m.1.	Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.

LEARNINGSCI.ETS2Science and technology drive each other forward.CONTINUUM.A.m.2.

DOMAIN WI.SCI. Science CONTENT SCI.ETS Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS) **STANDARD** PERFORMANC SCI.ETS Students use science and engineering practices, crosscutting concepts, and an understanding of the E STANDARD / 2. links among Engineering, Technology, Science, and Society to make sense of phenomena and solve LEARNING problems. **PRIORITY** DESCRIPTOR / SCI.ETS Influence of Engineering, Technology, and Science on Society and the Natural World FOCUS AREA 2.B. LEARNING SCI.ETS2 The uses of technologies are driven by people's needs, desires, and values; by the findings of scientific research; CONTINUUM .B.m.2. and by differences in such factors as climate, natural resources, and economic conditions. LEARNING SCI.ETS2 Technology use varies over time and from region to region. CONTINUUM .B.m.3.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.A.	Science and Engineering Are Human Endeavors
LEARNING CONTINUUM	SCI.ETS3 .A.m.2.	Scientists and engineers are persistent, use creativity, reasoning, and skepticism, and remain open to new ideas.
	SCIETS3	Science and engineering are influenced by what is valued in society

CONTINUUM .A.m.3.

TS3 Science and engineering are influenced by what is valued in society.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.ET S 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.B.	Science and Engineering Are Unique Ways of Thinking with Different Purposes
LEARNING CONTINUUM	SCI.ETS3 .B.m.2.	Engineering seeks solutions to human problems, including issues that arise due to human interaction with the environment. It uses some of the same practices as science and often applies scientific principles to solutions.

LEARNING SCI.ETS3 CONTINUUM .B.m.3.

solution.

SCI.ETS3 Science and engineering have direct impacts on the quality of life for all people. Therefore, scientists and engineers need to pursue their work in an ethical manner that requires honesty, fairness and dedication to public health, safety and welfare.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.C.	Science and Engineering Use Multiple Approaches to Create New Knowledge and Solve Problems
LEARNING CONTINUUM	SCI.ETS3 .C.m.3.	Engineers develop solutions using multiple approaches and evaluate their solutions against criteria such as cost, safety, time and performance. This evaluation often involves trade-offs between constraints to find the optimal

Wisconsin Academic Standards

Technology Education

Grade 5 - Adopted: 2017

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP1.	Students will recognize and define computational problems using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP1. a.	Develop algorithms.
LEARNING CONTINUUM	CS.AP1.a .4.i.	Construct and execute algorithms (sets of step-by-step instructions), which include sequencing, loops, and conditionals to accomplish a task, both independently and collaboratively, with or without a computing device.

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.
LEARNING CONTINUUM	CS.AP2.a .3.i.	Construct programs in order to solve a problem or for creative expression, which include sequencing, events, loops, conditionals, parallelism and variables, using a block-based visual programming language or text based language,

both independently and collaboratively (e.g., pair programming).

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP3.	Students will communicate about computing ideas.

DESCRIPTOR / FOCUS AREA	CS.AP3. b.	Communicate about technical and social issues.
LEARNING CONTINUUM	CS.AP3.b .2.i.	Understand that algorithms have impacted society in both beneficial and harmful ways.

LEARNINGCS.AP3.bCompare different problem solving techniques.CONTINUUM.3.i.

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP5.	Students will collaborate with diverse teams.
DESCRIPTOR / FOCUS AREA	CS.AP5. a.	Work together to solve computational problems using a variety of resources.

LEARNINGCS.AP5.Understand there are many resources that can be used/tapped to solve a problem.CONTINUUMa.4.i.

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP6.	Students will test and refine computational solutions.
DESCRIPTOR / FOCUS AREA	CS.AP6. b.	Develop and apply success criteria.

LEARNINGCS.AP6.Determine the correctness of a computational problem solution by listening to a classmate describe the solution.CONTINUUMb.1.i.

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.CS.	Content Area: Computing Systems (CS)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.CS2.	Students will test and refine computing systems.
DESCRIPTOR / FOCUS AREA	CS.CS2. a.	Problem solve and debug.
LEARNING CONTINUUM	CS.CS2. a.2.i.	Identify, using accurate terminology, simple hardware and software problems that may occur during use, and apply strategies for solving problems (e.g., reboot device, check for power, check network availability, close and reopen app).

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.KC2	Students produce0 0creative0 0artifacts0 0and0 0make0 0meaningful0 0learning0 0experiences0 0from0 0 curated knowledge0 0for0 0themselves0 0and0 0others.

DESCRIPTOR / FOCUS AREA	ITL.KC2. b.	Build Uknowledge Uby actively Dexploring real-world Dissues Dand problems.
LEARNING CONTINUUM	ITL.KC2.b .4.i.	ConnectI DearningD Dto age-appropriate real-worldD DissuesD Dand problemsD DandD DbeginD Dto developD DquestionsD Dfor problemD Dsolving.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	IT L.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	IT L.ID1.	Students lusel lal lvarietyl lofi ldigital ltoolsl landl lresourcesl ltol lidentifyl landl lsolvel l authenticl lproblemsl lusing designi lthinking.
DESCRIPTOR / FOCUS AREA	ITL.ID1. a.	Find® @authentic problems® @in0 @local® @and0 @global contexts.
LEARNING CONTINUUM	ITL.ID1.a. 2.i.	Identify® @and0 @describe problems® @or0 @challenges that0 @affect® 0the community.0 @ @Analyze® @all conditions® 0that0 @make® 0it0 @a problem.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONT ENT ST AND ARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	IT L.ID1.	Students DuseD DaD OvarietyD DofD OdigitalD OtoolsD DandD DresourcesD OtoD DidentifyD DandD DsolveD D authenticD OproblemsD Dusing designD Othinking.
DESCRIPTOR / FOCUS AREA	ITL.ID1. b.	ExhibitI ItoleranceI Ifor ambiguity,I Iperseverance andI ItheI IcapacityI Itol Iwork withI Iauthentic,I I open-ended problems.
LEARNING CONTINUUM	ITL.ID1.b. 2.i.	Demonstrate perseverance I when working I with I authentic, open-ended I problems.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	IT L.ID2.	Students use: I all Ivariety: Iof: Itechnologies: Iwithin: I all Idesign: Iprocess: Itol Icreate: Inew,I I useful,I land imaginative: Isolutions.
DESCRIPTOR / FOCUS AREA	IT L.ID2. a.	Know: land: luse: la deliberate: ldesign: lprocess: lfor generating: lideas, litesting theories, land: l creating innovative: lartifacts: land solutions.
LEARNING CONTINUUM	ITL.ID2.a. 2.i.	Explore and practice how all IdeliberateII Idesign processII IworksII ItoII Igenerate ideas,II IconsidersII Isolutions, plansII ItoII IsolveII IaII Iproblem, andII IcreatesII Iinnovative productsII ItoII IshareII Iwith others.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	IT L.ID2.	Students usel lad livarietyl lofi litechnologies! liwithin! lal lidesign! liprocess! lito! licreate! linew,l l useful,l land imaginative! lisolutions.

 DESCRIPTOR / FOCUS AREA
 ITL.ID2.
 Develop,0 0test,0 0and refine0 0prototypes0 0as0 0part0 0of0 0a cyclical0 0design0 0process.

LEARNING CONTINUUM	ITL.ID2.c. 2.i.	Engage0 0in0 0an0 0iterative process0 0to0 0develop0 0and test0 0prototypes0 0and0 0reflect on0 0the0 0role0 0that0 0trial0 0and error0 0plays0 0in0 0the0 0design process.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.CT1	Students develop0 0and0 0employ0 0strategies0 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. a.	ldentify,0 0define,0 0and0 0interpret problems0 0where0 0digital0 0tools can0 0assist0 0in0 0finding0 0 solutions.
LEARNING CONTINUUM	ITL.CT1.a. 2.i.	Identify[] []problems[] []and select[] []appropriate[] []digital tools[] []to[] []analyze[] []and explore[] []solutions.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD /	ITL.CT1	Students develop: []and: []employ:] []strategies:] []for:] []understanding:] []and:] []solving:] []problems.

PRIORIT Y		
DESCRIPTOR / FOCUS AREA	ITL.CT1. b.	Collect® 0data,® 0then® 0identify and® 0use® 0digital® 0tools® 0to analyze® 0and® 0represent® 0the data® 0to0 0 find® 0solutions.

LEARNING	ITL.CT1.b.	Utilize@ Dage-appropriate digital@ Dtools@ Dtool @ Collect data, 0 Ddesign, 0 Dcode, 0 Dtest and 0 Overify@ Dpossible solutions@ 0
CONTINUUM	2.i.	collect I land represent I Idata I Itol Idiscuss results I land I Ishare conclusions.

Wisconsin Academic Standards

Technology Education

Grade 6 - Adopted: 2017

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP1.	Students will recognize and define computational problems using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP1. a.	Develop algorithms.
LEARNING	CS.AP1.a	Decompose a computational problem into parts and create solutions for one or more parts.

CONTINUUM .6.m.

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.

LEARNING	CS.AP2.a	Develop programs, both independently and collaboratively, which include sequencing with nested loops and
CONTINUUM	.6.m.	multiple branches [Clarification: At this level, students may use block-based and/or text-based languages].

LEARNING CS.AP2.a Use an iterative design process (e.g., define the problem, generate ideas, build, test, and improve solutions) to CONTINUUM .8.m. solve computational problems, both independently and collaboratively.

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3. b.	Communicate about technical and social issues.

LEARNINGCS.AP3.bDiscuss how algorithms have impacted society – both the beneficial and harmful effects.CONTINUUM.5.m.

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3. c.	Document code.
LEARNING CONTINUUM	CS.AP3.c .1.m.	Interpret the flow of execution of algorithms and predict their outcomes. [Clarification: Algorithms can be expressed using natural language, flow and control diagrams, comments within code, and pseudocode.]

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.DA.	Content Area: Data and Analysis (DA)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.DA1.	Students will create computational artifacts using data and analysis.
DESCRIPTOR / FOCUS AREA	CS.DA1. a.	Represent and manipulate data.
LEARNING	CS.DA1.	Represent data using different encoding schemes (e.g., binary, Unicode, Morse code, shorthand, student-created

```
a.3.m. codes).
```

CONTINUUM

present data using different encoding schemes (e.g., binary, Unicode, Morse code, shorthand, student-createc les).

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.KC1	Students Ocritically@ Ocurate® 0a0 Ovariety@ 0of0 0digital@ 0tools0 0and0 0diverse0 0resources.
DESCRIPTOR / FOCUS AREA	ITL.KC1. a.	Plan [®] [®] and [®] [®] employ effective [®] [®] research [®] [®] strategies.

LEARNING CONTINUUM

.9.m.

ITL.KC1.a Demonstrate@ and@ @practice using@ and @inquiry-based process@ @that@ @involves@ @asking questions,@ @ investigating[] [] the answers,[] [] and[] [] developing new] [] understandings[] [] for personal[] [] or]] [] academic learning[] [] activities.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.KC2	Students produce0 0creative0 0artifacts0 0and0 0make0 0meaningful0 0learning0 0experiences0 0from0 0 curated knowledge0 0for0 0themselves0 0and0 0others.
DESCRIPTOR / FOCUS AREA	ITL.KC2. b.	Build Oknowledge Oby actively Oexploring real-world Oissues Oand problems.
LEARNING CONTINUUM	ITL.KC2.b .5.m.	DemonstrateD DinitiativeD Dand engagementD DbyD Dposing questionsD DandD Dinvestigating theD DanswersD DbeyondD D the collectionD DofD Dsuperficial facts.
LEARNING	ITL.KC2.b	Explore: @real-world: @issues and: @problems: @and: @actively.pursue!! @an: @understanding: @of them.! @Begin: @to: @

develop answers0 0and0 0solutions0 0for problem0 0solving. CONTINUUM .6.m.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.ID1.	Students DuseD DaD OvarietyD DofD OdigitalD OtoolsD DandD DresourcesD OtoD DidentifyD DandD OsolveD D authenticD OproblemsD Dusing designD Othinking.
DESCRIPTOR / FOCUS AREA	ITL.ID1. b.	Exhibit© @tolerance© @for ambiguity,© @perseverance and© @the© @capacity© @to© @work with© @authentic,© @ open-ended problems.
LEARNING CONTINUUM	ITL.ID1.b. 3.m.	Demonstrate ^[] [and]ability ^[] [to persevere ^[] [through authentic, ^[] [open-ended problems ^[] [by ^[] [applying abstract ^[] [concepts ^[] [with greater ^[] [ambiguity.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	IT L.ID2.	Students use: Dat Evariety: Dof: Etechnologies: Ewithin: Dat Edesign: Eprocess: Eto: Ecreate: Enew, D E useful,: Dand imaginative: Esolutions.
DESCRIPTOR / FOCUS AREA	IT L.ID2. a.	Know: Band: Buse: Ba deliberate: Edesign: Eprocess: Efor generating: Bideas, Ditesting theories, Deand: Dicreating innovative: Dartifacts: Dand solutions.
LEARNING CONTINUUM	ITL.ID2.a. 3.m.	Use a deliberate design process to generate ideas, createll linnovativell liproducts, and litest litheories lias possible lisolutions.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.CT1	Students develop: 0and0 0employ0 0strategies: 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR /	ITL.CT1.	ldentify,0 0define,0 0and0 0interpret problems0 0where0 0digital0 0tools can0 0assist0 0in0 0finding0 0

FOCUS AREA a. solutions. LEARNING CONTINUUM ITL.CT1.a. Define II and II Isolve II an authentic II Iproblem II Iusing data II Ianalysis, II Imodeling, and II Ialgorithmic II Ithinking. 3.m.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.CT1	Students develop0 0and0 0employ0 0strategies0 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. c.	Break[] []problems[] []into[] []smaller parts,[] []identify[] []key information,[] []and[] []develop descriptive[] [] models.

LEARNINGITL.CT1.c.Separatelliauthentic problemsIntollicomponent partsIdentifyIpatternsIand differencesIandIndevelopCONTINUUM3.m.descriptiveImodelsIto facilitateIproblemIsolving.

Wisconsin Academic Standards Technology Education Grade 7 - Adopted: 2017

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP1.	Students will recognize and define computational problems using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP1. a.	Develop algorithms.
LEARNING CONTINUUM	CS.AP1.a .6.m.	Decompose a computational problem into parts and create solutions for one or more parts.
DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.
LEARNING CONTINUUM	CS.AP2.a .6.m.	Develop programs, both independently and collaboratively, which include sequencing with nested loops and multiple branches [Clarification: At this level, students may use block-based and/or text-based languages].
LEARNING CONTINUUM	CS.AP2.a .8.m.	Use an iterative design process (e.g., define the problem, generate ideas, build, test, and improve solutions) to solve computational problems, both independently and collaboratively.
DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP3.	Students will communicate about computing ideas.

LEARNING CS.AP3.b Discuss how algorithms have impacted society – both the beneficial and harmful effects. CONTINUUM .5.m.

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3. c.	Document code.

LEARNINGCS.AP3.cInterpret the flow of execution of algorithms and predict their outcomes. [Clarification: Algorithms can be expressedCONTINUUM.1.m.using natural language, flow and control diagrams, comments within code, and pseudocode.]

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.DA.	Content Area: Data and Analysis (DA)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.DA1.	Students will create computational artifacts using data and analysis.
DESCRIPTOR / FOCUS AREA	CS.DA1. a.	Represent and manipulate data.
LEARNING CONTINUUM	CS.DA1. a.3.m.	Represent data using different encoding schemes (e.g., binary, Unicode, Morse code, shorthand, student-created codes).

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.KC1	Students OcriticallyO OcurateO 0a0 OvarietyO 0of0 OdigitalO OtoolsO 0and0 OdiverseO Oresources.
DESCRIPTOR / FOCUS AREA	ITL.KC1. a.	Plan® land® lemploy effective® @research® @strategies.
LEARNING CONTINUUM	ITL.KC1.a .9.m.	Demonstrate[] []and[] []practice using[] []an[] []inquiry-based process[] []that[] []involves[] []asking questions,[] [] investigating[] []the answers,[] []and[] []developing new[] []understandings[] []for personal[] []or[] []academic learning[] []

```
activities.
```

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.KC2	Students produce0 0creative0 0artifacts0 0and0 0make0 0meaningful0 0learning0 0experiences0 0from0 0 curated knowledge0 0for0 0themselves0 0and0 0others.
DESCRIPTOR / FOCUS AREA	ITL.KC2. b.	Build® ©knowledge® @by actively® @exploring real-world® @issues® @and problems.

LEARNING	ITL.KC2.b	DemonstrateD DinitiativeD Dand engagementD DbyD Dosing questionsD DandD Dinvestigating theD DanswersD DbeyondD D
CONTINUUM	.5.m.	the collection I Iof I Isuperficial facts.

LEARNING ITL.K CONTINUUM .6.m.

ITL.KC2.bExploreIreal-worldDissues andIproblemsDandDatively pursueDandDunderstandingDof themDeginDtoD.6.m.develop answersDandDsolutionsDfor problemDsolving.Dsolving.Dissues

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.ID1.	Students DuseD DaD OvarietyD DofD OdigitalD OtoolsD DandD DresourcesD OtoD DidentifyD DandD DsolveD D authenticD OproblemsD Dusing designD Othinking.
DESCRIPTOR / FOCUS AREA	ITL.ID1. b.	Exhibit® @tolerance® @for ambiguity,© @perseverance and® @the® @capacity© @to® @work with® @authentic,© @ open-ended problems.

 LEARNING
 ITL.ID1.b.
 Demonstrate
 Ian
 Iability
 Ito persevere
 Ithrough authentic,
 Iopen-ended problems
 Iby
 Iapplying abstract
 I

 CONTINUUM
 3.m.
 concepts
 Iwith greater
 Iambiguity.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	IT L.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E STANDARD / LEARNING PRIORITY	IT L.ID2.	Students use: 0a0 0variety0 0of0 0technologies0 0within0 0a0 0design0 0process0 0to0 0create0 0new,0 0 useful,0 0and imaginative0 0solutions.
DESCRIPTOR / FOCUS AREA	ITL.ID2. a.	Know: land: luse: la deliberate: ldesign: lprocess: lfor generating: lideas, ltesting theories, land: l creating innovative: lartifacts: land solutions.
LEARNING	ITL.ID2.a.	Use a deliberate design process to generate ideas, createl linnovativel liproducts, and litestil litheories lias

 LEARNING
 ITL.ID2.a.
 Use a deliberate design process to generate ideas, createl linnovativel liproducts, and litest litheories
 Itest litheories
 Itest

 CONTINUUM
 3.m.
 possible
 lisolutions.

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.CT1	Students develop: Cando Cemploy: Ostrategies: Ofor: Cunderstanding: Cando Csolving: Oproblems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. a.	ldentify,0 0define,0 0and0 0interpret problems0 0where0 0digital0 0tools can0 0assist0 0in0 0finding0 0 solutions.

LEARNINGITL.CT1.a.Definelandlsolvelandlsolvelandlsolve<thli><thli>lsolve<t

DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.CT1	Students develop0 0and0 0employ0 0strategies0 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. c.	Break® @problems® @into® @smaller parts,® @identify® @key information,® @and® @develop descriptive® @ models.
LEARNING		

CONTINUUM		

ITL.CT1.c.Separatell lauthentic problems llintoll lcomponent parts, llidentify llipatterns lland differences lland llidevelop3.m.descriptive llimodels lito facilitate lliproblem llisolving.

Wisconsin Academic Standards Technology Education Grade 8 - Adopted: 2017

DOMAIN	WI.CS.	Computer Science
CONTENT ST AND ARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP1.	Students will recognize and define computational problems using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP1. a.	Develop algorithms.
LEARNING CONTINUUM	CS.AP1.a .6.m.	Decompose a computational problem into parts and create solutions for one or more parts.
DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPTOR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.
LEARNING CONTINUUM	CS.AP2.a .6.m.	Develop programs, both independently and collaboratively, which include sequencing with nested loops and multiple branches [Clarification: At this level, students may use block-based and/or text-based languages].
LEARNING CONTINUUM	CS.AP2.a .8.m.	Use an iterative design process (e.g., define the problem, generate ideas, build, test, and improve solutions) to solve computational problems, both independently and collaboratively.
DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3. b.	Communicate about technical and social issues.

LEARNINGCS.AP3.bDiscuss how algorithms have impacted society – both the beneficial and harmful effects.CONTINUUM.5.m.

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.AP3.	Students will communicate about computing ideas.

DESCRIPTOR / FOCUS AREA	CS.AP3. c.	Document code.
----------------------------	---------------	----------------

LEARNINGCS.AP3.cInterpret the flow of execution of algorithms and predict their outcomes. [Clarification: Algorithms can be expressedCONTINUUM.1.m.using natural language, flow and control diagrams, comments within code, and pseudocode.]

DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.DA.	Content Area: Data and Analysis (DA)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	CS.DA1.	Students will create computational artifacts using data and analysis.
DESCRIPTOR / FOCUS AREA	CS.DA1. a.	Represent and manipulate data.
LEARNING CONTINUUM	CS.DA1. a.3.m.	Represent data using different encoding schemes (e.g., binary, Unicode, Morse code, shorthand, student-created codes).
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	ITL.KC1	Students OcriticallyO OcurateO 0a0 OvarietyO 0of0 OdigitalO OtoolsO 0and0 OdiverseO Oresources.
DESCRIPTOR / FOCUS AREA	ITL.KC1. a.	Plan0 0and0 0employ effective0 0research0 0strategies.
LEARNING CONTINUUM	ITL.KC1.a .9.m.	Demonstratell landl lpractice usingl lanl linquiry-based processi lthat linvolves lasking questions, l l investigating lithe answers, landl ldeveloping new lunderstandings lifor personal lor lacademic learning l activities.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.KC.	Content Area: Knowledge Constructor (KC)
PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.KC2	Students produce0 0creative0 0artifacts0 0and0 0make0 0meaningful0 0learning0 0experiences0 0from0 0 curated knowledge0 0for0 0themselves0 0and0 0others.
DESCRIPTOR / FOCUS AREA	ITL.KC2. b.	Build® ©knowledge® @by actively® ©exploring real-world® ©issues® @and problems.
LEARNING CONTINUUM	ITL.KC2.b .5.m.	Demonstrate I linitiative I land engagement I Iby I lposing questions I land I linvestigating the I lanswers I lbeyond I the collection I lof I lsuperficial facts.
LEARNING CONTINUUM	ITL.KC2.b .6.m.	Explore: @real-world: @issues and: @problems: @and! @actively pursue! @an! @understanding: @of them.0 @Begin! @to! @ develop answers! @and! @solutions! @for problem!! @solving.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	IT L.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORIT Y	IT L.ID1.	Students DuseD DaD OvarietyD DofD OdigitalD OtoolsD DandD DresourcesD DtoD DidentifyD DandD DsolveD D authenticD OproblemsD Dusing designD Othinking.

DESCRIPTOR / FOCUS AREA	ITL.ID1. b.	Exhibit: Ditolerance: Dfor ambiguity,D Dperseverance andD Dthe: DcapacityD Dto: Dwork withD Dauthentic,D D open-ended problems.
LEARNING CONTINUUM	ITL.ID1.b. 3.m.	Demonstrate [®] and [®] ability [®] at persevere [®] athrough authentic, [®]
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT ST ANDARD	IT L.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	IT L.ID2.	Students use0 0a0 0variety0 0of0 0technologies0 0within0 0a0 0design0 0process0 0to0 0create0 0new,0 0 useful,0 0and imaginative0 0solutions.
DESCRIPTOR / FOCUS AREA	IT L.ID2. a.	Know: land: luse: la deliberate: ldesign: lprocess: lfor generating: lideas, ltesting theories, land: l creating innovative: lartifacts: land solutions.
LEARNING CONTINUUM	ITL.ID2.a. 3.m.	Use a deliberate design process to generate ideas, createl linnovativel lproducts, and litesti litheories las possible lisolutions.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT ST ANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.CT1	Students develop0 0and0 0employ0 0strategies0 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. a.	ldentify,0 0define,0 0and0 0interpret problems0 0where0 0digital0 0tools can0 0assist0 0in0 0finding0 0 solutions.
LEARNING CONTINUUM	ITL.CT1.a. 3.m.	Define II and II Isolve II an authentic II Iproblem II Iusing data II Ianalysis, II Imodeling, and II Ialgorithmic II Ithinking.
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT ST ANDARD	ITL.CT.	Content Area: Computational Thinker (CT)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	ITL.CT1	Students develop0 0and0 0employ0 0strategies0 0for0 0understanding0 0and0 0solving0 0problems.
DESCRIPTOR / FOCUS AREA	ITL.CT1. c.	Break[] []problems[] []into[] []smaller parts,[] []identify[] []key information,[] []and[] []develop descriptive[] [] models.
LEARNING CONTINUUM	ITL.CT1.c. 3.m.	Separatell lauthentic problems I linto I lcomponent parts, I lidentify I lpatterns I land differences I land I I develop descriptive I I models I I to facilitate I I problem I I solving.
		Wyoming Content and Performance Standards Mathematics Grade 5 - Adopted: 2018
CONTENT STANDARD		Standards for Mathematical Practices
BENCHMARK	1	Make sense of problems and persevere in solving them.

ENCHMARK 1 Make sense of problems and persevere in solving them.

BENCHMARK 2 Reason abstractly and quantitatively.

BENCHMARK	3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	4	Model with mathematics.
BENCHMARK	5	Use appropriate tools strategically.
BENCHMARK	7	Look for and make use of structure.

CONTENT STANDARD		Measurement and Data
BENCHMARK	5.MD.I.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL	5.MD.I.4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

EXAMPLE

CONTENT STANDARD		Measurement and Data
BENCHMARK	5.MD.I.	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
GRADE LEVEL EXAMPLE	5.MD.I.5	Relate volume to the operations of multiplication and solve real world and mathematical problems involving volume.
EXPECTATION	5.MD.I.5A	Find the volume of a right rectangular prism with whole number dimensions by multiplying them. Show that this volume is the same as when counting unit cubes.
EXPECTATION	5.MD.I.5B	Find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems given the formulas $V = (I)(w)(h)$ and $V = (B)(h)$ for rectangular prisms.

Wyoming Content and Performance Standards

Mathematics

CONTENT STANDARD		Standards for Mathematical Practices
BENCHMARK	1	Make sense of problems and persevere in solving them.
BENCHMARK	2	Reason abstractly and quantitatively.
BENCHMARK	3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	4	Model with mathematics.
BENCHMARK	5	Use appropriate tools strategically.
BENCHMARK	7	Look for and make use of structure.

CONTENT STANDARD		Geometry
BENCHMARK	6.G.H.	Solve real-world and mathematical problems involving area, surface area, and volume.

GRADE LEVEL	6.G.H.2.	Find the volume of a right rectangular prism with fractional edge lengths in the context of solving real-world and
EXAMPLE		mathematical problems by applying the formulas $V = (I)(w)(h)$ and $V = (B)(h)$, and label with appropriate units.

Mathematics

Grade 7 - Adopted: 2018

CONTENT STANDARD		Standards for Mathematical Practices					
BENCHMARK	1	Make sense of problems and persevere in solving them.					
BENCHMARK	2	Reason abstractly and quantitatively.					
BENCHMARK	3	Construct viable arguments and critique the reasoning of others.					
BENCHMARK	4	Model with mathematics.					
BENCHMARK	5	Use appropriate tools strategically.					
BENCHMARK	7	ook for and make use of structure.					
CONTENT STANDARD		Geometry					
BENCHMARK	7.G.F.	Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.					
GRADE LEVEL EXAMPLE	7.G.F.6.	Solve real-world and mathematical problems involving					
EXPECTATION	7.G.F.6A.	area and surface area of objects composed of triangles and quadrilaterals;					

EXPECTATION 7.G.F.6B. volume of objects composed only of right prisms having triangular or quadrilateral bases.

Wyoming Content and Performance Standards

Mathematics

Grade 8 - Adopted: 2018

CONTENT STANDARD		Standards for Mathematical Practices
BENCHMARK	1	Make sense of problems and persevere in solving them.
BENCHMARK	2	Reason abstractly and quantitatively.
BENCHMARK	3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	4	Model with mathematics.
BENCHMARK	5	Use appropriate tools strategically.
BENCHMARK	7	Look for and make use of structure.

CONTENT STANDARD		Geometry
BENCHMARK	8.G.I.	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
GRADE LEVEL EXAMPLE	8.G.I.9.	Given the formulas, solve real-world and mathematical problems involving volume and surface area of cylinders.

Science

Grade 5 - Adopted: 2016

CONT ENT ST AND ARD		ENGINEERING DESIGN
BENCHMARK	3-5- ET S1.	Engineering, Technology, & Applications of Science
GRADE LEVEL EXAMPLE	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXAMPLE	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXAMPLE	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Wyoming Content and Performance Standards

Science

Grade 6 - Adopted: 2016

CONTENT STANDARD		PHYSICAL SCIENCE
BENCHMARK	MS-PS4.	Waves and their Applications in Technologies for Information Transfer
GRADE LEVEL EXAMPLE	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
		EARTH AND SPACE SCIENCE

STANDARD		
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXAMPLE	MS- ESS3-4.	Construct an argument supported by evidence for how changes in human population and per-capita consumption of natural resources impact Earth's systems.

CONTENT STANDARD		ENGINEERING DESIGN
BENCHMARK	MS- ET S1.	Engineering, Technology, and Applications of Science
GRADE LEVEL EXAMPLE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXAMPLE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

GRADE LEVEL EXAMPLE	MS- ETS1-4.	Develop a model for a proposed object, tool or process and then use an iterative process to test the model, collect data, and generate modification ideas trending toward an optimal design.						
Grade 6 - Adopted: 2012								
CONTENT STANDARD	RST.6-8.	eading Standards for Literacy in Science and Technical Subjects						
BENCHMARK		Key Ideas and Details						
GRADE LEVEL EXAMPLE	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.						
GRADE LEVEL EXAMPLE	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.						
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects						
BENCHMARK		Craft and Structure						
GRADE LEVEL EXAMPLE	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.						
GRADE LEVEL EXAMPLE	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and o an understanding of the topic.						
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects						
BENCHMARK		Integration of Knowledge and Ideas						
GRADE LEVEL EXAMPLE	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.						
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects						
BENCHMARK		Range of Reading and Level of Text Complexity						
GRADE LEVEL EXAMPLE	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.						
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects						
BENCHMARK		Text Types and Purposes						
GRADE LEVEL EXAMPLE	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.						
EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.						
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects						
BENCHMARK		Production and Distribution of Writing						

GRADE LEVEL EXAMPLE	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXAMPLE	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Science

Grade 7 - Adopted: 2016

CONTENT STANDARD		PHYSICAL SCIENCE				
BENCHMARK	MS-PS4.	Waves and their Applications in Technologies for Information Transfer				
GRADE LEVEL EXAMPLE	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.				

CONTENT STANDARD		EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXAMPLE	MS- ESS3-4.	Construct an argument supported by evidence for how changes in human population and per-capita consumption of natural resources impact Earth's systems.

			-		-
EXAMPLE	ESS3-4.	natural resour	ces impac	t Earth's sy	ystems.

CONTENT STANDARD		
BENCHMARK	MS- ET S1.	Engineering, Technology, and Applications of Science
GRADE LEVEL EXAMPLE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXAMPLE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXAMPLE	MS- ETS1-4.	Develop a model for a proposed object, tool or process and then use an iterative process to test the model, collect data, and generate modification ideas trending toward an optimal design.

CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Key Ideas and Details
GRADE LEVEL EXAMPLE	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXAMPLE	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Craft and Structure

GRADE LEVEL EXAMPLE	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GRADE LEVEL EXAMPLE	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas
GRADE LEVEL EXAMPLE	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Range of Reading and Level of Text Complexity
GRADE LEVEL EXAMPLE	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD BENCHMARK	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes
CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE	WHST.6- 8. WHST.6 -8.2.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE EXPECTATION	WHST.6- 8. WHST.6 -8.2. WHST.6- 8.2(d)	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE EXPECTATION CONTENT STANDARD	WHST.6- 8. WHST.6 8.2(d) WHST.6- 8.2(d)	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE EXPECTATION CONTENT STANDARD BENCHMARK	WHST.6- 8. WHST.6- 8.2(d) WHST.6- 8.2(d)	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects Production and Distribution of Writing
CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE EXPECTATION CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE	WHST.6- 8. WHST.6 -8.2. WHST.6- 8.2(d) WHST.6- 8.4.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects Production and Distribution of Writing Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Science

Grade 8 - Adopted: 2016

CONTENT ST ANDARD		PHYSICAL SCIENCE
BENCHMARK	MS-PS4.	Waves and their Applications in Technologies for Information Transfer
GRADE LEVEL EXAMPLE	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

EARTH AND SPACE SCIENCE

CONTENT STANDARD

BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXAMPLE	MS- ESS3-4.	Construct an argument supported by evidence for how changes in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD		ENGINEERING DESIGN
BENCHMARK	MS- ET S1.	Engineering, Technology, and Applications of Science
GRADE LEVEL EXAMPLE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXAMPLE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXAMPLE	MS- ETS1-4.	Develop a model for a proposed object, tool or process and then use an iterative process to test the model, collect data, and generate modification ideas trending toward an optimal design.
		Grade 8 - Adopted: 2012
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Key Ideas and Details
GRADE LEVEL EXAMPLE	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXAMPLE	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Craft and Structure
GRADE LEVEL EXAMPLE	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GRADE LEVEL EXAMPLE	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT ST ANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas
GRADE LEVEL EXAMPLE	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Pange of Peading and Level of Text Complexity

GRADE LEVEL EXAMPLE	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Text Types and Purposes
GRADE LEVEL EXAMPLE	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Production and Distribution of Writing
GRADE LEVEL EXAMPLE	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXAMPLE	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Wyoming Content and Performance Standards Technology Education

Grade 5 - Adopted: 2020

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	1	Fostering an Inclusive Computing Culture
EXPECTATION	1.1.	"Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products."
EXPECTATION	1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
EXPECTATION	1.3.	"Employ self- and peer-advocacy to address bias in interactions, product design, and development methods."
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	3	Recognizing and Defining Computational Problems
EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
EXPECTATION	3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	4	Developing and Using Abstractions
EXPECTATION	4.2.	Evaluate existing technological functionalities and incorporate them into new designs.

EXPECTATION 4.3.

Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	5	Creating Computational Artifacts
EXPECTATION	5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
EXPECTATION	5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	6	Testing and Refining Computational Artifact
EXPECTATION	6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		3-5 Computer Science Standards
GRADE LEVEL EXAMPLE	AP.A.	Algorithms

EXPECTATION 5.AP.A.0 Using grade appropriate content and complexity, compare and refine multiple algorithms for the same task and 1. determine which is the most appropriate.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		3-5 Computer Science Standards
GRADE LEVEL EXAMPLE	AP.M.	Modularity
EXPECTATION	5.AP.M.0 1.	Using grade appropriate content and complexity, decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.

CONTENT STANDARD	Wyoming Computer Science Content Standards
BENCHMARK	3-5 Computer Science Standards

GRADE LEVEL EXAMPLE	AP.PD.	Program Development

EXPECTATION 5.AP.PD. Using grade appropriate content and complexity, test and debug (i.e., identify and fix errors) a program or algorithm 03. to ensure it runs as intended.

Wyoming Content and Performance Standards Technology Education

Grade 6 - Adopted: 2020

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	1	Fostering an Inclusive Computing Culture
EXPECTATION	1.1.	"Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products."
EXPECTATION	1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
EXPECTATION	1.3.	"Employ self- and peer-advocacy to address bias in interactions, product design, and development methods."
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	3	Recognizing and Defining Computational Problems
EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
EXPECTATION	3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	4	Developing and Using Abstractions
EXPECTATION	4.2.	Evaluate existing technological functionalities and incorporate them into new designs.
EXPECTATION	4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	5	Creating Computational Artifacts

EXPECTATION 5.1.

. Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

EXPECTATION 5.2.

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	6	Testing and Refining Computational Artifact

EXPECTATION 6.1. Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	CS.HS.	Hardware & Software

EXPECTATION 01.

8.CS.HS. Design and refine a project that combines hardware and software components to collect and exchange data.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	AP.A.	Algorithms

EXPECTATION

8.AP.A.0 Create flowcharts and pseudocode to design algorithms to solve complex problems.

1.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	IC.SI.	Social Interactions

EXPECTATION 8.IC.SI.01 Using grade appropriate content and complexity, collaborate using tools to connect with peers when creating a computational artifact.

Wyoming Content and Performance Standards **Technology Education**

Grade 7 - Adopted: 2020

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	1	Fostering an Inclusive Computing Culture

EXPECTATION 1.1. "Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products."

EXPECTATION	1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
EXPECTATION	1.3.	"Employ self- and peer-advocacy to address bias in interactions, product design, and development methods."
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	3	Recognizing and Defining Computational Problems
EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
EXPECTATION	3.2. 3.3.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures. Evaluate whether it is appropriate and feasible to solve a problem computationally.

STANDARD		
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	4	Developing and Using Abstractions
EXPECTATION	4.2.	Evaluate existing technological functionalities and incorporate them into new designs.

EXPECTATION 4.3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	5	Creating Computational Artifacts
EXPECTATION	5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
EXPECTATION	5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	6	Testing and Refining Computational Artifact

EXPECTATION	6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	CS.HS.	Hardware & Software

EXPECTATION 8.CS.HS. Design and refine a project that combines hardware and software components to collect and exchange data. 01.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	AP.A.	Algorithms

EXPECTATION

.....

1.

8.AP.A.0 Create flowcharts and pseudocode to design algorithms to solve complex problems.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	IC.SI.	Social Interactions

EXPECTATION 8.IC.SI.01 Using grade appropriate content and complexity, collaborate using tools to connect with peers when creating a computational artifact.

Wyoming Content and Performance Standards

Technology Education Grade 8 - Adopted: 2020

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	1	Fostering an Inclusive Computing Culture
EXPECTATION	1.1.	"Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products."
EXPECTATION	1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
EXPECTATION	1.3.	"Employ self- and peer-advocacy to address bias in interactions, product design, and development methods."
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	3	Recognizing and Defining Computational Problems
EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
EXPECTATION	3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT STANDARD		Wyoming Computer Science Content Standards

BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	4	Developing and Using Abstractions
EXPECTATION	4.2.	Evaluate existing technological functionalities and incorporate them into new designs.

EXPECTATION 4.3.

Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

modification of the plan, taking into account key features, time and resource constraints, and user expectations.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	5	Creating Computational Artifacts
EXPECTATION	5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and

Create a computational artifact for practical intent, personal expression, or to address a societal issue. EXPECTATION 5.2.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	6	Testing and Refining Computational Artifact

Systematically test computational artifacts by considering all scenarios and using test cases. EXPECTATION 6.1.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	CS.HS.	Hardware & Software

EXPECTATION 8.CS.HS. Design and refine a project that combines hardware and software components to collect and exchange data. 01.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	AP.A.	Algorithms

1.

8.AP.A.0 Create flowcharts and pseudocode to design algorithms to solve complex problems.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	IC.SI.	Social Interactions

EXPECTATION

EXPECTATION 8.IC.SI.01 Using grade appropriate content and complexity, collaborate using tools to connect with peers when creating a computational artifact.