Main Criteria: Forward Education

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards, Pennsylvania Core and Academic Standards

Subjects: Mathematics, Science, Technology Education

Grades: 5, 6, Key Stage 2

Forward Education

Smart Farming with Automated Watering

Nebraska Content Area Standards

Mathematics

Grade 6 - Adopted: 2022

CONTENT STANDARD		Grade 6 Standards
STRAND	6.R.	RATIOS AND PROPORTIONS: Students will understand ratio concepts and use ratio reasoning to solve problems.
INDICATOR	6.R.2.	Represent: Students will represent ratios and rates on the coordinate plane.
STRAND	6.R.2.d.	Make tables of equivalent ratios relating quantities with whole number measurements.

CONTENT STANDARD		Grade 6 Standards
STRAND	6.A.	ALGEBRA: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	6.A.1.	Algebraic Processes: Students will apply the operational properties when evaluating expressions and solving equations and inequalities.

STRAND 6.A.1.c. Use substitution to determine if a given value for a variable makes an equation or inequality true.

Nebraska Content Area Standards

Science

Grade 5 - Adopted: 2017		
CONTENT STANDARD	NE.SC.5. 8.	Matter and Energy in Organisms and Ecosystems
STRAND	SC.5.8.2	Gather and analyze data to communicate understanding of matter and energy in organisms and ecosystems.
INDICATOR	SC.5.8.2.	Support an argument that plants get the materials they need for growth chiefly from air and water.

В.

CONTENT STANDARD	NE.SC.5. 13.	Earth's Systems
STRAND	SC.5.13. 4.	Gather and analyze data to communicate understanding of Earth's systems.
INDICATOR	SC.5.13. 4.C.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.
INDICATOR	SC.5.13.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and

4.E. constraints on materials, time, or cost.

Nebraska Content Area Standards Science Grade 6 - Adopted: 2017

CONTENT STANDARD	NE.SC.6. 4.	Energy
STRAND	SC.6.4.1	Gather, analyze, and communicate evidence of energy.
INDICATOR	SC.6.4.1. B.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principle and potential impacts on people and the natural environment that may limit

Nebraska Content Area Standards Technology Education

possible solutions.

Grade 5 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST AND ARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

NEBRASKA K-12 TECHNOLOGY Scope & Sequence
COMPUTER SCIENCE/PROGRAMMING
COMPUTATIONAL THINKING STANDARDS
Create algorithms, or series of ordered steps, to solve problems.
Decompose a problem into smaller more manageable parts.
Optimize an algorithm for execution by a computer.
NEBRASKA K-12 TECHNOLOGY Scope & Sequence
COMPUTER SCIENCE/PROGRAMMING
PROGRAMMING STANDARDS

STRAND

Write programs using visual (block-based) programming languages (scratch, code.org).

Nebraska Content Area Standards Technology Education Grade 6 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST ANDARDS
STRAND	Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence

STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS
STRAND	Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
CONTENT	NEBRASKA K-12 TECHNOLOGY Scope & Sequence

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND

Write programs using visual (block-based) programming languages (scratch, code.org).

Nevada Academic Content Standards

Mathematics

Grade 5 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.5.	Mathematical Practices
STRAND / INDICATOR	MP.5.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.5.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.5.4.	Model with mathematics.
STRAND / INDICATOR	MP.5.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.5.7.	Look for and make use of structure.

Mathematics

Grade 6 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.6.	Mathematical Practices
STRAND / INDICATOR	MP.6.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.6.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.6.4.	Model with mathematics.
STRAND / INDICATOR	MP.6.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.6.7.	Look for and make use of structure.
CONTENT STANDARD	NV.CC.RF .6.	PRatios and Proportional Relationships
STRAND / INDICATOR		Understand ratio concepts and use ratio reasoning to solve problems.
INDICATOR / GRADE LEVEL EXPECTATION	RP.6.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
GRADE LEVEL EXPECTATION	RP.6.3(a)	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
CONTENT STANDARD	NV.CC.E E.6.	Expressions and Equations
STRAND / INDICATOR		Reason about and solve one-variable equations and inequalities.
INDICATOR / GRADE LEVEL EXPECTATION	EE.6.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Nevada Academic Content Standards

Science

Grade 5 - Adopted: 2014

CONTENT STANDARD	NV.5-LS.	
STRAND / INDICATOR	5-LS1.	From Molecules to Organisms: Structures and Processes
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL EXPECTATION 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

ECTATION

CONTENT STANDARD	NV.5- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	5-ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL5-ESS3-Obtain and combine information about ways individual communities use science ideas to protect the Earth'sEXPECTATION1.resources and environment.

CONTENT ST ANDARD	NV.3-5- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	3-5- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Nevada Academic Content Standards

Science

Grade 6 - Adopted: 2014

CONTENT ST ANDARD	NV.MS- LS.	LIFE SCIENCE
STRAND / INDICATOR	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVELMS-LS2-Evaluate competing design solutions for maintaining biodiversity and ecosystem services.EXPECTATION5.

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL	MS-	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	ESS3-3.	

GRADE LEVELMS-Construct an argument supported by evidence for how increases in human population and per-capita consumptionEXPECTATIONESS3-4.of natural resources impact Earth's systems.

CONTENT STANDARD	NV.MS- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas

INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Technology Education Grade 5 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture

GRADE LEVEL P1.2. Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and EXPECTATION usability.

GRADE LEVEL P1.3. EI EXPECTATION

L.3. Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

EXPECTATION

 CONTENT STANDARD
 NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

 STRAND / INDICATOR
 Practices

 INDICATOR / GRADE LEVEL EXPECTATION
 P4.
 Developing and Using Abstractions

GRADE LEVELP4.3.Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL P6.1. EXPECTATION Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing

GRADE LEVEL P7.1. EXPECTATION

Select, organize, and interpret large data sets from multiple sources to support a claim.

Nevada Academic Content Standards

Technology Education

Grade 6 - Adopted: 2019

CONTENT ST ANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
	D1 0	

GRADE LEVEL P1.3. Employ self- and peer-advocacy to address bias in interactions, product design, and development methods. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL P4.3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

GRADE LEVEL EXPECTATION P5.2.

P6.1.

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Testing and Refining Computational Artifacts

GRADE LEVEL EXPECTATION

Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing

GRADE LEVEL P7.1. Select, organize, and interpret large data sets from multiple sources to support a claim. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.
INDICATOR / GRADE LEVEL	6- 8.CT.C.1.	Break problems into component parts, identify key pieces, and use that information to problem solve.

New Hampshire College and Career Ready Standards

EXPECTATION

Mathematics

Grade 5 - Adopted: 2010

STRAND / STANDARD	NH.CC.M P.5.	Mathematical Practices
STANDARD / GLE	MP.5.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.5.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.5.4.	Model with mathematics.
STANDARD / GLE	MP.5.5.	Use appropriate tools strategically.
STANDARD / GLE	MP.5.7.	Look for and make use of structure.

New Hampshire College and Career Ready Standards

Mathematics

Grade 6 - Adopted: 2010

	NH.CC.M P.6.	Mathematical Practices
STANDARD / GLE	MP.6.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.6.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.6.3.	Construct viable arguments and critique the reasoning of others.

STANDARD / GLE	MP.6.4.	Model with mathematics.
STANDARD / GLE	MP.6.5.	Use appropriate tools strategically.
STANDARD /	MP.6.7.	Look for and make use of structure.

GLE

STRAND / STANDARD	NH.CC.R P.6.	Ratios and Proportional Relationships
STANDARD / GLE		Understand ratio concepts and use ratio reasoning to solve problems.
GRADE LEVEL EXPECTATION		Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
EXPECTATION	RP.6.3(a)	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the

tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

STRAND / STANDARD	NH.CC.E E.6.	Expressions and Equations
ST ANDARD / GLE		Reason about and solve one-variable equations and inequalities.
GRADE LEVEL EXPECTATION	EE.6.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

New Hampshire College and Career Ready Standards

Science

Grade 5 - Adopted: 2016

STRAND / STANDARD	NGSS.5- LS.	LIFE SCIENCE
STANDARD / GLE	5-LS1.	From Molecules to Organisms: Structures and Processes
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. EXPECTATION

STRAND / STANDARD	NGSS.5- ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	5-ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.
STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN

STANDARD / GLE	3-5- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Hampshire College and Career Ready Standards

Science

Grade 6 - Adopted: 2016

STRAND / STANDARD	NGSS.MS -LS.	LIFE SCIENCE
STANDARD / GLE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION

5.

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

EXPECTATION MS-Construct an argument supported by evidence for how increases in human population and per-capita consumption ESS3-4. of natural resources impact Earth's systems.

STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
STANDARD / GLE	MS- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

EXPECTATION MS-

MS- Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such ETS1-4. that an optimal design can be achieved.

New Hampshire College and Career Ready Standards

Technology Education

Grade 5 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:

GRADE LEVEL ICT.2.d. Science EXPECTATION

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

Grade 5 - Adopted: 2018

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences.
GRADE LEVEL EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations.

New Hampshire College and Career Ready Standards

Technology Education Grade 6 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL	ICT.3.c.	Problem solving

GRADE LEVEL ICT.3.c. Pro EXPECTATION

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

Grade 6 - Adopted: 2018

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
	2 4 5 10	

GRADE LEVEL 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. EXPECTATION

New Jersey Student Learning Standards Mathematics

Grade 5 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.

New Jersey Student Learning Standards

Mathematics

Grade 6 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.

STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.

CONTENT AREA / STANDARD	NJ.6.RP.	Ratios and Proportional Relationships
STRAND	6.RP.A.	Understand ratio concepts and use ratio reasoning to solve problems.
CONTENT STATEMENT	6.RP.A.3	Use ratio and rate reasoning to solve real®world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
CUMULATIVE PROGRESS	6.RP.A.3. a.	Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

INDICATOR

CONTENT AREA / ST ANDARD	NJ.6.EE.	Expressions and Equations
STRAND	6.EE.B.	Reason about and solve one®variable equations and inequalities.
CONTENT STATEMENT	6.EE.B.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

New Jersey Student Learning Standards

Science Grade 5 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	3-5-ET S.	Engineering Design
STRAND	3-5- ET S1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STATEMENT	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
CONTENT AREA / STANDARD	5-LS.	Life Science
STRAND	5-LS1:	From Molecules to Organisms: Structures and Processes

CONTENT STATEMENT

STATEMENT

1.

5.

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

5-ESS. CONTENT Earth and Space Science AREA / STANDARD 5-ESS3: Earth and Human Activity STRAND CONTENT 5-ESS3- Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources, environment, and address climate change issues.

New Jersey Student Learning Standards

Science

Grade 6 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-LS.	Life Science
STRAND	MS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT	MS-LS2-	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

STATEMENT

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ET S1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Jersey Student Learning Standards

Technology Education

Grade 5 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or

CUMULATIVE PROGRESS INDICATOR

procedures.

CUMULATIVE PROGRESS INDICATOR Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT Computer Science and Design Thinking Practices AREA / ST AND ARD STRAND **4 Developing and Using Abstractions** CONTENT Abstractions are formed by identifying patterns and extracting common features from specific STATEMENT examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students: Evaluate existing technological functionalities and incorporate them into new designs. CUMULATIVE PROGRESS INDICATOR CUMULATIVE Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. PROGRESS INDICATOR

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:

CUMULATIVE	
PROGRESS	
INDICATOR	

Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

CUMULATIVE Create a computational artifact for practical intent, personal expression, or to address a societal issue. PROGRESS INDICATOR

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts
CONTENT STATEMENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:

CUMULATIVE Systematically test computational artifacts by considering all scenarios and using test cases. PROGRESS INDICATOR

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.
CUMULATIVE	8.2.5.ED.	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to

CUMULATIVE	8.2.5.ED.	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to
PROGRESS	2:	provide the best results with supporting sketches or models.
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements include desired features and limitations that need to be considered.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 4:	Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desired features, constraints).
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 5:	Describe how specifications and limitations impact the engineering design process.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 6:	Evaluate and test alternative solutions to a problem using the constraints and tradeoffs identified in the design process.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology

CONTENT	
STATEMENT	

Technology innovation and improvement may be influenced by a variety of factors. Engineers create and modify technologies to meet people's needs and wants; scientists ask questions about the natural world.

CUMULATIVE & PROGRESS : INDICATOR

8.2.5.NT.1 Troubleshoot a product that has stopped working and brainstorm ideas to correct the problem.

New Jersey Student Learning Standards

Technology Education Grade 6 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE Employ self- and peer-advocacy to address bias in interactions, product design, and development methods. PROGRESS INDICATOR

Computer Science and Design Thinking Practices
3 Recognizing and Defining Computational Problems
The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
Evaluate whether it is appropriate and feasible to solve a problem computationally.
Computer Science and Design Thinking Practices
4 Developing and Using Abstractions
Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:

Evaluate existing technological functionalities and incorporate them into new designs.

CUMULATIVE PROGRESS INDICATOR

Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts
CONTENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact

CONTENT STATEMENT Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:

```
CUMULATIVESystematically test computational artifacts by considering all scenarios and using test cases.PROGRESSINDICATOR
```

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Computing Systems
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential trade- offs.
CUMULATIVE	8.1.8.CS. 3:	Justify design decisions and explain potential system trade-offs.

INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.
CUMULATIVE PROGRESS	8.1.8.DA. 5:	Test, analyze, and refine computational models.

INDICATOR

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.

 CUMULATIVE
 8.1.8.AP.
 Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.

 PROGRESS
 1:

 INDICATOR
 1:

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.

CUMULATIVE8.1.8.AP.Systematically test and refine programs using a range of test cases and users.PROGRESS8:INDICATOR

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.

CUMULATIVE	8.2.8.ED.	Design a product to address a real-world problem and document the iterative design process, including decisions
PROGRESS	7:	made as a result of specific constraints and trade-offs (e.g., annotated sketches).
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.

CUMULATIVE8.2.8.NT.1Examine a malfunctioning tool, product, or system and propose solutions to the problem.PROGRESS:

INDICATOR

PROGRESS

INDICATOR

W.3:

to lessen its impact.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE	8.2.8.ET	Analyze the design of a product that negatively impacts the environment or society and develop possible solutions

New Mexico Content Standards

Mathematics

Grade 5 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.

Mathematics

Grade 6 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices	
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.	
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.	
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.	
BENCHMARK / STANDARD	MP.4.	Model with mathematics.	
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.	
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.	
STRAND / CONTENT STANDARD	NM.6.RP.	Ratios and Proportional Relationships	
BENCHMARK / STANDARD		Understand ratio concepts and use ratio reasoning to solve problems.	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	
PERFORMANCE STANDARD / INDICATOR	6.RP.3(a)	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	
STRAND / CONTENT STANDARD	NM.6.EE.	Expressions and Equations	
BENCHMARK / STANDARD		Reason about and solve one-variable equations and inequalities.	
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	6.EE.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	
New Mexico Content Standards			

Science

Grade 5 - Adopted: 2013

|--|

BENCHMARK / ST ANDARD	5-LS1.	From Molecules to Organisms: Structures and Processes
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. STANDARD / INDICATOR

STRAND / CONTENT STANDARD	NGSS.5- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	5-ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 5-ESS3 Obtain and combine information about ways individual communities use science ideas to protect the Earth's

 STANDARD /
 1.
 resources and environment.

 INDICATOR
 Instruction
 Instruction

STRAND / CONTENT STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	3-5- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Mexico Content Standards Science

Grade 6 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -LS.	LIFE SCIENCE
BENCHMARK / ST ANDARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 MS-LS2 Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

 STANDARD /
 5.

 INDICATOR
 5.

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE	
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:	
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.	
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-4.	construct an argument supported by evidence for how increases in human population and per-capita consumption f natural resources impact Earth's systems.	
STRAND / CONTENT STANDARD	NM.MS- ESS.	EARTH AND SPACE SCIENCE	
BENCHMARK / ST ANDARD	MS- ESS3.	Human Impacts	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:	
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3 NM.	Describe the advantages and disadvantages associated with technologies related to local industries and energy production.	
STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN	
BENCHMARK / STANDARD	MS- ET S1.	Engineering Design	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:	
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	

New Mexico Content Standards

Technology Education Grade 5 - Adopted: 2019

		Grade 5 - Adopied: 2019
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR		Program Development
INDICATOR	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
INDICATOR	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
INDICATOR	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	1B-IC-20.	Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

New Mexico Content Standards Technology Education

Grade 6 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR	h	Algorithms

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

New York State Learning Standards and Core Curriculum

Mathematics

Grade 5 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.

CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
		New York State Learning Standards and Core Curriculum
		Mathematics
		Grade 6 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
STRAND / DOMAIN / UNIFYING THEME		Grade 6
CATEGORY / CLUSTER / KEY IDEA	NY-6.RP.	Ratios and Proportional Relationships
STANDARD / CONCEPTUAL UNDERSTAND ING		Understand ratio concepts and use ratio reasoning to solve problems.

SPECIFICAT IO

Ν

GRADENY-Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in theEXPECTATION6.RP.3.a.tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

STRAND / DOMAIN / UNIFYING THEME		Grade 6
CATEGORY / CLUSTER / KEY IDEA	NY-6.EE.	Expressions, Equations, and Inequalities
ST ANDARD / CONCEPT UAL UNDERST AND ING		Reason about and solve one-variable equations and inequalities.

EXPECTATION /	NY-
CONTENT	6.EE.5.
SPECIFICATION	

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

New York State Learning Standards and Core Curriculum

Science

Grade 5 - Adopted: 2016		
STRAND / DOMAIN / UNIFYING THEME	NY.5.2.	Matter and Energy in Organisms and Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD /	5-LS1-1.	Support an argument that plants get the materials they need for growth chiefly from air and water.

CONCEPTUAL UNDERSTANDI

NG

STRAND /
DOMAIN /
UNIFYING
THEMENY.5.3.Earth's SystemsCAT EGORY /
CLUST ER /
KEY IDEAStudents who demonstrate understanding can:STANDARD /
CONCEPTUAL5-ESS3-
1.Obtain and combine information about ways individual communities use science ideas to protect Earth's resources
and environment.

UNDERSTANDI NG

STRAND / DOMAIN / UNIFYING THEME	NY.3- 5.ED.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD /	3-5-	Define a simple design problem reflecting a need or a want that includes specified criteria for success and

 STANDARD /
 3-5 Define a simple design problem reflecting a need or a want that includes specified criteria for success and CONCEPTUAL

 ETS1-1.
 constraints on materials, time, or cost.

 UNDERSTANDI

 NG

STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum

Sci	en	ice	

Grade 6 - Adopted: 2016		
STRAND / DOMAIN / UNIFYING THEME	NY.MS.8.	Interdependent Relationships in Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

STANDARD /MS-LS2-Evaluate competing design solutions for maintaining biodiversity and protecting ecosystem stability.CONCEPTUAL5.UNDERSTANDING

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD / CONCEPTUAL UNDERSTANDI	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

NG

STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD /	MS-	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking

 STANDARD /
 MS Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking

 CONCEPTUAL
 ETS1-1.
 into account relevant scientific principles and potential impacts on people and the natural environment that may limit

 UNDERSTANDI
 possible solutions.

 NG

STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

STANDARD /	6-	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
CONCEPTUAL	8.RST.9.	gained from reading a text on the same topic.
UNDERSTANDI		
NG		

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

NG

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPTUAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

EXPECTATION / 6- Use precise language and domain-specific vocabulary to inform about or explain the topic. CONTENT 8.WHST.2.

SPECIFICATION d.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		New York State Learning Standards and Core Curriculum
		Technology Education

Grade 5 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
---	-------	---

CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

New York State Learning Standards and Core Curriculum

Technology Education Grade 6 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

North Carolina Standard Course of Study Mathematics Grade 5 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
		North Correline Chanderd Course of Chudu

North Carolina Standard Course of Study Mathematics Grade 6 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.

STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL	MP.7.	Look for and make use of structure.

STANDARD

CONTENT AREA / STRAND		Ratio and Proportional Relationships
STRAND / ESSENTIAL STANDARD		Understand ratio concepts and use ratio reasoning to solve problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.6.RP. 2.	Understand that ratios can be expressed as equivalent unit ratios by finding and interpreting both unit ratios in context.

CONTENT AREA / STRAND		Ratio and Proportional Relationships
STRAND / ESSENTIAL STANDARD		Understand ratio concepts and use ratio reasoning to solve problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.6.RP .3.	Use ratio reasoning with equivalent whole-number ratios to solve real-world and mathematical problems by:
CLARIFYING OBJECTIVE	NC.6.RP. 3.a.	Creating and using a table to compare ratios.
CLARIFYING OBJECTIVE	NC.6.RP. 3.b.	Finding missing values in the tables.
CONTENT AREA / STRAND		Expressions and Equations
STRAND / ESSENTIAL STANDARD		Reason about and solve one-variable equations.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE

5.

NC.6.EE. Use substitution to determine whether a given number in a specified set makes an equation true.

North Carolina Standard Course of Study

Science

CONTENT AREA / STRAND	NC.6.E.	Earth Science
STRAND / ESSENTIAL STANDARD		Earth: Systems, Structures and Processes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6.E.2.	Understand the structure of the earth and how interactions of constructive and destructive forces have resulted in changes in the surface of the Earth over time and the effects of the lithosphere on humans.
CLARIFYING OBJECTIVE	6.E.2.4.	Conclude that the good health of humans requires: monitoring the lithosphere, maintaining soil quality and stewardship.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL	6-	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior

STANDARD / CLARIFYING OBJECTIVE	8.RST.2.	knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
OBJECTIVE		

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
FOOTNELL	C	Compare and contract the information gained from experiments simulations video, or multimedia coveres with that

ESSENTIAL	0-	compare and contrast the mornation gamed from experiments, simulations, video, or multimedia sources with that
STANDARD /	8.RST.9.	gained from reading a text on the same topic.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

OBJECTIVE

CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CLARIFYING OBJECTIVE	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		North Carolina Standard Course of Study Technology Education Grade 5 - Adopted: 2020 (ISTE-S)
CONTENT		Digital Learning Standards

STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 5 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR

35-AP- 0

01.

Create multiple algorithms for the same task to determine which is the most accurate and efficient.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE	L	Program Development
INDICATOR	35-AP-	Describe choices made during program development using code comments, presentations, and demonstrations.

12.

North Carolina Standard Course of Study

Technology Education

Grade 6 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

	ONTENT REA / STRAND		Digital Learning Standards
E	TRAND / SSENTIAL TANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 6 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR

01.

68-AP-Implement flowcharts and/or pseudocode to address complex problems as algorithms.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Modularity

Organize problems and subproblems into parts.

68-AP-	
05.	

CONTENT AREA / STRAND NC K-12 Computer Science Standards STRAND / Grades 6-8 (Ages 11-14) ESSENTIAL STANDARD ESSENTIAL Algorithms & Programming STANDARD / CLARIFYING OBJECTIVE CLARIFYING Program Development OBJECTIVE

INDICATOR

68-AP- Syster

10.

Systematically test and refine programs using a range of test cases.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR 68-IC-05. Collaborate with many contributors to create a computational artifact.

North Dakota Content Standards

Mathematics

Grade 5 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.
BENCHMARK	MP.7	Look for and make use of structure.

North Dakota Content Standards

Mathematics

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.

BENCHMARK MP.7

Look for and make use of structure.

CONTENT STANDARD		Ratios and Proportional Relationships
BENCHMARK		Understand ratio concepts and use ratio reasoning to solve problems.
GRADE LEVEL EXPECTATION	6.RP.3	Use tables of equivalent ratios, tape diagrams, double number line diagrams, and equations to reason about ratios and rates in real world and mathematical problems.
INDICATOR	6.RP.3.a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

CONTENT STANDARD		Expressions and Equations
BENCHMARK		Reason about and solve one-variable equations and inequalities.
GRADE LEVEL EXPECTATION	6.EE.5	Understand solving an equation or inequality as a process of answering a question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

North Dakota Content Standards

Science Grade 5 - Adopted: 2019 CONTENT Science and Engineering Practices STANDARD BENCHMARK 2 Developing and using models **GRADE LEVEL** Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., **EXPECTATION** diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions. CONTENT STANDARD Science and Engineering Practices Analyzing and interpreting data BENCHMARK 4 GRADE LEVEL Analyzing data in K-12 builds on prior experiences and progresses to collecting, recording, and sharing EXPECTATION observations. CONTENT Science and Engineering Practices STANDARD BENCHMARK 6 Constructing explanations and designing solutions Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of **GRADE LEVEL EXPECTATION** evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions. Life Science (LS) CONTENT STANDARD BENCHMARK 5-LS1. From Molecules to Organisms: Structures and Processes

GRADE LEVEL 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. EXPECTATION

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	5-ESS3.	Earth & Human Activity
GRADE LEVEL	5-ESS3-	Obtain and combine information about ways individual communities use science ideas to protect the Earth's

GRADE LEVEL	0-E333-	Obtain and combine information about ways individual communes use science ideas to pr
EXPECTATION	1.	resources and environment.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	5-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	5-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	5-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	5-ET1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

North Dakota Content Standards

Science Grade 6 - Adopted: 2019

Grade	6 -	Adopted:	2019

		Grade 6 - Adopted. 2019
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	4	Analyzing and interpreting data
GRADE LEVEL EXPECTATION		Analyzing data in K-12 builds on prior experiences and progresses to collecting, recording, and sharing observations.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity

GRADE LEVELMS-Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.EXPECTATIONESS3-3.

GRADE LEVELMS-Construct an argument supported by evidence for how increases in human population and per-capita consumption ofEXPECTATIONESS3-4.natural resources impact Earth's systems.

CONTENT STANDARD		Life Science (LS)
BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics

GRADE LEVEL MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. EXPECTATION 5.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

Technology Education

Grade 5 - Adopted: 2019

CONTENT ST ANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms
INDICATOR	Strategies for understanding and solving problems.

INDICATOR 5.PSA.1. Create a sequence of instructions from a previous decomposed task.

	Computer Science and Cybersecurity Standards
	Computational Thinking
	Development & Design
	Design processes to create new, useful, and imaginative solutions to problems.
.DD.1.	Continued growth independently or collaboratively creating programs that use sequencing, loops, and conditions.

INDICATOR 5.DD.2. Create solutions to problems using a design method.

North Dakota Content Standards Technology Education Grade 6 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECTATION	Creative and Innovative Processes and Products

INDICATOR

6- Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. 8.MTL.7.

Grade 6 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	6.PSA.1.	Identify and test an algorithm to solve a problem.

Ohio Learning Standards

Mathematics

Grade 5 - Adopted. 2017				
DOMAIN / ACADEMIC CONTENT STANDARD	он.мр.	Standards for Mathematical Practice		
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.		
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.		
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.		
STANDARD / BENCHMARK	MP.4.	Model with mathematics.		
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.		
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.		
		Ohio Learning Standards Mathematics Grade 6 - Adopted: 2017		
DOMAIN / ACADEMIC CONTENT STANDARD	OH.MP.	Standards for Mathematical Practice		

STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.6.RP.	RATIOS AND PROPORTIONAL RELATIONSHIPS
ST ANDARD / BENCHMARK		Understand ratio concepts and use ratio reasoning to solve problems.
BENCHMARK / GRADE LEVEL INDICATOR	6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagramsG, double number line diagramsG, or equations.
PROFICIENCY LEVEL	6.RP.3.a.	Make tables of equivalent ratios relating quantities with whole-number measurements; find missing values in the tables; and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.6.EE.	EXPRESSIONS AND EQUATIONS
STANDARD / BENCHMARK		Reason about and solve one-variable equations and inequalities.
BENCHMARK / GRADE LEVEL INDICATOR	6.EE.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
		Ohio Learning Standards Technology Education Grade 5 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.

PROFICIENCY LEVEL	3- 5.ST.1.b.	Identify positive and negative impacts your use of personal technology and technology systems (e.g., agriculture, transportation, energy generation, water treatment) can have on your community.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY	3-	Identify the positive and negative impact the use of technology can have on relationships, communities and self.
LEVEL	5.ST.2.c.	

STANDARD		
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY	3-	Identify and discuss how the use of technology affects self and others in various ways.

PROFICIENCY LEVEL

5.ST.3.c.

Identify and discuss how the use of technology affects self and others in various ways.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.

PROFICIENCY 3-Give examples of how requirements for a product can limit the design possibilities for that product. LEVEL 5.DT.1.b.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.

Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible PROFICIENCY 3-LEVEL solutions, test and evaluate solution(s), present a possible solution, and redesign to improve the solution. 5.DT.2.b.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.
PROFICIENCY LEVEL	3- 5.DT.3.b.	Explore and document connections between technology and other fields of study.
		Grade 5 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
ST ANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY CS.T.5.a. Diagnose problems and develop strategies to resolve technology issues. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCYATP.A.5.Evaluate a multi-step process to diagram the proper steps to solve a problem.LEVELa.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Variables and Data Representation

PROFICIENCYATP.VDRCreate a variable, a placeholder for storing a value, to understand how it is used in a multi-step process (i.e.,LEVEL.5.a.algorithm).

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING

PROFICIENCYATP.CS.5Create a program using sequences, events, loops and conditionals to solve a problem.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Modularity

PROFICIENCY ATP.M.5. Decom LEVEL a. instruct

ATP.M.5. Decompose (i.e., break down) the steps needed or not needed (i.e., abstraction) into precise sequences of a. instructions to design an algorithm.

Ohio Learning Standards Technology Education

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	6- 8.ST.2.b.	Explain the positive and negative impact the use of technology can have on personal, professional and community relationships.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICAT OR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.

BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety, etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY LEVEL	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ACADEMIC CONTENT		Ohio Learning Standards in Technology Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
ACADEMIC CONTENT STANDARD	Topic 3:	Design and Technology: Addresses the nature of technology to develop and improve products and

Grade 6 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCYCS.T.6.a.Use a systematic process to identify and evaluate the source of a routine computing problem. Select the bestLEVELsolution to solve the computing problem and communicate the solution to others.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY ATP.A.6. Compare and refine multiple algorithms for the same task to determine which is the most efficient. LEVEL a.

DOMAIN / ACADEMIC CONTENT ST ANDARD	Computer Science, Grade 6
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING

BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .6.a.	Identify unknown values that need to be represented by a variable within a multi-step process.

 PROFICIENCY
 ATP.VDR
 Create variables and use them within a multi-step process.

 LEVEL
 .6.b.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCYATP.CS.6Identify and trace decisions and loops that exist in a multi-step process within a program.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Modularity

PROFICIENCYATP.M.6.Decompose problems into parts to facilitate the design, implementation and review of programs.LEVELa.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.6Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions

PROFICIENCY	AI.NI.6.a.	Individually and collaboratively compare language processing algorithms to solve a problem based on a given
LEVEL		criteria (e.g., time, resource, accessibility).

Oklahoma Academic Standards Mathematics

Grade 5 - Adopted: 2022	
CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD	Develop the Ability to Communicate Mathematically
	Oklahoma Academic Standards
	Mathematics

Mathematics Grade 6 - Adopted: 2022

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition

STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD	Develop the Ability to Communicate Mathematically

Oklahoma Academic Standards

Science

Grade 5 - Adopted: 2020

CONTENT ST ANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		From Molecules to Organisms: Structure and Processes (LS1)
OBJECTIVE	5.LS1.1	Support an argument that plants get the materials they need for growth chiefly from air and water.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Earth and Human Activity (ESS3)
OBJECTIVE	5.ESS3.1	Obtain and combine information about ways individual communities use science ideas to protect the Earth's

Oklahoma Academic Standards Technology Education Grade 5 - Adopted: 2023

resources and environments.

Grade 5 - Adopted: 2023		
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Creating Computational Artifacts
SKILL / CONCEPT		Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Developing and Using Abstractions
SKILL / CONCEPT		Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science

STRAND / STANDARD	Compu	iter Science Practices
OBJECTIVE	Develo	ping a Productive Computing Environment
SKILL / CONCEPT	process	and the contexts in which people operate and consider the needs of different users during the design s. Students will address the needs of different end users to produce artifacts with broad accessibility and v and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

SKILL / CONCEPT Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.CS.	Computing Systems (CS)
SKILL / CONCEPT	5.CS.T.	Troubleshooting (T)

 SKILL
 5.CS.T.01
 Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use.

 .
 Discuss problems with peers and adults, apply strategies for solving these problems and explain why the strategies should work.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.A.	Algorithms (A)

SKILL

5.AP.A.0 Model, compare and refine multiple algorithms for the same task and determine which is the most efficient. 1.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.PD.	Program Development (PD)

SKILL

5.AP.PD. Use an iterative process to plan the development of a program that includes others' perspectives and user preferences while solving simple problems.

04.

01.

5.AP.PD. Communicate and explain program development choices using comments, presentations, and demonstrations.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	5.IC.CU.	Culture (CU)

SKILL

2.

5.IC.CU.0 Develop, test, and refine digital artifacts to improve accessibility and usability.

Grade 5 - Adopted: 2019		
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards

Technology Education Grade 6 - Adopted: 2023

Grade 6 - Adopted: 2023			
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Creating Computational Artifacts	
SKILL / CONCEPT		Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Developing and Using Abstractions	
SKILL / CONCEPT		Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Developing a Productive Computing Environment	
SKILL / CONCEPT		Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Recognizing and Defining Computational Problems	
SKILL / CONCEPT		Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD	6	Sixth Grade (6)	
OBJECTIVE	6.CS.	Computing Systems (CS)	

SKIL CON	L / ICEPT	6.CS.T.	Troubleshooting (T)

6.CS.T.01 Identify and resolve software and hardware problems with computing devices and their components involving

CONTENT STANDARD / Oklahoma Academic Standards - Computer Science COURSE STRAND / 6 Sixth Grade (6) **STANDARD** OBJECTIVE 6.AP. Algorithms & Programming (AP) SKILL / 6.AP.A. Algorithms (A) CONCEPT

SKILL

settings and connections.

6.AP.A.0 Use an existing algorithm in natural language or pseudocode to solve complex problems.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)
OBJECTIVE	6.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	6.AP.PD.	Program Development (PD)
SKILL	6.AP.PD.	Break down tasks and follow an individual timeline when developing a computational artifact.

04.

1.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT		ISTE for Students 2016 (ISTE-S)

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
---------------------------------	--	---------------------------------

SKILL

STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oregon Academic Content Standards

Mathematics

Grade 5 - Adopted: 2021

ST ANDARD / CONTENT AREA		Mathematical Practice Standards
AREA		
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.

Oregon Academic Content Standards

Mathematics

	Grade 6 - Adopted: 2021			
STANDARD / CONTENT AREA		Mathematical Practice Standards		
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.		

CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.

STANDARD / CONTENT AREA		Grade 6 Standards
CONTENT STANDARD / PROFICIENCY	6.AEE.	Algebraic Reasoning: Expressions and Equations (6.AEE)
BENCHMARK / STRAND	6.AEE.B	Reason about and solve one-variable equations and inequalities.
EXPECTATION / BENCHMARK	6.AEE.B. 4.	Understand solving an equation or inequality as a process of answering which values from a specified set, if any, make the equation or inequality true. Use substitution to determine which number(s) in a given set make an equation

or inequality true.

Oregon Academic Content Standards

	Science Grade 5 - Adopted: 2022				
STANDARD / CONTENT AREA	OR.5- LS1.	From Molecules to Organisms: Structures and Processes			
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:			

STRAND

BENCHMARK / 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

ST ANDARD / CONT ENT AREA	OR.5- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

STANDARD / CONTENT AREA	OR.3-5- ET S1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Oregon Academic Content Standards

Science

ST ANDARD / CONTENT AREA	OR.MS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD / CONTENT AREA	OR.MS- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
ST ANDARD / CONT ENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
ST ANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT		Reading Standards for Literacy in Science and Technical Subjects Range of Reading and Level of Text Complexity
CONTENT AREA CONTENT STANDARD /		
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK /	6-8. RST.6- 8.10.	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT	6-8. RST.6- 8.10. OR.WHST	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD /	6-8. RST.6- 8.10. OR.WHST	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK /	6-8. RST.6- 8.10. OR.WHST .6-8.	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/
CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND	6-8. RST.6- 8.10. OR.WHST .6-8. WHST.6 -8.2. WHST.6-	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Mathematics

Grade 5 - Adopted: 2014

		Graue 5 - Auopieu. 2014
SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
		Pennsylvania Core and Academic Standards Mathematics Grade 6 - Adopted: 2014
SUBJECT / ST ANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.

STANDARD CC.MP.3. Construct viable arguments and critique the reasoning of others.

AREA / STATEMENT

STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.
STANDARD AREA /	CC.MP.7.	Look for and make use of structure.

STATEMENT

SUBJECT / STANDARD AREA	PA.CC.2. 2.6.	Algebraic Concepts
ST ANDARD AREA / ST AT EMENT	CC.2.2.6 .B.	Expressions and Equations
STANDARD	CC.2.2.6. B.2.	Understand the process of solving a one-variable equation or inequality and apply it to real-world and mathematical problems.

Pennsylvania Core and Academic Standards

Science

Grade 5 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
STANDARD AREA / STATEMENT	SI.9.	Understand that scientific investigations may result in new ideas for study, new methods, or procedures for an investigation or new technologies to improve data collection.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.5.A1.	Explain how people use tools and techniques to help them do things.

DESCRIPTOR / 3.4.5.A2. Understand that a subsystem is a system that operates as part of a larger system. STANDARD

DESCRIPTOR / 3.4.5.A3. Describe how technologies are often combined.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society

DESCRIPTOR / 3.4.5.B1. Explain how the use of technology can have unintended consequences. STANDARD

SUBJECT / ST ANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.5.C1.	Explain how the design process is a purposeful method of planning practical solutions to problems.
DESCRIPTOR / STANDARD	3.4.5.C2.	Describe how design, as a dynamic process of steps, can be performed in different sequences and repeated.
DESCRIPTOR / STANDARD	3.4.5.C3.	Identify how invention and innovation are creative ways to turn ideas into real things.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.5.D1.	Identify ways to improve a design solution.

DESCRIPTOR / 3.4.5.D3. Determine if the human use of a product or system creates positive or negative results. STANDARD

UBJECT / PA. TANDARD REA	3. S	Science and Technology and Engineering Education
STANDARD 3.4 AREA / STATEMENT	4.	Technology and Engineering Education
STANDARD 3.4	4.E.	The Designed World

DESCRIPTOR / 3.4.5.E3. Explain how tools, machines, products, and systems use energy in order to do work.

STANDARD

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.4.	Agriculture and Society
STANDARD	4.4.5.C.	Investigate the factors influencing plant and animal growth. (e.g., soil, water, nutrients, and light)

Pennsylvania Core and Academic Standards

Science

SUBJECT / ST ANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
STANDARD AREA / STATEMENT	SI.9.	Understand that scientific investigations may result in new ideas for study, new methods, or procedures for an investigation or new technologies to improve data collection.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.6.A1.	Identify how creative thinking and economic and cultural influences shape technological development.
DESCRIPTOR / STANDARD	3.4.6.A2.	Describe how systems thinking involves considering how every part relates to others.
DESCRIPTOR / STANDARD	3.4.6.A3.	Explain how knowledge from other fields of study (STEM) integrate to create new technologies.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society

DESCRIPTOR /	3.4.6.B2.	Describe how technologies can be used to repair damage caused by natural disasters and to break down waste
STANDARD		from the use of various products and systems.

DESCRIPTOR / 3.4.6.B4. Demonstrate how new technologies are developed based on people's needs, wants, values, and/or interests. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.6.C1.	Recognize that requirements for a design include such factors as the desired elements and features of a product or system or the limits that are placed on the design.

DESCRIPTOR / 3.4.6.C2. Show how models are used to communicate and test design ideas and processes. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.6.D1.	Apply a design process to solve problems beyond the laboratory classroom.

DESCRIPTOR / 3.4.6.D2. Use computers appropriately to access and organize and apply information. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.E.	The Designed World

DESCRIPTOR /3.4.6.E2.Identify how emerging agricultural technologies have an effect on ecosystem dynamics and human/animal foodSTANDARDresources.

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.4.	Agriculture and Society

STANDARD

4.4.6.A. Explain how different plants and animals in the United States have specific growing requirements related to climate and soil conditions.

STANDARD	4.4.6.B.	Analyze how soil types and geographic regions have impacted agriculture in Pennsylvania.
		Grade 6 - Adopted: 2014
SUBJECT / STANDARD AREA		Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.G.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Technology Education

Grade 5 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
ST ANDARD AREA / ST AT EMENT	1B-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
DESCRIPTOR / STANDARD	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
DESCRIPTOR / STANDARD	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
ST ANDARD AREA / ST AT EMENT	1B-IC.	Impacts of Computing
STANDARD		Social Interactions

DESCRIPTOR / 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1) STANDARD

Pennsylvania Core and Academic Standards Technology Education Grade 6 - Adopted: 2017

SUBJECT / ST ANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Algorithms

DESCRIPTOR / 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1) STANDARD

CSTA.2.	Level 2 (Ages 11-14)
2-AP.	Algorithms & Programming
	Modularity
2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
CSTA.2.	Level 2 (Ages 11-14)
2-IC.	Impacts of Computing
	Social Interactions
	2-AP-13. CST A.2.

DESCRIPTOR /2-IC-22.Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a
computational artifact. (P2.4, P5.2)