Main Criteria: Forward Education

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Nova Scotia Curriculum, Ohio Learning Standards, Oklahoma Academic Standards, The Ontario Curriculum, Oregon Academic Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 7, 8, Key Stage 3

Forward Education

Smart Farming with Hydroponics & LED Grow Lights

Nebraska Content Area Standards

Mathematics

Grade 7 - Adopted: 2022

CONTENT STANDARD		Grade 7 Standards
STRAND	7.A.	ALGEBRA: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	7.A.1.	Algebraic Processes: Students will apply the operational properties when evaluating expressions, and solving equations and inequalities.
STRAND	7.A.1.c.	Solve one- and two-step equations involving rational numbers.

Solve one- and two-step equations involving rational numbers. 7.A.1.c.

Nebraska Content Area Standards

Science

Grade 7 - Adopted: 2017

CONTENT STANDARD	NE.SC.7. 7.	Interdependent Relationships in Ecosystems
STRAND	SC.7.7.3	Gather, analyze, and communicate evidence of interdependent relationships in ecosystems.
INDICATOR	SC.7.7.3. B.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
INDICATOR	SC.7.7.3. D.	Apply scientific principles to design a method for monitoring and increasing positive human impact on the environment.
CONTENT STANDARD	NE.SC.7. 13.	Earth's Systems
STRAND	SC.7.13. 5.	Gather, analyze, and communicate evidence of the flow of energy and cycling of matter associated with Earth's materials and processes.
INDICATOR	SC.7.13. 5.C.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

Nebraska Content Area Standards Technology Education Grade 7 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE STANDARDS

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS

STRAND

Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND Write programs using visual (block-based) programming languages (scratch, code.org).

Nebraska Content Area Standards Technology Education Grade 8 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST ANDARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS

STRAND

Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.

STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
STRAND	Evaluate algorithms by their efficiency, correctness, and clarity.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

STRAND

Write programs using visual (block-based) programming languages (scratch, code.org).

Nevada Academic Content Standards

Mathematics

Grade 7 - Adopted: 2010

CONTENT ST ANDARD	NV.CC.M P.7.	Mathematical Practices
STRAND / INDICATOR	MP.7.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.7.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.7.4.	Model with mathematics.
STRAND / INDICATOR	MP.7.6.	Attend to precision.
STRAND / INDICATOR	MP.7.7.	Look for and make use of structure.
STRAND / INDICATOR	MP.7.8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD	NV.CC.NS .7.	The Number System
STRAND / INDICATOR		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

INDICATOR /	
GRADE LEVEL	
INDICATOR / GRADE LEVEL EXPECTATION	

NS.7.1.

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

GRADE LEVEL EXPECTATION

NS.7.1(d) Apply properties of operations as strategies to add and subtract rational numbers.

CONTENT ST ANDARD	NV.CC.NS .7.	The Number System
STRAND / INDICATOR		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
INDICATOR / GRADE LEVEL EXPECTATION	NS.7.2.	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
GRADE LEVEL EXPECTATION	NS.7.2(a)	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

GRADE LEVEL NS.7.2(c) Apply properties of operations as strategies to multiply and divide rational numbers.

EXPECTATION

CONTENT NV.CC.EE Expressions and Equations **STANDARD** STRAND / Solve real-life and mathematical problems using numerical and algebraic expressions and equations. INDICATOR INDICATOR / EE.7.4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. **GRADE LEVEL EXPECTATION** EE.7.4(a) Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific GRADE LEVEL rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, **EXPECTATION**

rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Nevada Academic Content Standards

Mathematics

Grade 8 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.8.	Mathematical Practices
STRAND / INDICATOR	MP.8.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.8.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.8.4.	Model with mathematics.
STRAND / INDICATOR	MP.8.6.	Attend to precision.

STRAND / MP.8.7. Look for and make use of structure. INDICATOR	
--	--

STRAND / INDICATOR

MP.8.8. Look for and express regularity in repeated reasoning.

CONTENT STANDARD	NV.CC.EE .8.	Expressions and Equations
STRAND / INDICATOR		Analyze and solve linear equations and pairs of simultaneous linear equations.
INDICATOR / GRADE LEVEL EXPECTATION	EE.8.7.	Solve linear equations in one variable.
GRADE LEVEL EXPECTATION	EE.8.7(a)	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).
GRADE LEVEL EXPECTATION	EE.8.7(b)	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Nevada Academic Content Standards

Science

Grade 7 - Adopted: 2014

	NV.MS- LS.	LIFE SCIENCE
STRAND / INDICATOR	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. EXPECTATION 5.

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
		Grade 7 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

Nevada Academic Content Standards

Science

Grade 8 - Adopted: 2014

	NV.MS- LS.	LIFE SCIENCE
STRAND / INDICATOR	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. EXPECTATION 5.

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
		Grade 6 - Adopted. 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects

	-0.	
STRAND / INDICATOR		Key Ideas and Details

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

Nevada Academic Content Standards Technology Education

Grade 7 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.

GRADE LEVELP1.3.Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Developing and Using Abstractions

GRADE LEVEL

P4.3. C

Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Testing and Refining Computational Artifacts

GRADE LEVEL P6.1.

System

Systematically test computational artifacts by considering all scenarios and using test cases.

EXPECTATION

CONTENT
STANDARDNEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCESTRAND /
INDICATORPracticesINDICATOR /
GRADE LEVEL
EXPECTATIONP7.Communicating About Computing

GRADE LEVEL EXPECTATION P7.1.

Select, organize, and interpret large data sets from multiple sources to support a claim.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.

INDICATOR /	6-	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the
GRADE LEVEL	8.ID.C.1.	cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for
EXPECTATION		improvement.

INDICATOR /	6-	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
GRADE LEVEL	8.ID.D.1.	
EXPECTATION		

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.

INDICATOR /	6-	Break problems into component parts, identify key pieces, and use that information to problem solve.
GRADE LEVEL	8.CT.C.1.	
EXPECTATION		

Nevada Academic Content Standards Technology Education

Grade 8 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
GRADE LEVEL EXPECTATION	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL EXPECTATION P4.3.

Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL P6.1. Systematically test computational artifacts by considering all scenarios and using test cases.

EXPECTATION

CONTENT
STANDARDNEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCESTRAND /
INDICATORPracticesINDICATOR /
GRADE LEVEL
EXPECTATIONP7.Communicating About Computing
Gende Level
EXPECTATIONP7.

P7.1.

Select, organize, and interpret large data sets from multiple sources to support a claim.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.

GRADE LEVEL EXPECTATION

INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.

CONTENT ST ANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.

INDICATOR /	6-	Break problems into component parts, identify key pieces, and use that information to problem solve.
GRADE LEVEL	8.CT.C.1.	
EXPECTATION		

New Hampshire College and Career Ready Standards

Mathematics

Grade 7 - Adopted: 2010

STRAND / STANDARD	NH.CC.M P.7.	Mathematical Practices
STANDARD / GLE	MP.7.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.7.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.7.4.	Model with mathematics.
STANDARD / GLE	MP.7.6.	Attend to precision.
STANDARD / GLE	MP.7.7.	Look for and make use of structure.
STANDARD / GLE	MP.7.8.	Look for and express regularity in repeated reasoning.

STRAND / STANDARD	NH.CC.N S.7.	The Number System
ST ANDARD GLE	I	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

GRADE LEVEL EXPECTATION		Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
----------------------------	--	--

EXPECTATION NS.7.1(d) Apply properties of operations as strategies to add and subtract rational numbers.

STRAND / STANDARD	NH.CC.N S.7.	The Number System
STANDARD / GLE		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
GRADE LEVEL EXPECTATION	NS.7.2.	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
EXPECTATION	NS.7.2(a)	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

EXPECTATION NS.7.2(c) Apply properties of operations as strategies to multiply and divide rational numbers.

STRAND / STANDARD	NH.CC.EE .7.	Expressions and Equations
ST ANDARD / GLE		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
GRADE LEVEL EXPECTATION	EE.7.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
EXPECTATION	EE.7.4(a)	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

New Hampshire College and Career Ready Standards

Mathematics Grade 8 - Adopted: 2010

STRAND / STANDARD	NH.CC.M P.8.	Mathematical Practices
STANDARD / GLE	MP.8.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.8.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.8.4.	Model with mathematics.
STANDARD / GLE	MP.8.6.	Attend to precision.
STANDARD / GLE	MP.8.7.	Look for and make use of structure.

STANDARD / GLE

MP.8.8. Look for and express regularity in repeated reasoning.

NH.CC.EE Expressions and Equations STRAND / STANDARD .8. STANDARD / Analyze and solve linear equations and pairs of simultaneous linear equations. GLE **GRADE LEVEL** EE.8.7. Solve linear equations in one variable. **EXPECTATION** EXPECTATION EE.8.7(a) Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). **EXPECTATION** EE.8.7(b) Solve linear equations with rational number coefficients, including equations whose solutions require expanding

New Hampshire College and Career Ready Standards

expressions using the distributive property and collecting like terms.

Science

Grade 7 - Adopted: 2016

STRAND / STANDARD	NGSS.MS -LS.	LIFE SCIENCE
STANDARD / GLE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. 5.

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

New Hampshire College and Career Ready Standards

Science

Grade 8 - Adopted: 2016

	NGSS.MS -LS.	
ST ANDARD / GLE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION

5.

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

New Hampshire College and Career Ready Standards

Technology Education

Grade 7 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL	ICT.3.c.	Problem solving

EXPECTATION

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects

Grade 7 - Adopted: 2018

STRAND / STANDARD	Computer Science
STANDARD / GLE	Algorithms & Programming

GRADE LEVEL 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. EXPECTATION

New Hampshire College and Career Ready Standards Technology Education Grade 8 - Adopted: 2005

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.d.	Science
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects
		Grade 8 - Adopted: 2018
STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms.
		New Jersey Student Learning Standards
		Mathematics
CONTENT AREA / STANDARD	NJ.MP.	Grade 7 - Adopted: 2016 Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.

STRAND

STRAND

STRAND

MP.6.

MP.7.

MP.8.

Attend to precision.

Look for and make use of structure.

Look for and express regularity in repeated reasoning.

CONTENT AREA / STANDARD	NJ.7.NS.	The Number System
STRAND	7.NS.A.	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
CONTENT STATEMENT		Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

CUMULATIVE7.NS.A.1. Apply properties of operations as strategies to add and subtract rational numbers.PROGRESSd.INDICATOR

CONTENT AREA / STANDARD	NJ.7.NS.	The Number System
STRAND	7.NS.A.	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
CONTENT STATEMENT	7.NS.A.2	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
CUMULATIVE PROGRESS INDICATOR	7.NS.A.2. a.	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
CUMULATIVE PROGRESS	7.NS.A.2. c.	Apply properties of operations as strategies to multiply and divide rational numbers.

INDICATOR

CONTENT AREA / STANDARD	NJ.7.EE.	Expressions and Equations
STRAND	7.EE.B.	Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
CONTENT STATEMENT	7.EE.B. 4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
CUMULATIVE PROGRESS INDICATOR	7.EE.B.4. a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54

New Jersey Student Learning Standards Mathematics

cm. Its length is 6 cm. What is its width?

Grade 8 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.

STRAND	MP.6.	and to precision.	
STRAND	MP.7.	for and make use of structure.	
STRAND	MP.8.	Look for and express regularity in repeated reasoning.	
CONTENT AREA / STANDARD	NJ.8.EE.	ressions and Equations	
STRAND	8.EE.C.	Analyze and solve linear equations and pairs of simultaneous linear equations.	
STRAND CONTENT STATEMENT	8.EE.C. 8.EE.C.7		
CONTENT	8.EE.C.7	Solve linear equations in one variable.	

New Jersey Student Learning Standards Science Grade 7 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-LS.	ife Science	
STRAND	MS-LS2:	Ecosystems: Interactions, Energy, and Dynamics	
CONTENT STATEMENT	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.	
CONTENT AREA / STANDARD	MS-ESS.	rth and Space Science	
STRAND	MS- ESS3:	Earth and Human Activity	
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.	
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	

New Jersey Student Learning Standards

Science

Grade 8 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-LS.	Life Science
STRAND	MS-LS2:	Ecosystems: Interactions, Energy, and Dynamics

CONTENT	MS-LS2-	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
STATEMENT	5.	

CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

New Jersey Student Learning Standards

Technology Education

Grade 7 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE Employ self- and peer-advocacy to address bias in interactions, product design, and development methods. PROGRESS INDICATOR

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices	
STRAND	3 Recognizing and Defining Computational Problems	
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.	
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.	
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices	
STRAND	4 Developing and Using Abstractions	

CONTENT STATEMENT		Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Evaluate existing technological functionalities and incorporate them into new designs.	
CUMULATIVE PROGRESS INDICATOR		Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.	
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices	
STRAND		5 Creating Computational Artifacts	
CONTENT STATEMENT		The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations robotic systems, and apps. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.	
CUMULATIVE PROGRESS INDICATOR		Create a computational artifact for practical intent, personal expression, or to address a societal issue.	
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices	
STRAND		6 Testing and Refining Computational Artifacts	
CONTENT STATEMENT		Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Systematically test computational artifacts by considering all scenarios and using test cases.	
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science	
STRAND		Computing Systems	
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential trade- offs.	
CUMULATIVE PROGRESS INDICATOR	8.1.8.CS. 3:	Justify design decisions and explain potential system trade-offs.	

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.

CUMULATIVE	8.1.8.DA.	Test, analyze, and refine computational models.
PROGRESS	5:	
INDICATOR		

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.

```
CUMULATIVE8.1.8.AP.Systematically test and refine programs using a range of test cases and users.PROGRESS8:INDICATOR
```

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design

CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking	
STRAND		Nature of Technology	
CONTENT STATEMENT		Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.	
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT.1 :	Examine a malfunctioning tool, product, or system and propose solutions to the problem.	

CUMULATIVE	8.2.8.NT.	Explain how a product designed for a specific demand was modified to meet a new demand and led to a new
PROGRESS	4:	product.
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking		
STRAND		fects of Technology on the Natural World		
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.		
CUMULATIVE PROGRESS	8.2.8.ET W.3:	Analyze the design of a product that negatively impacts the environment or society and develop possible solutions to lessen its impact.		

New Jersey Student Learning Standards Technology Education

INDICATOR

Grade 8 - Adopted: 2020			
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices		
STRAND	1 Fostering an Inclusive Computing and Design Culture		
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:		

Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

INDICATOR	
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts

CONTENT STATEMENT The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:

 CUMULATIVE
 Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

 INDICATOR
 CUMULATIVE

 CUMULATIVE
 Create a computational artifact for practical intent, personal expression, or to address a societal issue.

 PROGRESS
 PROGRESS

INDICATOR

CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices		
STRAND		6 Testing and Refining Computational Artifacts		
CONTENT STATEMENT		Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:		

Systematically test computational artifacts by considering all scenarios and using test cases.

CUMULATIVE PROGRESS INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Computing Systems
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential trade- offs.

CUMULATIVE	8.1.8.CS.	Justify design decisions and explain potential system trade-offs.
PROGRESS	3:	
INDICATOR		

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.

```
CUMULATIVE 8.1.8.DA. Test, analyze, and refine computational models.
PROGRESS 5:
```

INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.
CUMULATIVE	8.1.8.AP.	Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.

PROGRESS INDICATOR

1:

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.

CUMULATIVE	8.1.8.AP.	Systematically test and refine programs using a range of test cases and users.
PROGRESS	8:	
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology advances through the processes of innovation and invention which relies upon the imaginative and inventive nature of people. Sometimes a technology developed for one purpose is adapted to serve other purposes. Engineers use a systematic process of creating or modifying technologies that is fueled and constrained by physical laws, cultural norms, and economic resources. Scientists use systematic investigation to understand the natural world.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT.1 :	Examine a malfunctioning tool, product, or system and propose solutions to the problem.
CUMULATIVE PROGRESS INDICATOR	8.2.8.NT. 4:	Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.

CUMULATIVE	8.2.8.ET	Analyze the design of a product that negatively impacts the environment or society and develop possible solutions
PROGRESS	W.3:	to lessen its impact.
INDICATOR		

New Mexico Content Standards Mathematics Grade 7 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK /	MP.8.	Look for and express regularity in repeated reasoning.

STANDARD

STRAND / CONTENT STANDARD	NM.7.NS.	The Number System
BENCHMARK / STANDARD		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	7.NS.1.	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

PERFORMANCE 7.NS.1(d) Apply properties of operations as strategies to add and subtract rational numbers. STANDARD / INDICATOR

STRAND / CONTENT STANDARD	NM.7.NS.	The Number System
BENCHMARK / STANDARD		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	7.NS.2.	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
PERFORMANCE STANDARD / INDICATOR	7.NS.2(a)	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
PERFORMANCE STANDARD / INDICATOR	7.NS.2(c)	Apply properties of operations as strategies to multiply and divide rational numbers.
STRAND / CONTENT STANDARD	NM.7.EE.	Expressions and Equations
BENCHMARK / ST ANDARD		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

PERFORMANCE7.EE.4(a)Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specificSTANDARD /rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution,INDICATORidentifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54cm. Its length is 6 cm. What is its width?

New Mexico Content Standards

Mathematics

Grade 8 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.

BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK /	MP.8.	Look for and express regularity in repeated reasoning.

STANDARD

STRAND / CONTENT STANDARD	NM.8.EE.	Expressions and Equations
BENCHMARK / STANDARD		Analyze and solve linear equations and pairs of simultaneous linear equations.
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	8.EE.7.	Solve linear equations in one variable.
PERFORMANCE STANDARD / INDICATOR	8.EE.7(a)	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).
PERFORMANCE STANDARD / INDICATOR	8.EE.7(b)	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

New Mexico Content Standards Science

Grade 7 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -LS.	LIFE SCIENCE
BENCHMARK / STANDARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 MS-LS2 Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

 STANDARD /
 5.

 INDICATOR
 5.

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / ST ANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 MS Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

 STANDARD /
 ESS3-3.

 INDICATOR
 ESS3-3.

PERFORMANCE MS-STANDARD / ESS3-4. INDICATOR

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

STRAND /
CONTENT
STANDARDNM.MS-
ESS.EARTH AND SPACE SCIENCEBENCHMARK /
STANDARDMS-
ESS3.Human ImpactsPERFORMANC
E STANDARD /
BENCHMARK /
PROFICIENCYStudents who demonstrate understanding can:

PERFORMANCE	MS-	Describe the advantages and disadvantages associated with technologies related to local industries and energy
STANDARD /	ESS3-3	production.
INDICATOR	NM.	

New Mexico Content Standards

Science

Grade 8 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -LS.	LIFE SCIENCE
BENCHMARK / STANDARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 MS-LS2 Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

 STANDARD /
 5.

 INDICATOR
 5.

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / CONTENT STANDARD	NM.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Human Impacts

PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3 NM.	Describe the advantages and disadvantages associated with technologies related to local industries and energy production.
		New Mexico Content Standards Technology Education Grade 7 - Adopted: 2019
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms
INDICATOR	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / ST ANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming

2-AP-15. Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3,

PERFORMANC

E ST ANDARD / INDICATOR

INDICATOR

Program Development

P1.1)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards	
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing	
PERFORMANC E STANDARD / INDICATOR		Social Interactions	
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)	
		New Mexico Content Standards	
		Technology Education Grade 8 - Adopted: 2019	
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards	
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming	
PERFORMANC E STANDARD / INDICATOR		Algorithms	
INDICATOR	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)	
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards	
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming	
PERFORMANC E ST ANDARD / INDICAT OR		Modularity	
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)	
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards	
BENCHMARK / ST ANDARD	CST A.2.	Level 2 (Ages 11-14)	
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming	

PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	2-AP-15.	Seek and incorporate feedback from team members and users to refine a solution that meets user needs. (P2.3, P1.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

New York State Learning Standards and Core Curriculum

Mathematics

Grade 7 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
CATEGORY / CLUSTER / KEY IDEA	MP.8	Look for and express regularity in repeated reasoning.

STRAND / DOMAIN / UNIFYING THEME		Grade 7	
CATEGORY / CLUSTER / KEY IDEA	NY-7.NS.	The Number System	
ST ANDARD / CONCEPT UAL UNDERST AND ING		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.	
EXPECTATION / CONTENT SPECIFICATIO N	NY- 7.NS.1.	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers. Represent addition and subtraction on a horizontal or vertical number line.	
GRADE EXPECTATION	NY- 7.NS.1.d.	Apply properties of operations as strategies to add and subtract rational numbers.	
STRAND / DOMAIN / UNIFYING THEME		Grade 7	
CATEGORY / CLUSTER / KEY IDEA	NY-7.NS.	The Number System	
ST ANDARD / CONCEPT UAL UNDERST AND ING		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.	
EXPECT AT ION / CONTENT SPECIFICAT IO N	NY- 7.NS.2.	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	
GRADE EXPECTATION	NY- 7.NS.2.a.	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	
GRADE EXPECTATION	NY- 7.NS.2.c.	Apply properties of operations as strategies to multiply and divide rational numbers.	
STRAND / DOMAIN / UNIFYING THEME		Grade 7	
CATEGORY / CLUSTER / KEY IDEA	NY-7.EE.	Expressions, Equations, and Inequalities	
ST ANDARD / CONCEPT UAL UNDERST AND ING		Solve real-life and mathematical problems using numerical and algebraic expressions, equations, and inequalities.	
EXPECTATION / CONTENT SPECIFICATIO N	NY- 7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.	

GRADE	NY-
EXPECTATION	7.EE.4.a.

Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

		New York State Learning Standards and Core Curriculum Mathematics Grade 8 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
CATEGORY / CLUSTER / KEY IDEA	MP.8	Look for and express regularity in repeated reasoning.

STRAND / DOMAIN / UNIFYING THEME		Grade 8
CATEGORY / CLUSTER / KEY IDEA	NY-8.EE.	Expressions, Equations, and Inequalities
ST ANDARD / CONCEPT UAL UNDERST AND ING		Analyze and solve linear equations and pairs of simultaneous linear equations.
EXPECTATION / CONTENT SPECIFICATIO N	NY- 8.EE.7.	Solve linear equations in one variable.

GRADE EXPECTATION	NY- 8.EE.7.a.	Recognize when linear equations in one variable have one solution, infinitely many solutions, or no solutions. Give examples and show which of these possibilities is the case by successively transforming the given equation into simpler forms.
GRADE EXPECTATION	NY- 8.EE.7.b.	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and combining like terms.

New York State Learning Standards and Core Curriculum

Science

Grade 7 - Adopted: 2016		
STRAND / DOMAIN / UNIFYING THEME	NY.MS.8.	Interdependent Relationships in Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

NG

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Grade 7 - Adopted: 2011 Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects

CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

NG

New York State Learning Standards and Core Curriculum

Science

	ما م به به ما ب	2010
Grade 8	- Adopted:	2010

STRAND / DOMAIN /	NY.MS.8.	Interdependent Relationships in Ecosystems
UNIFYING THEME		
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and protecting ecosystem stability.

STRAND /	NY.MS.15	Human Impacts
DOMAIN /		
UNIFYING		
ТНЕМЕ		

CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
		Grade 8 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

NG

New York State Learning Standards and Core Curriculum Technology Education

STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.

STANDARD / 5.4.2. CONCEPTUAL UNDERSTANDI NG Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

New York State Learning Standards and Core Curriculum Technology Education

Grade 8 - Adopted: 1996				
STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.		
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.		
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.		
STRAND / DOMAIN / JNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.		
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.		
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.		
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number o ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.		
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.		
STRAND / DOMAIN / JNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.		
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.		
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.		

North Carolina Standard Course of Study Mathematics Grade 7 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.6.	Attend to precision.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
STRAND / ESSENTIAL STANDARD	MP.8.	Look for and express regularity in repeated reasoning.

CONTENT AREA / STRAND		The Number System
STRAND / ESSENTIAL STANDARD		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.7.NS. 1.	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers, using the properties of operations, and describing real-world contexts using sums and differences.

CONTENT AREA / STRAND		The Number System
STRAND / ESSENTIAL STANDARD		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.7.NS .2.	Apply and extend previous understandings of multiplication and division.

CLARIFYINGNC.7.NS.Understand that a rational number is any number that can be written as a quotient of integers with a non-zero divisor.OBJECTIVE2.a.

CLARIFYING	NC.7.NS.	Apply properties of operations as strategies, including the standard algorithms, to multiply and divide rational
OBJECTIVE	2.b.	numbers and describe the product and quotient in real-world contexts.

CONTENT AREA / STRAND		Expressions and Equations
STRAND / ESSENTIAL STANDARD		Use properties of operations to generate equivalent expressions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.7.EE .1.	Apply properties of operations as strategies to:

CLARIFYING NC.7.EE.1 Add, subtract, and expand linear expressions with rational coefficients. OBJECTIVE .a.

CONTENT AREA / STRAND		Expressions and Equations
STRAND / ESSENTIAL STANDARD		Solve real-world and mathematical problems using numerical and algebraic expressions, equations, and inequalities.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.7.EE .4.	Use variables to represent quantities to solve real-world or mathematical problems.
CLARIFYING OBJECTIVE	NC.7.EE. 4.a.	Construct equations to solve problems by reasoning about the quantities.
INDICATOR	NC.7.EE.	Fluently solve multistep equations with the variable on one side, including those generated by word problems.

4.a.1.

CONTENT AREA / STRAND **Expressions and Equations** Solve real-world and mathematical problems using numerical and algebraic expressions, equations, STRAND / ESSENTIAL and inequalities. **STANDARD** ESSENTIAL NC.7.EE Use variables to represent quantities to solve real-world or mathematical problems. STANDARD / .4. CLARIFYING OBJECTIVE CLARIFYING NC.7.EE. Construct inequalities to solve problems by reasoning about the quantities. OBJECTIVE 4.b. INDICATOR NC.7.EE. Compare an algebraic solution process for equations and an algebraic solution process for inequalities. 4.b.2.

North Carolina Standard Course of Study

Mathematics

Grade 8 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.

STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.6.	Attend to precision.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
STRAND / ESSENTIAL STANDARD	MP.8.	Look for and express regularity in repeated reasoning.

CONTENT AREA / STRAND		Expressions and Equations
STRAND / ESSENTIAL STANDARD		Analyze and solve linear equations and inequalities.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.8.EE .7.	Solve real-world and mathematical problems by writing and solving equations and inequalities in one variable.
CLARIFYING OBJECTIVE	NC.8.EE. 7.a.	Recognize linear equations in one variable as having one solution, infinitely many solutions, or no solutions.
CLARIFYING OBJECTIVE	NC.8.EE. 7.b.	Solve linear equations and inequalities including multi-step equations and inequalities with the same variable on both sides.

North Carolina Standard Course of Study

Science

Grade 7 - Adopted: 2010

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects

STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas

CONTENT
AREA / STRANDNC.CC.6-
8.RST.Reading Standards for Literacy in Science and Technical SubjectsSTRAND /
ESSENTIAL
STANDARDRange of Reading and Level of Text ComplexityESSENTIAL
STANDARD /
CLARIFYING
OBJECTIVE6-
8.RST.10.By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

CLARIFYING OBJECTIVE

North Carolina Standard Course of Study

Science

Grade 8 - Adopted: 2010

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

CONTENT	NC.CC.6-	Reading Standards for Literacy in Science and Technical Subjects	
AREA / STRAND	8.RST.		

STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

North Carolina Standard Course of Study

Technology Education

Grade 7 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 7 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR

01.

68-AP- Implement flowcharts and/or pseudocode to address complex problems as algorithms.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Modularity

INDICATOR 68-AP- Organize problems and subproblems into parts. 05.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Program Development

INDICATOR

68-AP- Sys

10.

Systematically test and refine programs using a range of test cases.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR 68-IC-05. Collaborate with many contributors to create a computational artifact.

North Carolina Standard Course of Study Technology Education

Grade 8 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 8 - Adopted: 2020		
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Algorithms

Implement flowcharts and/or pseudocode to address complex problems as algorithms. INDICATOR 68-AP-01.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Modularity
INDICATOR	68-AP-	Organize problems and subproblems into parts.

INDICATOR 05.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	68-AP- 10.	Systematically test and refine programs using a range of test cases.

STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR

68-IC-05. Collaborate with many contributors to create a computational artifact.

North Dakota Content Standards

Mathematics

Grade 7 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.6	Attend to precision.
BENCHMARK	MP.7	Look for and make use of structure.
BENCHMARK	MP.8	Look for and express regularity in repeated reasoning.
CONTENT STANDARD		The Number system
BENCHMARK		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
GRADE LEVEL EXPECTATION	7.NS.1	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
INDICATOR	7.NS.1.d.	Apply properties of operations as strategies to fluently add and subtract rational numbers.
CONTENT STANDARD		The Number system
BENCHMARK		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
GRADE LEVEL EXPECTATION	7.NS.2	Apply and extend previous understandings of multiplication, division, and fractions to multiply and divide rational numbers.

INDICATOR 7.NS.2.a. eading to products such as (-1)(-1)=1 and the rules for multiplying rational numbers. Interpret products of rational numbers by describing real world contexts.

INDICATOR 7.NS.2.c. Apply properties of operations as strategies to fluently multiply and divide rational numbers.

CONTENT STANDARD		Expressions and Equations
BENCHMARK		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
GRADE LEVEL EXPECTATION	7.EE.4	Use variables to represent quantities in a real world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
INDICATOR	7.EE.4.a.	Solve word problems leading to equations of the form $px+q=r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare the algebraic solution to an arithmetic solution, identifying

North Dakota Content Standards

the sequence of the operations used in each approach.

Mathematics

Grade 8 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.6	Attend to precision.
BENCHMARK	MP.7	Look for and make use of structure.
BENCHMARK	MP.8	Look for and express regularity in repeated reasoning.
CONTENT STANDARD		Expressions and Equations
BENCHMARK		Analyze and solve linear equations and pairs of simultaneous linear equations.
GRADE LEVEL EXPECTATION	8.EE.7	Solve linear equations in one variable.
INDICATOR	8.EE.7.a.	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).
INDICATOR	8.EE.7.b.	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

North Dakota Content Standards

Science

Grade 7 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions

GRADE LEVEL EXPECTATION

BENCHMARK MS-

Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD		Life Science (LS)

BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL	MS-LS2-	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
EXPECTATION	5.	

North Dakota Content Standards

Science

Grade 8 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)

	ESS3.	
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

CONTENT STANDARD		Life Science (LS)
BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics

GRADE LEVELMS-LS2-Evaluate competing design solutions for maintaining biodiversity and ecosystem services.EXPECTATION5.

Earth and Human Activity

North Dakota Content Standards Technology Education Grade 7 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECTATION	Creative and Innovative Processes and Products

INDICATOR

6-

Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. 8.MTL.7.

Grade 7 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	7.PSA.1.	Modify and test an algorithm to solve a problem.
INDICATOR	7.PSA.2.	Continued growth debugging a program that includes sequencing, loops, or conditionals.

North Dakota Content Standards Technology Education Grade 8 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECTATION	Creative and Innovative Processes and Products

Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. INDICATOR 6-8.MTL.7.

Grade 8 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	8.PSA.1.	Create and test an algorithm to solve a problem across disciplines.

INDICATOR 8.PSA.2. Continued growth debugging a program that includes sequencing, loops, or conditionals.

> Nova Scotia Curriculum Mathematics Grade 7 - Adopted: 2015

GENERAL LEARNING OUTCOME	NS.7.SCO	Specific Curriculum Outcomes
CURRICULUM	7.SCO.N	Number (N)
GRADE LEVEL EXPECTATION	7.SCO.N 02.	Students will be expected to demonstrate an understanding of the addition, subtraction, multiplication, and division of decimals to solve problems (for more than one-digit divisors or more than two-digit multipliers, the use of technology is expected). [ME, PS, T]
EXPECTATION	7.SCO.N 02.04.	Represent concretely, pictorially, and symbolically the multiplication and division of decimal numbers.
EXPECTATION	7.SCO.N 02.05.	Create and solve a given problem involving the addition of two or more decimal numbers.
EXPECTATION	7.SCO.N 02.07.	Create and solve a given problem involving the multiplication of decimal numbers.
EXPECTATION	7.SCO.N 02.08.	Create and solve a given problem involving the division of decimal numbers.
EXPECTATION	7.SCO.N 02.09.	Solve a given problem involving the multiplication or division of decimal numbers with two-digit multipliers or one- digit divisors (whole numbers or decimals) without the use of technology.
EXPECTATION	7.SCO.N 02.10.	Solve a given problem involving the multiplication or division of decimal numbers with more than two-digit multipliers or more than one-digit divisors (whole numbers or decimals) with the use of technology.
EXPECTATION	7.SCO.N 02.12.	Solve a given problem that involves operations on decimals (limited to thousandths), taking into consideration the order of operations.
GENERAL LEARNING OUTCOME	NS.7.SCO	Specific Curriculum Outcomes
CURRICULUM OUTCOME	7.SCO.P R.	Patterns and Relations (PR)
GRADE LEVEL EXPECTATION	7.SCO.P R06.	Students will be expected to model and solve, concretely, pictorially, and symbolically, problems that can be represented by one-step linear equations of the form $x + a = b$, where a and b are integers. [CN, PS, R, V]
EXPECTATION	7.SCO.P R06.01.	Represent a given problem with a linear equation, and solve the equation using concrete models.
EXPECTATION	7.SCO.P R06.02.	Draw a visual representation of the steps required to solve a given linear equation.
EXPECTATION	7.SCO.P R06.03.	Solve a given problem using a linear equation and record the process.
EXPECTATION	7.SCO.P R06.04.	Verify the solution to a given linear equation using concrete materials and diagrams.
GENERAL LEARNING OUTCOME	NS.7.SCO	Specific Curriculum Outcomes

CURRICULUM OUTCOME	7.SCO.P R.	Patterns and Relations (PR)
GRADE LEVEL EXPECTATION	7.SCO.P R07.	Students will be expected to model and solve, concretely, pictorially, and symbolically, where a, b, and c are whole numbers, problems that can be represented by linear equations of the form: $ax + b = c$; $ax = b$; $x/a=b$, $a \neq 0$ [CN, PS, R, V]
EXPECTATION	7.SCO.P R07.01.	Represent a given problem with a linear equation, and solve the equation using concrete models.
EXPECTATION	7.SCO.P R07.02.	Draw a visual representation of the steps used to solve a given linear equation.
EXPECTATION	7.SCO.P R07.03.	Solve a given problem using a linear equation and record the process.
EXPECTATION	7.SCO.P R07.04.	Verify the solution to a given linear equation using concrete materials and diagrams.
GENERAL LEARNING OUT COME	NS.7.SCO	Specific Curriculum Outcomes
	7.SCO.S P.	Statistics and Probability
GRADE LEVEL EXPECTATION	7.SCO.S P05.	Students will be expected to identify the sample space (where the combined sample space has 36 or fewer elements) for a probability experiment involving two independent events. [C, ME, PS]
EXPECTATION	7.SCO.S P05.02.	Identify the sample space (all possible outcomes) for each of two independent events using a tree diagram, table, or other graphic organizer.

Nova Scotia Curriculum Mathematics

Grade 8 - Adopted: 2015

GENERAL LEARNING OUTCOME	NS.8.SCO	Specific Curriculum Outcomes
CURRICULUM OUTCOME	8.SCO.P R.	Patterns and Relations (PR)
GRADE LEVEL EXPECTATION	8.SCO.P R01.	Students will be expected to graph and analyze two-variable linear relations. [C, ME, PS, R, T, V]
EXPECTATION	8.SCO.P R01.01.	Determine the missing value in an ordered pair for a given equation.
GENERAL LEARNING OUTCOME	NS.8.SCO	Specific Curriculum Outcomes
	8.SCO.P R.	Patterns and Relations (PR)
GRADE LEVEL EXPECT ATION	8.SCO.P R02.	Students will be expected to model and solve problems, concretely, pictorially, and symbolically, where a, b, and c are integers, using linear equations of the form $ax = b$; $x/a = b$, $a \neq 0$; $ax + b = c$; $x/a + b = c$, $a \neq 0$; $a(x + b) = c$ [C, CN, PS, V]

EXPECTATION 8.SCO.P Model a given problem with a linear equation, and solve the equation using concrete models. R02.01.

EXPECTATION	8.SCO.P R02.02.	Verify the solution to a given linear equation, using a variety of methods, including concrete materials, diagrams, and substitution.
EXPECTATION	8.SCO.P R02.04.	Solve a given linear equation symbolically.
EXPECTATION	8.SCO.P R02.05.	Identify and correct an error in a given incorrect solution of a linear equation.
EXPECTATION	8.SCO.P R02.07.	Solve a given problem, using a linear equation, and record the process.
		Nova Scotia Curriculum
		Science
		Grade 7 - Adopted: 2015
GENERAL LEARNING OUTCOME	NS.7.GC O.	General Curriculum Outcomes
CURRICULUM OUTCOME	7.GCO.1	STSE
GRADE LEVEL EXPECTATION	7.GCO.1. 1.	Students will develop an understanding of the nature of science and technology, of the relationships
GENERAL LEARNING DUTCOME	NS.7.GC O.	General Curriculum Outcomes
CURRICULUM OUTCOME	7.GCO. 4.	ATTITUDES
GRADE LEVEL EXPECTATION		Students will be encouraged to develop attitudes that support the responsible acquisition and application of scientific and technological knowledge to the mutual benefit of self, society, and the environment.
GENERAL LEARNING OUT COME	NS.7.SCO	Specific Curriculum Outcomes
CURRICULUM OUTCOME	7.SCO.L S.	Life Science: Interactions Within Ecosystems (25%)
GRADE LEVEL EXPECTATION	7.SCO.L S.2.	FOOD CHAINS, FOOD WEBS, AND DECOMPOSERS
EXPECTATION	7.SCO.L S.2.3.	Describe essential conditions to the growth and reproduction of plants and microorganisms in an ecosystem, providing examples related to aspects of the human food supply (304-3, 111-1)
GENERAL LEARNING DUTCOME	NS.7.SCO	Specific Curriculum Outcomes
CURRICULUM OUTCOME	7.SCO.L S.	Life Science: Interactions Within Ecosystems (25%)
GRADE LEVEL EXPECTATION	7.SCO.L S.4.	ACTION
EXPECTATION	7.SCO.L	Defend a proposal to protect a habitat and provide examples of various issues that can be addressed in multiple

S.4.1. ways (113-11, 211-5, 113-10)

-11, 211-5, 113-10)

Nova Scotia Curriculum

Science

Grade 8 - Adopted: 2015

GENERAL LEARNING OUTCOME	NS.8.GC O.	General Curriculum Outcomes
CURRICULUM OUTCOME	8.GCO.1	STSE

GRADE LEVEL8.GCO.1.Students will develop an understanding of the nature of science and technology, of the relationships between scienceEXPECTATION1.and technology, and of the social and environmental contexts of science and technology.

GENERAL I LEARNING C OUTCOME		General Curriculum Outcomes
	8.GCO. 4.	ATTITUDES

GRADE LEVEL	8.GCO.4	Students will be encouraged to develop attitudes that support the responsible acquisition and application of scientific
EXPECTATION	1.	and technological knowledge to the mutual benefit of self, society, and the environment.

Ohio Learning Standards Mathematics Grade 7 - Adopted: 2017

Grade 7 - Adopted: 2017		
DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.6.	Attend to precision.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
STANDARD / BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.7.NS.	THE NUMBER SYSTEM
ST ANDARD / BENCHMARK		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

BENCHMARK /	7.NS.1.
GRADE LEVEL	
INDICATOR	

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

PROFICIENCY 7.NS.1.d. Apply properties of operations as strategies to add and subtract rational numbers. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	OH.7.NS.	THE NUMBER SYSTEM
ST ANDARD / BENCHMARK		Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
BENCHMARK / GRADE LEVEL INDICATOR	7.NS.2.	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
PROFICIENCY LEVEL	7.NS.2.a.	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
PROFICIENCY LEVEL	7.NS.2.c.	Apply properties of operations as strategies to multiply and divide rational numbers.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.7.EE.	EXPRESSIONS AND EQUATIONS
ST ANDARD / BENCHMARK		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
BENCHMARK / GRADE LEVEL INDICATOR	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
PROFICIENCY LEVEL	7.EE.4.a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
PROFICIENCY LEVEL	7.EE.4.b.	Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p , q , and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example, as a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions.
		Ohio Learning Standards Mathematics Grade 8 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.

STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.6.	Attend to precision.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
STANDARD / BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.8.EE.	EXPRESSIONS AND EQUATIONS
ST ANDARD / BENCHMARK		Analyze and solve linear equations and pairs of simultaneous linear equations.
BENCHMARK / GRADE LEVEL INDICATOR	8.EE.7.	Solve linear equations in one variable.
PROFICIENCY LEVEL	8.EE.7.a.	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).
PROFICIENCY LEVEL	8.EE.7.b.	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
		Ohio Learning Standards Technology Education Grade 7 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.
PROFICIENCY LEVEL	6- 8.ST.1.b.	Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in your world.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.

BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	6- 8.ST.2.b.	Explain the positive and negative impact the use of technology can have on personal, professional and community relationships.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	6- 8.ST.3.d.	Describe the impact of an individual's wants, values and interests on the development of new technologies.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety, etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY LEVEL	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.
PROFICIENCY LEVEL	6- 8.DT.3.a.	Collaborate to solve a problem as an interdisciplinary team modeling different roles and functions.
		Grade 7 - Adopted: 2022
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 7
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting

PROFICIENCY	CS.T.7.a.	Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best
LEVEL		solution to solve the computing problem and communicate the solution to others.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY ATP.A.7.a Select and modify pseudocode for a multi-step process to solve a problem. LEVEL .

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Variables and Data Representation

 PROFICIENCY
 ATP.VDR
 Use test cases to trace variable values to determine the result.

 LEVEL
 .7.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7	
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING	

PROFICIENCY ATP.CS.7 Use and apply decisions and loops in a program to solve a problem. .a.

LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
 ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

ATP.PD.7 Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression. PROFICIENCY LEVEL .a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Representation & Reasoning

PROFICIENCY Al.RR.7.a. Compare several algorithms that could be used to solve a specific type of reasoning problem. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions

PROFICIENCY Al.NI.7.a. Curate a dataset to train a language-processing algorithm to create a program that incorporates voice commands. LEVEL

Ohio Learning Standards
Technology Education
Grade 8 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.

PROFICIENCY LEVEL	6- 8.ST.1.b.	Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in your world.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	6- 8.ST.2.b.	Explain the positive and negative impact the use of technology can have on personal, professional and community relationships.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	6- 8.ST.3.d.	Describe the impact of an individual's wants, values and interests on the development of new technologies.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY	6-	Apply a complete design process to solve an identified individual or community problem: research, develop, test,

PROFICIENCY6-Apply a complete design process to solve an identified individual or community problem: research, develop, test,LEVEL8.DT.2.a.evaluate and present several possible solutions, and redesign to improve the solution.

PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety, etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY LEVEL	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.
PROFICIENCY LEVEL	6- 8.DT.3.a.	Collaborate to solve a problem as an interdisciplinary team modeling different roles and functions.
		Grade 8 - Adopted: 2022
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR		Troubleshooting
PROFICIENCY LEVEL	CS.T.8.a.	Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best solution to solve the computing problem and communicate the solution to others.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Algorithms
PROFICIENCY LEVEL	ATP.A.8. a.	Create multiple pseudocode to solve a multi-step process and justify the most efficient solution.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK /		Variables and Data Representation

PROFICIENCYATP.VDRAnalyze test cases and determine the range of valid solutions.LEVEL.8.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCYATP.CS.8Use and apply decisions and loops in a program to solve a problem.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Modularity

PROFICIENCY ATP.M.8. Decompose problems and subproblems into parts to facilitate the design, implementation and review of complex LEVEL a. programs.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.8Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Representation & Reasoning

PROFICIENCY AI.RR.8.a. Model the process of solving a graph-search problem using breadth-first search to draw a search tree. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8	
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE	

BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions
---	----------------------

PROFICIENCYAI.NI.8.a.Create a program, individually and collaboratively, that implements a language processing algorithm to create aLEVELfunctional chatbot.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Societal Impacts

PROFICIENCY LEVEL

Al.SI.8.b. Identify bias potential in the design of artificial intelligence systems and describe how to utilize inclusive AI design to prevent algorithmic bias.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	IMPACTS OF COMPUTING
BENCHMARK / GRADE LEVEL INDICATOR	Culture

PROFICIENCY IC.Cu.8.d. Explain how computing impacts innovation in other fields. LEVEL

Oklahoma Academic Standards

Mathematics

Grade 7 - Adopted: 2022

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition

STRAND / STANDARD

STRAND / STANDARD Develop the Ability to Communicate Mathematically

CONTENT STANDARD / COURSE	7	Seventh Grade (7)
STRAND / STANDARD	7.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	7.A.3.	Represent mathematical situations using equations and inequalities involving variables and rational numbers.
SKILL / CONCEPT	7.A.3.1.	Write and solve problems leading to linear equations with one variable in the form px + q = r and p(x + q) = r, where p, q, and r are rational numbers.

Oklahoma Academic Standards

Mathematics

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD	Develop the Ability to Communicate Mathematically

CONTENT STANDARD / COURSE	PA.	Pre-Algebra (PA)
STRAND / STANDARD	PA.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	PA.A.2.	Identify and justify linear functions using mathematical models and situations; solve problems involving linear functions and interpret results in the original context.

PA.A.2.2. Identify, describe, and analyze linear relationships between two variables.

CONTENT STANDARD / COURSE	A1.	Algebra 1 (A1)
STRAND / STANDARD	A1.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	A1.A.4.	Analyze real-world and mathematical problems involving linear equations.
SKILL / CONCEPT	A1.A.4.5.	Analyze and interpret associations between graphical representations and written scenarios.

Oklahoma Academic Standards

Science

Grade 7 - Adopted: 2020		
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Ecosystems: Interactions, Energy, and Dynamics (LS2)
OBJECTIVE	7.LS2.5	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Earth and Human Activity (ESS3)

STANDARD		
OBJECTIVE	7.ESS3.3	Apply scientific principles to design a method for monitoring and minimizing human impact on the environment.
OBJECTIVE	7.ESS3.4	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

Oklahoma Academic Standards Technology Education Grade 7 - Adopted: 2023

CONTENT Oklahoma Academic Standards - Computer Science STANDARD / COURSE STRAND / **Computer Science Practices STANDARD** OBJECTIVE **Creating Computational Artifacts** SKILL / Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts CONCEPT that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. Oklahoma Academic Standards - Computer Science CONTENT STANDARD / COURSE

Computer Science Practices STANDARD

STRAND /

OBJECTIVE	Developing and Using Abstractions
SKILL / CONCEPT	Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment
SKILL / CONCEPT	Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems
SKILL /	Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by

CONCEPT

Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

STRAND / STANDARD7Seventh Grade (7)OBJECTIVE7.CS.Computing Systems (CS)SKILL / CONCEPT7.CS.T.Troubleshooting (T)	CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
SKILL / 7.CS.T. Troubleshooting (T)		7	Seventh Grade (7)
	OBJECTIVE	7.CS.	Computing Systems (CS)
		7.CS.T.	Troubleshooting (T)

 SKILL
 7.CS.T.01
 Identify and resolve complex software and hardware problems with computing devices and their components

 .
 utilizing strategies such as developing and analyzing flow diagrams.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.A.	Algorithms (A)

SKILL

7.AP.A.01 Select and modify an existing algorithm in natural language or pseudocode to solve complex problems.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
---------------------------------	--

STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.PD.	Program Development (PD)
SKILL	7.AP.PD. 01.	Seek and incorporate feedback from team members and users to refine a solution to a problem.

SKILL	7.AP.PD.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
	04.	

Grade 7 - Adopted: 2019		
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
	1075	

OBJECTIVE	ISTE-	Students select and use digital tools to plan and manage a design process that considers design constraints and
	S.4.b.	calculated risks.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oklahoma Academic Standards Technology Education Grade 8 - Adopted: 2023

Oklahoma Academic Standards - Computer Science

STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by

that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT OK STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / Co STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

SKILL / CONCEPT Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment
SKILL / CONCEPT	Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

usability and to meet the needs of all potential end users (including themselves).

 SKILL /
 Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by

 CONCEPT
 defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.CS.	Computing Systems (CS)
SKILL / CONCEPT	8.CS.T.	Troubleshooting (T)

SKILL

8.CS.T.01 Systematically identify, resolve, and document complex software and hardware problems with computing devices . and their components.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.A.	Algorithms (A)

SKILL

1.

8.AP.A.0 Design algorithms in natural language, flow and control diagrams, comments within code, and/or pseudocode to solve complex problems.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.PD.	Program Development (PD)
SKILL	8.AP.PD. 01.	Seek and incorporate feedback from team members and users to refine a solution to a problem that meets the needs of different users.
SKILL	8.AP.PD. 04.	Model effective communication between participants and demonstrate successful collaboration when developing computational artifacts.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	8.IC.CU.	Culture (CU)

SKILL

8.IC.CU.0 Explore careers related to the field of computer science, and explain how computing impacts innovation in various career fields. 1.

Grade 8 - Adopted: 2019			
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)	
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)	
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	

OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.

Oregon Academic Content Standards

Mathematics

		Grade 7 - Adopted: 2021
STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	6	Attend to precision.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.
Content Standard / Proficiency	8	Look for and express regularity in repeated reasoning

Oregon Academic Content Standards

Mathematics

Grade 8 - Adopted: 2021

Grade 8 - Adopted: 2021			
ST ANDARD / CONT ENT AREA		Mathematical Practice Standards	
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.	
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.	
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.	
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.	
CONTENT STANDARD / PROFICIENCY	6	Attend to precision.	
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.	
CONTENT STANDARD / PROFICIENCY	8	Look for and express regularity in repeated reasoning	
STANDARD / CONTENT AREA		Grade 8 Standards	
CONTENT STANDARD / PROFICIENCY	8.AEE.	Algebraic Reasoning: Expressions and Equations (8.AEE)	
BENCHMARK / STRAND	8.AEE.C	Analyze and solve linear equations and pairs of simultaneous linear equations.	
EXPECTATION / BENCHMARK	8.AEE.C. 7.	Solve linear equations with one variable including equations with rational number coefficients, with the variable on both sides, or whose solutions require using the distributive property and/or combining like terms.	

Oregon Academic Content Standards

Science

Grade 7 - Adopted: 2022

ST ANDARD / CONTENT AREA	OR.MS- LS2.	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:

BENCHMARK / STRAND	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
ST ANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ST ANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
ST ANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

Oregon Academic Content Standards

Science

Grade 8 - Adopted: 2022

STANDARD / CONTENT AREA	OR.MS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

The Ontario Curriculum Mathematics

Grade 7 - Adopted: 2020

STRAND / COURSE		Ontario Mathematics Curriculum Expectations – Grade 7
STRAND / OVERALL EXPECTATION	В.	NUMBER
STAGE / SKILLS	B2.	use knowledge of numbers and operations to solve mathematical problems encountered in everyday life
SUB- ORGANIZER / SPECIFIC EXPECTATION		Multiplication and Division

EXPECTATION B2.9. multiply and divide decimal numbers by decimal numbers, in various contexts

STRAND / COURSE		Ontario Mathematics Curriculum Expectations – Grade 7
STRAND / OVERALL EXPECTATION	с.	ALGEBRA
ST AGE / SKILLS	C2.	demonstrate an understanding of variables, expressions, equalities, and inequalities, and apply this understanding in various contexts
SUB- ORGANIZER / SPECIFIC EXPECTATION		Equalities and Inequalities
EXPECTATION	C2.3.	solve equations that involve multiple terms, whole numbers, and decimal numbers in various contexts, and verify solutions
STRAND / COURSE		Ontario Mathematics Curriculum Expectations – Grade 7
STRAND / OVERALL EXPECTATION	D.	DATA

ST AGE / SKILLS	D1.	manage, analyse, and use data to make convincing arguments and informed decisions, in various contexts drawn from real life
SUB- ORGANIZER / SPECIFIC EXPECTATION		Data Visualization
EXPECTATION	D1.4.	create an infographic about a data set, representing the data in appropriate ways, including in tables and circle graphs, and incorporating any other relevant information that helps to tell a story about the data

The Ontario Curriculum Mathematics

Grade 8 - Adopted: 2020

STRAND / COURSE		Ontario Mathematics Curriculum Expectations – Grade 8
STRAND / OVERALL EXPECTATION	С.	ALGEBRA
ST AGE / SKILLS	C2.	demonstrate an understanding of variables, expressions, equalities, and inequalities, and apply this understanding in various contexts
SUB- ORGANIZER / SPECIFIC EXPECTATION		Equalities and Inequalities

EXPECTATION C2.3. solve equations that involve multiple terms, integers, and decimal numbers in various contexts, and verify solutions

STRAND / COURSE		Ontario Mathematics Curriculum Expectations – Grade 8
STRAND / OVERALL EXPECTATION	D.	DATA
STAGE / SKILLS	D1.	manage, analyse, and use data to make convincing arguments and informed decisions, in various contexts drawn from real life
SUB- ORGANIZER / SPECIFIC EXPECTATION		Data Collection and Organization

EXPECTATION D1.2. collect continuous data to answer questions of interest involving two variables, and organize the data sets as appropriate in a table of values

STRAND / COURSE		Ontario Mathematics Curriculum Expectations – Grade 8
STRAND / OVERALL EXPECTATION	D.	DATA
ST AGE / SKILLS	D1.	manage, analyse, and use data to make convincing arguments and informed decisions, in various contexts drawn from real life
SUB- ORGANIZER / SPECIFIC EXPECTATION		Data Visualization

EXPECTATION D1.4.

create an infographic about a data set, representing the data in appropriate ways, including in tables and scatter plots, and incorporating any other relevant information that helps to tell a story about the data

Grade 7 - Adopted: 2022

STRAND / COURSE		Science and Technology Grade 7
STRAND / OVERALL EXPECTATION	STRAND A:	STEM Skills and Connections - Throughout Grade 7, in connection with the learning in the Life Systems, Matter and Energy, Structures and Mechanisms, and Earth and Space Systems strands, students will:
STAGE / SKILLS	A2.	Coding and Emerging Technologies: use coding in investigations and to model concepts, and assess the impact of coding and of emerging technologies on everyday life and in STEM-related fields
SUB- ORGANIZER / SPECIFIC EXPECTATION	A2.2.	identify and describe impacts of coding and of emerging technologies, such as artificial intelligence systems, on everyday life, including skilled trades

STRAND / Science and Technology Grade 7 COURSE STRAND / STRAND STEM Skills and Connections - Throughout Grade 7, in connection with the learning in the Life **OVERALL** A: Systems, Matter and Energy, Structures and Mechanisms, and Earth and Space Systems strands, **EXPECTATION** students will: STAGE / A3. Applications, Connections, and Contributions: demonstrate an understanding of the practical SKILLS applications of science and technology, and of contributions to science and technology from people with diverse lived experiences SUB-A3.2. investigate how science and technology can be used with other subject areas to address real-world problems ORGANIZER / SPECIFIC **EXPECTATION**

STRAND / COURSE		Science and Technology Grade 7
STRAND / OVERALL EXPECTATION	STRAND B:	Life Systems - Interactions in the Environment By the end of Grade 7, students will:
STAGE / SKILLS	B1.	Relating Science and Technology to Our Changing World: assess the impact of human activities and technologies on the environment, and analyse ways to mitigate negative impacts and contribute to environmental sustainability
SUB- ORGANIZER / SPECIFIC EXPECTATION	B1.1.	assess the impact of various technologies on the environment
SUB- ORGANIZER / SPECIFIC EXPECTATION	B1.2.	assess the effectiveness of various ways of mitigating the negative and enhancing the positive impact of human activities on the environment
SUB- ORGANIZER / SPECIFIC EXPECTATION	B1.3.	analyse how diverse First Nations, Métis, and Inuit practices and perspectives contribute to environmental sustainability, including by using approaches such as Two-Eyed Seeing

STRAND / COURSE		Science and Technology Grade 7
STRAND / OVERALL EXPECTATION	В:	Life Systems - Interactions in the Environment By the end of Grade 7, students will:

STAGE	1
SKILLS	

B2.

Exploring and Understanding Concepts: demonstrate an understanding of interactions between and among biotic and abiotic components in the environment

SUB- B2.8. ORGANIZER / SPECIFIC EXPECTATION describe how different approaches to agriculture and to harvesting food from the natural environment can impact an ecosystem, and identify strategies that can be used to maintain and/or restore balance to ecosystems

The Ontario Curriculum Science Grade 8 - Adopted: 2022

STRAND / Science and Technology Grade 8 COURSE STRAND / STRAND STEM Skills and Connections - Throughout Grade 8, in connection with the learning in the Life **OVERALL** A: Systems, Matter and Energy, Structures and Mechanisms, and Earth and Space Systems strands, **EXPECTATION** students will: STAGE / A2. Coding and Emerging Technologies: use coding in investigations and to model concepts, and assess SKILLS the impact of coding and of emerging technologies on everyday life and in STEM-related fields SUB-A2.2. identify and describe impacts of coding and of emerging technologies, such as artificial intelligence systems, on everyday life, including skilled trades ORGANIZER / SPECIFIC **EXPECTATION**

STRAND / COURSE		Science and Technology Grade 8
STRAND / OVERALL EXPECTATION	A:	STEM Skills and Connections - Throughout Grade 8, in connection with the learning in the Life Systems, Matter and Energy, Structures and Mechanisms, and Earth and Space Systems strands, students will:
STAGE / SKILLS	A3.	Applications, Connections, and Contributions: demonstrate an understanding of the practical applications of science and technology, and of contributions to science and technology from people with diverse lived experiences

SUB-ORGANIZER / SPECIFIC EXPECTATION A3.2.

investigate how science and technology can be used with other subject areas to address real-world problems