Main Criteria: Forward Education

Secondary Criteria: Idaho Content Standards, Illinois Learning Standards, Indiana Academic Standards, Iowa Student Standards, Kansas Academic Standards, Kentucky Academic Standards, Louisiana Academic Standards, Maine Learning Results, Maryland College and Career-Ready Standards, Massachusetts Curriculum Frameworks, Michigan Academic Standards, Minnesota Academic Standards, Mississippi College & Career Readiness Standards, Missouri Learning Standards, Montana Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 5, 6, Key Stage 2

Forward Education

How Wind Turbines Capture Kinetic Energy

Idaho Content Standards

Mathematics

STANDARD / COURSE		Fifth Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.5.	Use appropriate tools strategically.
ST ANDARD / COURSE	5.MD.	Measurement and Data

COURSE		
CONTENT KNOWLEDGE AND SKILLS / GOAL	5.MD.B.	Represent and interpret data.
GLE / BIG IDEA	5.MD.B. 2.	Collect, represent, and interpret numerical data, including whole numbers, and fractional and decimal values.
OBJECTIVE	5.MD.B.2. a.	Interpret numerical data, with whole-number values, represented with tables or line plots.
OBJECTIVE	5.MD.B.2. b.	Use graphic displays of data (line plots (dot plots), tables, etc.) to solve real-world problems using fractional data.

Mathematics

Grade 6 - Adopted: 2022

STANDARD / COURSE		Sixth Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.5.	Use appropriate tools strategically.

Idaho Content Standards Science Grade 6 - Adopted: 2022

STANDARD / COURSE	MS-PS.	Physical Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS-PS- 3.	Energy
GLE / BIG IDEA	MS-PS- 3.1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
GLE / BIG IDEA	MS-PS- 3.5.	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
ST ANDARD / COURSE	MS-PS.	Physical Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS-PS- 4.	Waves
GLE / BIG IDEA	MS-PS- 4.3.	Present qualitative scientific and technical information to support the claim that digitized signals (0s and 1s) can be used to encode and transmit information.

STANDARD / COURSE	MS-ESS.	Earth and Space Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS- ESS-3.	Earth and Human Activity
GLE / BIG IDEA	MS-ESS- 3.1.	Construct a scientific explanation based on evidence for how Earth's mineral, energy, and groundwater resources are unevenly distributed as a result of past and current geologic processes.
GLE / BIG IDEA	MS-ESS-	Construct an argument based on evidence for how changes in human population and per-capita consumption of

Idaho Content Standards Technology Education Grade 5 - Adopted: 2017

natural resources positively and negatively affect Earth's systems.

3.4.

ST ANDARD / COURSE	ID.ICT.3- 5.4.	STANDARD 4: INNOVATIVE DESIGNER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GLE / BIG IDEA	ICT.3- 5.4.a.	Students explore and practice how a design process works to generate ideas, consider solutions, plan to solve a problem or create innovative products that are shared with others.
GLE / BIG IDEA	ICT.3- 5.4.b.	Students use digital and non-digital tools to plan and manage a design process.
GLE / BIG IDEA	ICT.3- 5.4.c.	Students engage in a cyclical design process to develop prototypes and reflect on the role that trial and error plays.

ST ANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.DA.	Data and Analysis (DA)
GLE / BIG IDEA		Recognizing and Defining Computational Problems

OBJECTIVE3-Use outcome data (results) from running a simulation to solve a problem or answer a question in a core subject5.DA.01.area, either individually or collaboratively. (Grades 3-5)

ST ANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.IC.	Impacts of Computing (IC)
GLE / BIG IDEA		Fostering an Inclusive Computing Culture

OBJECTIVE 3-5.IC.02. Explore the connections between computer science and other fields. (Grades 3-5)

ST ANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts

OBJECTIVE

3-

3-

Construct and test problem solutions using a block-based visual programming language, both independently and 5.AP.02. collaboratively (e.g. pair programming). (Grades K-5)

ST ANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts

Construct and test problem solutions using a block-based visual programming language, both independently and 5.AP.06. collaboratively (e.g. pair programming). (Grades K-5)

Idaho Content Standards Technology Education

ST ANDARD / COURSE	ID.ICT.6- 8.4.	STANDARD 4: INNOVATIVE DESIGNER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GLE / BIG IDEA	ICT.6-	Students engage in a design process and employ it to generate ideas, create innovative products or solve authentic

0.4 -	un un la lin un n
8.4.a.	propiems.

STANDARD / COURSE	ID.CS.6-8.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	6-8.NI.	Networks and the Internet (NI)
GLE / BIG IDEA		Communicating About Computing

OBJECTIVE

6-8.NI.01. Simulate the flow of information as packets on the Internet and networks (e.g. model using strings and paper, note passing). (Grades 6-8)

ST ANDARD / COURSE	ID.CS.6-8.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	6-8.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts

OBJECTIVE

6-

Interpret, modify, and analyze content-specific models used to run simulations (e.g. ecosystems, epidemics, spread 8.AP.03. of ideas). (Grades 6-8)

Illinois Learning Standards Mathematics

		Grade 5 - Adopted. 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.5.	Use appropriate tools strategically.
STATE GOAL / DISCIPLINARY CONCEPT	IL.5.MD.	Measurement and Data
LEARNING STANDARD / DISCIPLINE		Represent and interpret data.
DESCRIPTOR / CONTENT DISCIPLINE	CC.5.MD .2.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
		Illinois Learning Standards Mathematics

STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.

LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.5.	Use appropriate tools strategically.

Illinois Learning Standards Science

Grade 5 - Adopted: 2014

STATE GOAL / DISCIPLINARY CONCEPT	IL.3-5- ET S.	ENGINEERING DESIGN
LEARNING STANDARD / DISCIPLINE	3-5- ETS1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Illinois Learning Standards Science Grade 6 - Adopted: 2014

STATE GOAL / DISCIPLINARY CONCEPT	IL.MS-PS.	PHYSICAL SCIENCE
LEARNING ST ANDARD / DISCIPLINE	MS-PS3.	Energy
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
STANDARD	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.
STATE GOAL / DISCIPLINARY	IL.MS- ESS.	EARTH AND SPACE SCIENCE

LEARNING STANDARD / DISCIPLINE	MS- ESS3.	Earth and Human Activity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STATE GOAL / DISCIPLINARY CONCEPT	IL.MS- ETS.	ENGINEERING DESIGN
LEARNING STANDARD / DISCIPLINE	MS- ET S1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Key Ideas and Details
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Craft and Structure

DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Integration of Knowledge and Ideas
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Range of Reading and Level of Text Complexity
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STATE GOAL / DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes
STATE GOAL / DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINE	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
STATE GOAL / DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINE STANDARD	L.6- 8.WHST. CC.6- 8.WHST. 2. CC.6- 8.WHST.2. d.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.WHST. CC.6- 8.WHST.2. CC.6- 8.WHST.2. d. IL.6- 8.WHST.3.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects
STATE GOAL / DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINE STANDARD STATE GOAL / DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE	IL.6- 8.WHST. CC.6- 8.WHST.2. CC.6- 8.WHST.2. d. IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects Production and Distribution of Writing
STATE GOAL / DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINARY CONCEPT LEARNING STANDARD / DISCIPLINE DESCRIPTOR / CONTENT DISCIPLINE	IL.6- 8.WHST. CC.6- 8.WHST.2. d. IL.6- 8.WHST.2. d. VHST.2. CC.6- 8.WHST.2. d. CC.6- 8.WHST.4	Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects Production and Distribution of Writing Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Illinois Learning Standards Technology Education Grade 5 - Adopted: 2022

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
STATE GOAL / DISCIPLINARY		Illinois Computer Science Standards

CONCEPT		
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.NI.	Networks and the Internet
STANDARD		Network Communication and Organization

EXPECTATION 3-5.NI.04. Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the internet, and reassembled at the destination.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.DA.	Data and Analysis
STANDARD		Collection, Visualization, and Transformation
EXPECTATION	3-	Organize and present collected data visually to highlight relationships and support a claim.

EXPECTATION 3-5.DA.06. Organize and present collected data visually to highlight relationships and support a claim.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Variables

EXPECTATION

5.AP.09.

3-

Create programs that use variables to store and modify data.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Control

EXPECTATION

3-5.AP.10. $Create \ programs \ that \ include \ sequences, \ events, \ loops, \ and \ conditionals.$

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Modularity
EXPECTATION	3- 5.AP.12.	Modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.ET.	Emerging and Future Technologies

STANDARD 3-5.ET.E. Create new or original work by applying emerging technologies.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.c.	Develop, test and refine prototypes as part of a cyclical design process.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.6.	Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.6.c.	Communication complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models, or simulations.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.7.	Global Collaborators: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.7.b.	Use collaborative technologies to work with others, including peers, experts, or community members to examine issues and problems from multiple viewpoints.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.7.d.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
		Illinois Learning Standards Technology Education Grade 6 - Adopted: 2022
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Practices

DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.NI.	Networks and the Internet
STANDARD		Network Communication and Organization
EXPECTATION	6-8.NI.04.	Model the role of protocols in transmitting data across networks and the internet.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.DA.	Data and Analysis
STANDARD		Interference and Models
EXPECTATION	6- 8.DA.09.	Refine computational models based on the data they have generated.
EXPECTATION	6- 8.DA.10.	Evaluate the misuse of data and impact of distorted outcomes.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Variables
EXPECTATION	6- 8.AP.12.	Perform operations on student-created variables that possess descriptive names and represent different data types.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards

LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Control

EXPECTATION 6-

6- Design and iteratively develop programs that combine control structures, including nested loops and compound 8.AP.13. conditionals.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.IC.	Impacts of Computing
STANDARD		Social Interactions

EXPECTATION 6-8.IC.23. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.ET.	Emerging and Future Technologies

STANDARD 6-8.ET.E. Create new or original work by applying emerging technologies.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.IST E- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.c.	Develop, test and refine prototypes as part of a cyclical design process.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.6.	Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.6.c.	Communication complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models, or simulations.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.7.	Global Collaborators: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.7.b.	Use collaborative technologies to work with others, including peers, experts, or community members to examine issues and problems from multiple viewpoints.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.7.d.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
		Indiana Academic Standards Mathematics Grade 5 - Adopted: 2023
ST ANDARD / ST RAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.

PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.5:	Use appropriate tools strategically.
ST ANDARD / ST RAND		Grade 5 Mathematics
PROFICIENCY STATEMENT / SUBSTRAND		Data Analysis – Learning Outcome: Students create questions appropriate to the data and answer the questions using multiple representations.
INDICATOR / STANDARD	5.DA.1.	Formulate questions that can be addressed with categorical and numerical data and make predictions about the data. Collect, organize, and graph data from observations, surveys, and experiments using line plots with fractional intervals, histograms, or other graphical representations that appropriately represent the data set. (E)

Indiana Academic Standards

Mathematics

STANDARD / STRAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.5:	Use appropriate tools strategically.
STANDARD / STRAND		Grade 6 Mathematics
PROFICIENCY STATEMENT / SUBSTRAND		Data Analysis – Learning Outcome: Students represent data using line plots, histograms, and box plots.
INDICATOR / STANDARD	6.DA.1.	Select, create, and interpret graphical representations of numerical data, including line plots, histograms, and box plots.
INDICATOR / STANDARD	6.DA.2.	Formulate statistical questions; collect and organize the data (e.g., using technology), and display and interpret the data with graphical representations (e.g., using technology). (E)

Indiana Academic Standards

Science

Grade 5 - Adopted: 2023

STANDARD / STRAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.5.	Using mathematics and computational thinking
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)
PROFICIENCY STATEMENT /	SEP.8.	Obtaining, evaluating, and communicating information

SUBSTRAND

STANDARD / STRAND		Grade 5
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ET S1-1.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

ST ANDARD / ST RAND		Grade 5
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ET S1-2.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

ST ANDARD / ST RAND		Grade 5
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ET S1-3.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Indiana Academic Standards

Science

STANDARD /	Science and Engineering Practices
STRAND	

PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.5.	Using mathematics and computational thinking
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)
PROFICIENCY STATEMENT / SUBSTRAND	SEP.8.	Obtaining, evaluating, and communicating information

STANDARD / STRAND		Grade 6
PROFICIENCY STATEMENT / SUBSTRAND	MS- ETS1-1.	Engineering Design
INDICATOR / STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
ST ANDARD / ST RAND		Grade 6
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-2.	Engineering Design
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-2. MS- ETS1-2.	Engineering Design Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

STANDARD / STRAND		Grade 6
PROFICIENCY STATEMENT / SUBSTRAND	MS- ETS1-4.	Engineering Design
INDICATOR / STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Indiana Academic Standards Technology Education Grade 5 - Adopted: 2023

ST ANDARD / ST RAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Data & Information
INDICATOR / STANDARD	Learning Outcome: Students select aspects and portions of data to be transformed, clustered, and categorized to provide views and insights about the data.

EXPECTATION / 3-5.DI.3. Demonstrate how variables can represent data and are used to store and modify information. INDICATOR

ST ANDARD / ST RAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Programs & Algorithms
INDICATOR / STANDARD	Learning Outcome: Students collaboratively engage in computer program development with consideration of documenting design choices and giving appropriate attributions.

EXPECTATION / 3-5.PA.2. Design programs that incorporate sequences, events, loops, and conditionals. (E) INDICATOR

Indiana Academic Standards

Technology Education

Grade 6 - Adopted: 2023

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Computing Devices & Systems
INDICATOR / STANDARD	Learning Outcome: Students explain trade-offs, functionality, and accessibility of computer systems to improve the human-computer interaction.

EXPECTATION / 6-8.CD.1. Design projects that combine hardware and software components to collect and exchange data. (E) INDICATOR

ST ANDARD / ST RAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Programs & Algorithms
INDICATOR / STANDARD	Learning Outcome: Students collaboratively design meaningful solutions for others by defining a problem, carefully considering the diverse needs and wants of the community, and testing whether solutions fit the criteria defined in the problem.

EXPECTATION /6-8.PA.1.Design and iteratively develop programs that combine the following: sequencing, looping (including nested loops),INDICATORconditionals (including compound conditionals), expressions, variables, functions, and parameters. (E)

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Impact & Culture
INDICATOR / STANDARD	Learning Outcome: Students explain that society is faced with trade-offs due to the increasing globalization and automation that computing brings, as well as describe these trade-offs using multiple viewpoints from a diverse audience.

EXPECTATION / 6-8.IC.3. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact.

Iowa Student Standards Mathematics Grade 5 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	5	Use appropriate tools strategically.
STRAND / COURSE	5.MD.	Measurement and Data 5.MD
ESSENTIAL CONCEPT AND/OR SKILL	5.MD.B.	Represent and interpret data. (5.MD.B)
DETAILED DESCRIPTOR	5.MD.B.2	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in

all the beakers were redistributed equally. (5.MD.B.2) (DOK 1,2)

lowa Student Standards Mathematics

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.

AND/OR SKILL

lowa Student Standards

Science

Grade 5 - Adopted: 2015

STRAND / COURSE	IA.3-5- ET S1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
DETAILED DESCRIPTOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

lowa Student Standards Science Grade 6 - Adopted: 2015

STRAND / COURSE	IA.MS- ESS3.	Earth and Human Activity
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
	MC	Construct a colorific our lengtion based on our dense for how the uneven distributions of Forth's mineral operative and

DETAILEDMS-Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, andDESCRIPTORESS3-1.groundwater resources are the result of past and current geoscience processes.

STRAND / COURSE	IA.MS- ET S1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
DETAILED DESCRIPTOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2016
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENT IAL CONCEPT		Key Ideas and Details

DETAILED DESCRIPTOR	RST.6- 8.2.	Determine the central ideas or conclusions of a distinct from prior knowledge or opinions. (RST.6-8.2.)
DETAILED DESCRIPTOR	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (RST.6-8.3.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Craft and Structure
DETAILED DESCRIPTOR	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. (RST.6-8.4.)
DETAILED DESCRIPTOR	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic. (RST.6-8.5.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Integration of Knowledge and Ideas
DETAILED DESCRIPTOR	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (RST.6-8.9.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Range of Reading and Level of Text Complexity
DETAILED DESCRIPTOR	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently. (RST.6-8.10.)
STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Text Types and Purposes
DET AILED DESCRIPT OR	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.6- 8.2.d.	Use precise language and domain-specific vocabulary to inform about or explain the topic. (WHST.6-8.2.)
STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Production and Distribution of Writing

DETAILED	WHST.6-	Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
DESCRIPTOR	8.4.	purpose, and audience. (WHST.6-8.4.)

DETAILED DESCRIPTOR 8.6.

WHST.6- Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently. (WHST.6-8.6.)

Iowa Student Standards Technology Education Grade 5 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPTOR	1B-NI.	Networks & The Internet
GRADE LEVEL EXPECTATION		Cybersecurity

1B-NI-05. Discuss real-world cybersecurity problems and how personal information can be protected. (P3.1) EXAMPLE

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPTOR	1B-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Variables

Create programs that use variables to store and modify data. (P5.2) EXAMPLE 1B-AP-09.

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPTOR	1B-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Control

EXAMPLE

1B-AP-

10.

Create programs that include sequences, events, loops, and conditionals. (P5.2)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPT OR	1B-AP.	Algorithms & Programming

GRADE LEVEL EXPECTATION		Program Development
EXAMPLE	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)

EXAMPLE1B-AP-Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and16.review stages of program development. (P2.2)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPTOR	1B-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Social Interactions

EXAMPLE

1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

lowa Student Standards Technology Education

Grade 6 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPTOR	2-DA.	Data & Analysis
GRADE LEVEL EXPECTATION		Inference & Models

EXAMPLE 2-DA-09. Refine computational models based on the data they have generated. (P5.3, P4.4)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPTOR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Variables

EXAMPLE

2-AP-11. Create clearly named variables that represent different data types and perform operations on their values. (P5.1, P5.2)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)

DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECT AT ION		Control
EXAMPLE	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P5.1, P5.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Modularity
EXAMPLE	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CST A.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Program Development
EXAMPLE	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Social Interactions
EXAMPLE	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Safety, Law, & Ethics

Kansas Academic Standards

Mathematics

Grade 5 - Adopted: 2017 STANDARD MP. Standards for Mathematical Practice BENCHMARK MP.1. Make sense of problems and persevere in solving them. BENCHMARK MP.2. Reason abstractly and quantitatively. BENCHMARK MP.3. Construct viable arguments and critique the reasoning of others. BENCHMARK MP.4 Model with mathematics. BENCHMARK MP.5. Use appropriate tools strategically. BENCHMARK MP.7. Look for and make use of structure. Measurement and Data STANDARD 5.MD. BENCHMARK Represent and interpret data. INDICATOR / 5.MD.2. Make a data display (line plot, bar graph, pictograph) to show a data set of measurements in fractions of a unit (1/2, PROFICIENCY 1/4, 1/8). Use operations (add, subtract, multiply) on fractions for this grade to solve problems involving information LEVEL

presented in the data display. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. After lunch everyone measured how much milk they had left in their containers. Make a line plot showing data to the nearest 1/4 cup. Which value has the greatest amount? What is the total?

Kansas Academic Standards Mathematics Grade 6 - Adopted: 2017

STANDARD	MP.	Standards for Mathematical Practice
BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.5.	Use appropriate tools strategically.
BENCHMARK	MP.7.	Look for and make use of structure.

Kansas Academic Standards Science Grade 5 - Adopted: 2013

STANDARD	KS.3-5- ET S.	ENGINEERING DESIGN
BENCHMARK	3-5- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Kansas Academic Standards

Science

STANDARD	KS.MS- PS.	PHYSICAL SCIENCE
BENCHMARK	MS-PS3.	Energy
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
INDICATOR	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.

STANDARD	KS.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STANDARD	KS.MS- ETS.	ENGINEERING DESIGN
BENCHMARK	MS-	Engineering Design

BENCHMAR	K MS- ETS1.	Engineering Design
INDICATOR PROFICIEN LEVEL		Students who demonstrate understanding can:

INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Key Ideas and Details
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Craft and Structure
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Range of Reading and Level of Text Complexity
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects

BENCHMARK		Text Types and Purposes
INDICATOR / PROFICIENCY LEVEL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Production and Distribution of Writing
INDICATOR / PROFICIENCY LEVEL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / PROFICIENCY	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

LEVEL

Kansas Academic Standards Technology Education

Grade 5 - Adopted: 2019

STANDARD	Computer Science Standards – Grade 5
BENCHMARK	Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Variables

INDICATOR

1.

5.AP.V.0 Utilize, create, and modify programs that use, modify, and combine variables with grade level appropriate data.

STANDARD		Computer Science Standards – Grade 5
BENCHMARK		Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL		Control
INDICATOR	5.AP.C.0 1.	Create programs using a programming language that utilize sequencing, repetition, conditionals, event handlers, and variables to solve a problem or express ideas both independently and collaboratively.

STANDARD	Computer Science Standards – Grade 5
BENCHMARK	Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Program Development

INDICATOR 03.

5.AP.PD. Analyze, debug (identify/fix errors), and create a program that includes sequencing, repetition and variables in a programming language.

STANDARD	Computer Science Standards – Grade 5
BENCHMARK	Impacts of Computing

INDICATOR 5.IC.C.01. Develop, test, and refine digital artifacts to improve accessibility and usability for a computing device or program.

Kansas Academic Standards Technology Education Grade 6 - Adopted: 2019

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Computing Systems
INDICATOR / PROFICIENCY LEVEL	Hardware & Software

INDICATOR

MG.CS.H Model a computing system involving multiple considerations and potential tradeoffs of software and hardware, such S.01. as functionality, cost, size, speed, accessibility, and aesthetics

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Data Analysis
INDICATOR / PROFICIENCY LEVEL	Inference & Models

INDICATOR

M.01.

Refine computational models based on the data generated by the models. MG.DA.I

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL	Variables

INDICATOR

01.

01.

MG.AP.V. Create programs using variables with purposeful and thoughtful naming conventions for identifiers to improve program readability.

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL	Control

INDICATOR

MG.AP.C. Develop programs that utilize combinations of nested repetition, compound conditionals, procedures without parameters, and the manipulation of variables representing different data types.

Kentucky Academic Standards

Mathematics

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.

CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.5.	Use appropriate tools strategically.
CATEGORY / GOAL	MP.7.	Look for and make use of structure.

Kentucky Academic Standards Mathematics Grade 6 - Adopted: 2019

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.5.	Use appropriate tools strategically.
CATEGORY /	MP.7.	Look for and make use of structure.

GOAL

STRAND The Number System Cluster: Compute fluently with multi-digit numbers and find common factors and multiples. CATEGORY/ GOAL STANDARD / KY.6.NS Fluently divide multi-digit numbers using an algorithm. (MP.7, MP.8) ORGANIZER .2. EXPECTATION KY.6.NS. Convert a rational number to a decimal using long division.

2.a.

Kentucky Academic Standards

Science

CATEGORY / GOAL	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CATEGORY / GOAL	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CATEGORY / GOAL	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Kentucky Academic Standards

Science

Grade 6 - Adopted: 2022

STRAND		6-8 Engineering Design
CATEGORY / GOAL	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CATEGORY / GOAL	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CATEGORY / GOAL	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Kentucky Academic Standards

Technology Education

Grade 5 - Adopted: 2018

STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL		Algorithms and Programming
ST ANDARD / ORGANIZER	E-AP- 02.	Explore and use variables in a program. Information in the real world can be represented in computer programs. Additionally, different actions are available for different kinds of information. Students should demonstrate the understanding that variables are not just used for numbers; they can also hold text, including whole sentences (strings) or logical values (true or false). Students should also demonstrate that a variable has a data type and is associated with a data storage location.
EXPECTATION		Variables
INDICATOR	E-AP-	Create a program that uses a variable.

02.5.

Create a program that uses a variable.

STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY / GOAL		Algorithms and Programming
ST ANDARD / ORGANIZER	E-AP- 03.	Routinely create programs using a variety of tools to express ideas, address a problem or create an artifact, individually and collaboratively. Programming is used as a tool to create products that reflect a wide range of interests, including to solve a problem, express and idea or create an artifact. People work together to plan, create and test programs within a context that is relevant to the programmer and those who will use the program. When creating programs, students need to have opportunities to work both individually and with peers. For young learners, collaboration through programming should be encouraged. Student should begin exploring the use of simple sequences and simple loops in Kindergarten and progress to using more complex sequences, loops, events, variables and conditionals by 5th grade.
EXPECTATION		Control

INDICATOR	E-AP-	Routinely create simple programs with sequences, events, loops, variables or conditionals routinely using a variety
	03.5.	of tools, independently and collaboratively.

STRAND		Kentucky Academic Standards (KAS) for Computer Science
CATEGORY <i>I</i> GOAL		Algorithms and Programming
ST ANDARD / ORGANIZER	E-AP- 05.	Use a process when creating programs or computational artifacts. Students demonstrate the use of formal and informal processes for creating computational artifacts or programs include processes to: ask, imagine, plan, create, test and improve, share; or a creative thinking spiral (i.e. imagine, create, play, share, reflect); and design thinking (empathize, define, ideate, prototype, test). Students demonstrate understanding that these processes are iterative: designed for students to cycle through more than once in order to improve or modify the design and reach the best possible result.
EXPECTATION		Modularity
INDICATOR	E-AP- 05.5.	Use a process to create programs that include loops, sequences, events, variables or conditions.

Grade 5 - Adopted: 2015

STRAND	Technology – Intermediate
CATEGORY/ GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
ST ANDARD / ORGANIZER	Academic Expectations

EXPECTATION

.1.

I.BI1.AE.6 Students connect knowledge and experiences from different subject areas.

STRAND	Technology – Intermediate
CATEGORY / GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER	Academic Expectations

EXPECTATION

I.BI3.AE.6 Students connect knowledge and experiences from different subject areas.

.1.

STRAND		Technology – Intermediate
CATEGORY <i> </i> GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		Intermediate Skills and Concepts – Research
EXPECTATION	I.BI3.SC1. 5.	Use content-specific tools to enhance understanding of content (e.g., environmental probes, sensors, robotics, simulation software and measuring devices).

Kentucky Academic Standards

Technology Education

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY <i>I</i> GOAL	Data and Analysis

STANDARD / ORGANIZER	Inference & Models

EXPECTATION M-DA-03. Refine computational models based on the data they have generated. A model may be a programmed simulation of events or a representation of how various data is related. Refining a model involves choosing relevant data points, analyzing how data points relate to each other, and evaluating the accuracy of the data.

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL	Algorithms and Programming
ST ANDARD / ORGANIZER	Variables

EXPECTATION N

M-AP-05. Create clearly named variables that represent different data types and perform operations on their values. A variable is like a container with a name, in which the contents may change, but the name (identifier) does not. When planning and developing programs decide when and how to declare and name new variables. Determine the appropriate type and size of variable to use. Use naming conventions to improve program readability.

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL	Algorithms and Programming
STANDARD / ORGANIZER	Control

EXPECTATION M-AP-07. Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. Control structures can be combined in many ways. Nested loops are loops placed within other loops. Compound conditional statements use two or more conditions (e.g., AND, OR, and NOT) in a logical relationship. Nesting conditionals within one another allows the result of one conditional to lead to another.

STRAND	Kentucky Academic Standards (KAS) for Computer Science
CATEGORY/ GOAL	Algorithms and Programming
STANDARD / ORGANIZER	Program Development

EXPECTATION M-AP-12. Develop a process creating a computational artifact that leads to a minimum viable product followed by reflection, analysis, and iteration. Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. These modules can be procedures within a program; combinations of data and procedures; or independent, but interrelated, programs. The development of complex programs is aided by resources such as libraries and tools to edit and manage parts of the program.

Grade 6 - Adopted: 2015

STRAND	Technology – Middle
CATEGORY <i>I</i> GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
STANDARD / ORGANIZER	Academic Expectations

EXPECTATION M.BI1.AE. Students connect knowledge and experiences from different subject areas.

STRAND	Technology – Middle
CATEGORY <i> </i> GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER	Academic Expectations

EXPECTATION M.BI3.AE. Students connect knowledge and experiences from different subject areas. 6.1.

Louisiana Academic Standards Mathematics

Grade 5 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.5.	Use appropriate tools strategically.
STRAND	5.MD.	Measurement and Data

TITLE	5.MD.B.	Represent and interpret data.

PERFORMANC5.MD.B.2Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations onE.fractions for this grade to solve problems involving information presented in line plots. For example, given differentEXPECTATIONmeasurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in
all the beakers were redistributed equally.

Louisiana Academic Standards Mathematics

Grade 6 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.5.	Use appropriate tools strategically.

STRAND	LA.SC.6.	Science – Grade 6
TITLE	6-MS- PS3.	ENERGY
PERFORMANC E	6-MS- PS3-1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

EXPECTATION

STRAND	LA.SC.6.	Science – Grade 6
TITLE	6-MS- ESS1.	EARTH'S PLACE IN THE UNIVERSE
PERFORMANC E	6-MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

EXPECTATION

Louisiana Academic Standards

Technology Education

Grade 6 - Adopted: 2008

STRAND	LA.ET.	Educational Technology
TITLE		Performance Indicators for Grades 6-8
PERFORMANC E EXPECTATION	ET.B.	Describe and illustrate a grade level appropriate concept or process using a model, simulation, or concept-mapping software (1, 2)

Maine Learning Results Mathematics Grade 5 - Adopted: 2020/Implemented 2020

STRAND / DOMAIN		Standards for Mathematical Practice
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical relationships as they solve problems.
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.
CATEGORY / PERFORMANC E INDICATOR	MP5.	Use appropriate tools strategically: Students will use math tools such as tables, diagrams, and technology to explore and deepen their understanding of concepts.
STRAND / DOMAIN		Statistical Reasoning – Measurement & Data

CATEGORY / PERFORMANC E INDICATOR	SR.C.6	Represent and interpret data.
STANDARD	5.MD.B.2	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

Maine Learning Results Mathematics

Grade 6 - Adopted: 2020/Implemented 2020

STRAND / DOMAIN		Standards for Mathematical Practice
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical relationships as they solve problems.
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.
CATEGORY / PERFORMANC E INDICATOR	MP5.	Use appropriate tools strategically: Students will use math tools such as tables, diagrams, and technology to explore and deepen their understanding of concepts.

Maine Learning Results Science Grade 5 - Adopted: 2019

STRAND / DOMAIN	NGSS.3- 5-ETS.	ENGINEERING DESIGN
CATEGORY / PERFORMANC E INDICATOR	3-5- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

STRAND / DOMAIN	NGSS.MS -PS.	PHYSICAL SCIENCE
CATEGORY / PERFORMANC E INDICATOR	MS-PS3.	Energy
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
EXPECTATION	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.
STRAND / DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
CATEGORY / PERFORMANC E INDICATOR	MS- ESS3.	Earth and Human Activity
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / DOMAIN	NGSS.MS -ETS.	
CATEGORY / PERFORMANC E INDICATOR	MS- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Maryland College and Career-Ready Standards Mathematics Grade 5 - Adopted: 2010
STRAND /		Grade 5 Math

TOPIC / STANDARD		
TOPIC / INDICATOR	5.MD.	Measurement and Data

INDICATOR / PROFICIENCY LEVEL	5.MD.B.	Represent and interpret data.	

OBJECTIVE 5.MD.B.2. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4,1/8), Use operations for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. (4.MD.B.4)

Maryland College and Career-Ready Standards

Science

Grade 5 - Adopted: 2013

STRAND / TOPIC / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	3-5- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
OBJECTIVE	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
OBJECTIVE	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Maryland College and Career-Ready Standards

Science

Grade 6 - Adopted: 2013

STRAND / TOPIC / STANDARD	NGSS.MS -PS.	PHYSICAL SCIENCE
TOPIC / INDICATOR	MS-PS3.	Energy
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

OBJECTIVEMS-PS3-
construct, use, and present arguments to support the claim that when the motion energy of an object changes,
energy is transferred to or from the object.

STRAND / TOPIC / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE MS-Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and ESS3-1. groundwater resources are the result of past and current geoscience processes.

OBJECTIVE MS-

ESS3-4.

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

STRAND / TOPIC / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	MS- ETS1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
OBJECTIVE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
OBJECTIVE	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Maryland College and Career-Ready Standards

Technology Education

Grade 5 - Adopted: 2018

STRAND / TOPIC / STANDARD	Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR	Concept: Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Subconcept: Variables

OBJECTIVE

5.AP.V.0 Create programs that use variables to store and modify grade-level appropriate data.

1.

1.

STRAND / TOPIC / STANDARD	Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR	Concept: Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Subconcept: Control

OBJECTIVE

5.AP.C.0 Using a programming language, create programs that include sequences, loops, conditionals, event handlers, and variables that utilize mathematics operations to manipulate values in order to solve a problem or express an idea.

> Maryland College and Career-Ready Standards Technology Education

STRAND / TOPIC / STANDARD	Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR	Concept: Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Subconcept: Variables

OBJECTIVE

1.

1.

6.AP.V.0 Decide when and how to declare and name new variables.

STRAND / TOPIC / STANDARD	Maryland's K-12 Computer Science Standards
TOPIC / INDICATOR	Concept: Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Subconcept: Control

OBJECTIVE

6.AP.C.0 Develop secure programs that utilize combinations of loops, conditionals, and the manipulation of variables representing different data types.

	Grade 6 - Adopted: 2016
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard One: The Nature of Technology – Students will develop an understanding of the nature of technology.
INDICATOR / PROFICIENCY LEVEL	1. The characteristics and scope of technology. This includes but is not limited to how products and systems are developed to solve problems, how demand is created for a product by marketing and advertising, and how goal-directed research can result in invention and innovation. 2. The core concepts of technology. This includes but is not limited to systems, resources, requirements, optimization, trade-offs, processes, and controls. 3. The connections between technology and other fields of study. This includes understanding how technological systems interact with each other, how technology can be repurposed, how other fields of study can impact technological products, and how technological ideas are protected.
OBJECTIVE	Core Concepts of Technology
EXPECTATION	Design a model that demonstrates how subsystems and system elements interact within systems.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TODICI	Standard Three Engineering Design and Development - Students will demonstrate knowledge of and

TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE	Explain how the design process is an iterative, systematic approach to problem solving that includes collaboratively:
EXPECTATION	Making a Model or a Prototype – students will be able to develop conceptual, mathematical, or physical models and/or a prototype that performs the final solution and can be used for testing/evaluating. This includes the creation

of two and three dimensional scale drawings.

EXPECTATION

Testing and Evaluating Design Using Specifications – students will be able to use establish specifications to assess their design product.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE	Apply the design process to develop solutions to real-world problems.
OBJECTIVE	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of a problem (MS-ETS1-2).
OBJECTIVE	Discriminate between ethical and unethical engineering practices.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Energy and Power Technologies
EXPECTATION	Analyze how power systems are used to drive and provide propulsion to other technological products and systems (STL, 16H).
EXPECTATION	Design, construct, and test a device that either minimizes or maximizes energy transfer (MS-PS3-3).
EXPECTATION	Explore ways to conserve energy.
EXPECTATION	Assess advantages and disadvantages of different forms of renewable and nonrenewable energy.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Transportation Technologies

EXPECTATION	Design and develop a model of a new energy efficient vehicle to be use on land, in the sea, in the air, or in space.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Construction Technologies
EXPECTATION	Analyze the type of and purpose for a variety of structures.
EXPECTATION	Analyze factors used in the selection of designs for structures (e.g. laws, codes, style, cost, climate, function) (STL, 20F).
EXPECTATION	Examine different subsystems within buildings.
EXPECTATION	Analyze the maintenance of structures and subsystems.
EXPECTATION	Assess the role that community planning, laws, and regulation have in the development and maintenance of structures.
EXPECTATION	Design, use, and assess building material.
EXPECTATION	Design and create models of structures.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Five: Computational Thinking and Computer Science Applications – Students will be able to apply computational thinking skills and computer science applications as tools to develop solutions to engineering problems.
INDICATOR / PROFICIENCY LEVEL	Use modeling and simulation to represent and understand natural phenomena.

Massachusetts Curriculum Frameworks

Mathematics

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.

STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
FOCUS / COURSE	MA.5.MD.	Measurement and Data
STRAND	5.MD.B.	Represent and interpret data.
STANDARD / CONCEPT / SKILL	5.MD.B.2	Make a line plot (dot plot) to display a data set of measurements in fractions of a unit. Use operations on fractions for this grade to solve problems involving information presented in line plot (dot plot). For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

Massachusetts Curriculum Frameworks Mathematics

Grade 6 - Adopted: 2017

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.

Massachusetts Curriculum Frameworks

Science

		Grade 5 - Adopted: 2016
FOCUS / COURSE	MA.5- ET S.	Grade 5: Technology/Engineering
STRAND	ET S3.	Technological Systems
STANDARD / CONCEPT / SKILL	5.3-5- ETS3- 1(MA).	Use informational text to provide examples of improvements to existing technologies (innovations) and the development of new technologies (inventions). Recognize that technology is any modification of the natural or designed world done to fulfill human needs or wants.

Massachusetts Curriculum Frameworks

Science

FOCUS / COURSE	MA.6- ETS.	Grade 6: Technology/Engineering
STRAND	ETS1.	Engineering Design
STANDARD / CONCEPT / SKILL	6.MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution. Include potential impacts on people and the natural environment that may limit possible solutions.

STANDARD /	6.MS-	Communicate a design solution to an intended user, including design features and limitations of the solution.
CONCEPT /	ETS1-	
SKILL	6(MA).	

FOCUS / COURSE	MA.6- ETS.	Grade 6: Technology/Engineering
STRAND	ET S2.	Materials, Tools, and Manufacturing
STANDARD / CONCEPT / SKILL	6.MS- ETS2- 2(MA).	Given a design task, select appropriate materials based on specific properties needed in the construction of a solution.
STANDARD / CONCEPT / SKILL	6.MS- ETS2- 3(MA).	Choose and safely use appropriate measuring tools, hand tools, fasteners, and common hand-held power tools used to construct a prototype.

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Key Ideas and Details
STANDARD / CONCEPT / SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

STANDARD /	RST.6-	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical
CONCEPT /	8.3.	tasks.
SKILL		

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Craft and Structure
STANDARD / CONCEPT / SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPT / SKILL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Integration of Knowledge and Ideas
STANDARD / CONCEPT / SKILL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Range of Reading and Level of Text Complexity

STANDARD /RST.6-By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity bandCONCEPT /8.10.independently and proficiently.SKILLSKILLSKILL

FOCUS / COURSE	MA.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND		Text Types and Purposes
ST ANDARD / CONCEPT / SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
FOCUS / COURSE	MA.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND		Production and Distribution of Writing
STANDARD / CONCEPT /	WHST.6-	Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
SKILL	0.4.	

Massachusetts Curriculum Frameworks

SKILL

Technology Education

FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)	
STRAND	3- 5.CT.d.	Programming and Development	
STANDARD / CONCEPT / SKILL	3- 5.CT.d.1.	Individually and collaboratively create, test, and modify a program in a graphical environment (e.g., block-based visual programming language).	
STANDARD / CONCEPT / SKILL	3- 5.CT.d.2.	Use arithmetic operators, conditionals, and repetition in programs.	
FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)	
FOCUS / COURSE STRAND	MA.3- 5.CT. 3- 5.CT.e.	Grades 3 – 5: Computational Thinking (CT) Modeling and Simulation	
FOCUS / COURSE ST RAND STANDARD / CONCEPT / SKILL	MA.3- 5.CT. 3- 5.CT.e. 3- 5.CT.e.1.	Grades 3 – 5: Computational Thinking (CT) Modeling and Simulation Individually and collaboratively create a simple model of a system (e.g., water cycle, solar system) and explain what the model shows and does not show.	

Massachusetts Curriculum Frameworks

Technology Education

Grade 6 - Adopted: 2016

FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.b.	Algorithms
STANDARD / CONCEPT / SKILL	6- 8.CT.b.1.	Design solutions that use repetition and conditionals.
FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.d.	Programming and Development
STANDARD / CONCEPT / SKILL	6- 8.CT.d.4.	Implement problem solutions using a programming language, including all of the following: looping behavior, conditional statements, expressions, variables, and functions.
FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.e.	Modeling and Simulation
STANDARD / CONCEPT / SKILL	6- 8.CT.e.1.	Create a model of a real-world system and explain why some details, features and behaviors were required in the model and why some could be ignored.
STANDARD / CONCEPT / SKILL	6- 8.CT.e.3.	Select and use computer simulations, individually and collaboratively, to gather, view, analyze, and report results for content-related problems (e.g., migration, trade, cellular function).

Michigan Academic Standards

Mathematics

STRAND / STANDARD CATEGORY	MI.CC.MP .5.	Mathematical Practices
STANDARD	MP.5.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.5.2.	Reason abstractly and quantitatively.
STANDARD	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.5.4.	Model with mathematics.

STANDARD

MP.5.5. Use appropriate tools strategically.

all the beakers were redistributed equally.

STRAND / STANDARD CATEGORY	MI.CC.MD .5.	Measurement and Data
STANDARD		Represent and interpret data.
GRADE LEVEL EXPECTATION	MD.5.2.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in

Michigan Academic Standards Mathematics

Grade 6 - Adopted: 2010

STRAND / STANDARD CATEGORY	MI.CC.MP .6.	Mathematical Practices
STANDARD	MP.6.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.6.2.	Reason abstractly and quantitatively.
STANDARD	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.6.4.	Model with mathematics.
STANDARD	MP.6.5.	Use appropriate tools strategically.

Michigan Academic Standards

Science

Grade 5 - Adopted: 2015

STRAND / STANDARD CATEGORY	MI.SC.5.	Engineering Design
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Michigan Academic Standards

Science

		-
51 RAND /	MI.SC.4.	Energy
STANDARD		
ATECODY		
CATEGORI		

STANDARD	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
STANDARD	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
STRAND / STANDARD CATEGORY	MI.SC.5.	Waves and Electromagnetic Radiation
STANDARD	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
STRAND / STANDARD CATEGORY	MI.SC.15.	Earth's Systems
STANDARD	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
STRAND / STANDARD CATEGORY	MI.SC.17.	Human Impacts
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / STANDARD CATEGORY	MI.SC.18.	Engineering Design
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
	MIDOT C	Grade 6 - Adopted: 2010
STRAND7 STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects

STANDARD		Craft and Structure	
GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.	
GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects	
STANDARD		Integration of Knowledge and Ideas	
GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.	
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects	
STANDARD		Range of Reading and Level of Text Complexity	
GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.	
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects	
STANDARD		Text Types and Purposes	
GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.	
EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.	
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects	
STANDARD		Production and Distribution of Writing	
GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.	
GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.	
		Michigan Academic Standards Technology Education	

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

GRADE LEVEL EXPECTATION	MITECS. 4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts, or solving authentic problems.	
GRADE LEVEL EXPECTATION	MITECS. 4.c.	5. Develop, test, and refine prototypes as part of a cyclical design process.	
		Grade 5 - Adopted: 2019	
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards	
STANDARD		LEVEL 1B: UPPER ELEMENT ARY (GRADES 3-5)	
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING	
EXPECTATION	1B-AP- 09.	Create programs that use variables to store and modify data. Subconcept: Variables; Practice 5.2	
EXPECTATION	1B-AP- 10.	Create programs that include sequences, events, loops, and conditionals. Subconcept: Control; Practice 5.2	
EXPECTATION	1B-AP- 12.	Modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features. Subconcept: Modularity; Practice 5.3	
		Michigan Academic Standards Technology Education Grade 6 - Adopted: 2017	
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students	
STANDARD	MITECS .4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.	
GRADE LEVEL EXPECTATION	MITECS. 4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts, or solving authentic problems.	
GRADE LEVEL EXPECTATION	MITECS. 4.c.	Develop, test, and refine prototypes as part of a cyclical design process.	
		Grade 6 - Adopted: 2019	
		Michigan Computer Science Standards	

STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 2: MIDDLE SCHOOL (GRADES 6-8)
GRADE LEVEL EXPECTATION		DAT A AND ANALYSIS
EXPECTATION	2-DA-09.	Refine computational models based on the data they have generated. Subconcept: Inference & Models; Practice 5.3, 4.4

STRAND / STANDARD CATEGORY	Michigan Computer Science Standards
STANDARD	LEVEL 2: MIDDLE SCHOOL (GRADES 6-8)

GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING
EXPECTATION	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values. Subconcept: Variables; Practice 5.1, 5.2
EXPECTATION	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. Subconcept: Control; Practice 5.1, 5.2
EXPECTATION	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. Subconcept: Program Development; Practice 2.2

Minnesota Academic Standards

Mathematics

CONTENT STANDARD / DOMAIN	MN.5.1.	Numbers & Operation
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.1.1.	Divide multi-digit numbers; solve real-world and mathematical problems using arithmetic.
INDICATORS OF PROGRESS / STRAND	5.1.1.4.	Solve real-world and mathematical problems requiring addition, subtraction, multiplication and division of multi-digit whole numbers. Use various strategies, including the inverse relationships between operations, the use of technology, and the context of the problem to assess the reasonableness of results.
CONTENT STANDARD / DOMAIN	MN.5.1.	Numbers & Operation
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.1.2.	Read, write, represent and compare fractions and decimals; recognize and write equivalent fractions; convert between fractions and decimals; use fractions and decimals in real world and mathematical situations.
INDICATORS OF PROGRESS / STRAND	5.1.2.4.	Recognize and generate equivalent decimals, fractions, mixed numbers and improper fractions in various contexts.

Minnesota Academic Standards

Mathematics

CONTENT STANDARD / DOMAIN	MN.6.1.	Number & Operation
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6.1.1.	Read, write, represent and compare positive rational numbers expressed as fractions, decimals, percents and ratios; write positive integers as products of factors; use these representations in real-world and mathematical situations.
INDICATORS OF PROGRESS / STRAND	6.1.1.4.	Determine equivalences among fractions, decimals and percents; select among these representations to solve problems.
INDICATORS OF PROGRESS / STRAND	6.1.1.7.	Convert between equivalent representations of positive rational numbers.

Science

Grade 5 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.5.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	5.1.3.4.	The student will understand that tools and mathematics help scientists and engineers see more, measure more accurately, and do things that they could not otherwise accomplish.

INDICATORS 5.1.3.4.1. Use appropriate tools and techniques in gathering, analyzing and interpreting data. OF PROGRESS

CONTENT STANDARD / DOMAIN	MN.5.2.	Physical Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.2.2.	Motion
INDICATORS OF PROGRESS / STRAND	5.2.2.1.	The student will understand that an object's motion is affected by forces and can be described by the object's speed and the direction it is moving.

INDICATORS 5.2.2.1.1. Give examples of simple machines and demonstrate how they change the input and output of forces and motion. OF PROGRESS

CONTENT STANDARD / DOMAIN	MN.5.3.	Earth and Space Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.3.4.	Human Interaction with Earth Systems
INDICATORS OF PROGRESS / STRAND	5.3.4.1.	The student will understand that in order to maintain and improve their existence, humans interact with and influence Earth systems.
INDICATORS OF PROGRESS	5.3.4.1.1.	Identify renewable and non-renewable energy and material resources that are found in Minnesota and describe how they are used.
INDICATORS OF PROGRESS	5.3.4.1.2.	Give examples of how mineral and energy resources are obtained and processed and how that processing modifies their properties to make them more useful.

Minnesota Academic Standards

Science

CONTENT STANDARD / DOMAIN	MN.6.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6.1.2.	The Practice of Engineering

INDICATORS OF PROGRESS / STRAND	6.1.2.1.	The student will understand that engineers create, develop and manufacture machines, structures, processes and systems that impact society and may make humans more productive.

INDICATORS OF PROGRESS 6.1.2.1.2. Recognize that there is no perfect design and that new technologies have consequences that may increase some risks and decrease others.

CONTENT STANDARD / DOMAIN	MN.6.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6.1.2.	The Practice of Engineering
INDICATORS OF PROGRESS / STRAND	6.1.2.2.	The student will understand that engineering design is the process of devising products, processes and systems that address a need, capitalize on an opportunity, or solve a specific problem.

INDICATORS OF PROGRESS 6.1.2.2.1. Apply and document an engineering design process that includes identifying criteria and constraints, making representations, testing and evaluation, and refining the design as needed to construct a product or system that solves a problem.

CONTENT STANDARD / DOMAIN	MN.6.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	6.1.3.4.	The student will understand that current and emerging technologies have enabled humans to develop and use models to understand and communicate how natural and designed systems work and interact.

INDICATORS6.1.3.4.1.Determine and use appropriate safe procedures, tools, measurements, graphs and mathematical analyses to
describe and investigate natural and designed systems in a physical science context.

CONTENT STANDARD / DOMAIN	MN.6.2.	Physical Science
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6.2.3.	Energy
INDICATORS OF PROGRESS / STRAND	6.2.3.2.	The student will understand that energy can be transformed within a system or transferred to other systems or the environment.
INDICATORS OF PROGRESS	6.2.3.2.1.	Differentiate between kinetic and potential energy and analyze situations where kinetic energy is converted to potential energy and vice versa.
INDICATORS OF PROGRESS	6.2.3.2.2.	Trace the changes of energy forms, including thermal, electrical, chemical, mechanical or others as energy is used in devices.
INDICATORS OF PROGRESS	6.2.3.2.3.	Describe how energy is transferred in conduction, convection and radiation.

CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Key Ideas and Details
INDICATORS OF PROGRESS / STRAND	6.13.2.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATORS OF PROGRESS / STRAND	6.13.3.3.	Follow precisely a multistep procedure when carrying out experiments, designing solutions, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Craft and Structure
INDICATORS OF PROGRESS / STRAND	6.13.4.4.	Determine the meaning of symbols, equations, graphical representations, tabular representations, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATORS OF PROGRESS / STRAND	6.13.5.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
INDICATORS OF PROGRESS / STRAND	6.13.6.6.	Analyze the author's purpose in describing phenomena, providing an explanation, describing a procedure, or discussing/reporting an experiment in a text.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Integration of Knowledge and Ideas
INDICATORS OF PROGRESS / STRAND	6.13.9.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Range of Reading and Level of Text Complexity
INDICATORS OF PROGRESS / STRAND	6.13.10.1 0.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Text Types and Purposes
INDICATORS OF PROGRESS / STRAND	6.14.2.2	Write informative/explanatory texts, as they apply to each discipline and reporting format, including the narration of historical events, of scientific procedures/ experiments, or description of technical processes.

INDICATORS 6.14.2.2.d Use precise language and domain-specific vocabulary to inform about or explain the topic. OF PROGRESS .

CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Production and Distribution of Writing
	6 14 4 4	Produce clear and coherent writing in which the development organization and style are appropriate to task

 INDICATORS
 6.14.4.4.
 Produce clear and coherent writing in which the development, organization, and style are appropriate to task,

 OF PROGRESS
 purpose, and audience.

 / STRAND
 STRAND

Mississippi College & Career Readiness Standards

Mathematics

Grade 5 - Adopted: 2016

тнеме	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.5.	Use appropriate tools strategically.
тнеме	MS.5.MD.	Measurement and Data (MD)
SUBJECT		Represent and interpret data
STANDARD	5.MD.2.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different

Mississippi College & Career Readiness Standards

Mathematics

measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in

Grade 6 - Adopted: 2016

all the beakers were redistributed equally.

SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.5.	Use appropriate tools strategically.

Mississippi College & Career Readiness Standards

Science

Grade 5 - Adopted: 2018

ТНЕМЕ	MS.P.5.	GRADE FIVE: Physical Science
SUBJECT		Organization of Matter and Chemical Interactions
STANDARD	P.5.5A.	Students will demonstrate an understanding of the physical properties of matter.
	P 5 5 4 5	Design a vessel that can safely transport a dense substance (e.g. syrup, coins, marbles) through water at various

ei that can safely transport a dense substance (e.g., syrup, coins, marbies) through water at var Jesign a vess distances and under variable conditions. Use an engineering design process to define the problem, design, construct, evaluate, and improve the vessel.

Mississippi College & Career Readiness Standards

Science

Grade 6 - Adopted: 2018

ТНЕМЕ	MS.P.6.	GRADE SIX: Physical Science
SUBJECT		Motions, Forces, and Energy
STANDARD	P.6.6.	Students will demonstrate an understanding of Newton's laws of motion using real world models and examples.

OBJECTIVE P.6.6.7. Determine the relationships between the concepts of potential, kinetic, and thermal energy.

Mississippi College & Career Readiness Standards

Technology Education

Grade 5 - Adopted: 2018

ТНЕМЕ		Mississippi College- and Career-Readiness Standards for Computer Science
SUBJECT		Level 1B: GRADES 3-5 - Algorithms and Programming
STANDARD	AP.1B.	Algorithms and Programming (AP.1B)
OBJECTIVE	AP.1B.2.	Create programs that use variables to store and modify data. [VARIABLES] (P5.2)
OBJECTIVE	AP.1B.2a.	Students should understand how to use variables to store and modify data.
ТНЕМЕ		Mississippi College- and Career-Readiness Standards for Computer Science
SUBJECT		Level 1B: GRADES 3-5 - Algorithms and Programming
STANDARD	AP.1B.	Algorithms and Programming (AP.1B)

OBJECTIVE AP.1B.3. Create programs that include sequences, events, loops, and conditionals. [CONTROL] (P5.2)

OBJECTIVE

AP.1B.3a. Students should be able to create programs that include sequences, events, loops, and conditionals.

Mississippi College & Career Readiness Standards

Technology Education

	Grade 6 - Adopted: 2018			
ТНЕМЕ		Mississippi College- and Career-Readiness Standards for Computer Science		
SUBJECT		Level 2: GRADES 6-8 - Algorithms and Programming		
STANDARD	AP.2.	Algorithms and Programming (AP.2)		
OBJECTIVE	AP.2.2.	Create clearly named variables that represent different data types and perform operations on their values. [VARIABLES] (P5.1, P5.2)		
OBJECTIVE	AP.2.2a.	When planning and developing programs, students should decide when and how to declare and name new variables.		

OBJECTIVE /

AP.2.2b. Students should use naming conventions to improve program readability.

Missouri Learning Standards Mathematics Grade 5 - Adopted: 2016

STRAND: BIG IDEA / STANDARD	MO.5.NB T.	Number Sense and Operations in Base Ten
CONCEPT: GLE / BENCHMARK	5.NBT.A	Use place value system understanding to perform operations with multi-digit whole numbers to billions and decimals to thousandths.
GLE / COMPONENT	5.NBT.A. 6.	Add and subtract multi-digit whole numbers and decimals to the thousandths place, and justify the solution.
STRAND: BIG IDEA / STANDARD	MO.5.NF.	Number Sense and Operations in Fractions
CONCEPT: GLE / BENCHMARK	5.NF.A.	Understand the relationship between fractions and decimals (denominators that are factors of 100).
GLE / COMPONENT	5.NF.A.2.	Convert decimals to fractions and fractions to decimals.

STRAND: BIG IDEA / STANDARD	MO.5.DS.	Data and Statistics
CONCEPT: GLE / BENCHMARK	5.DS.A.	Represent and analyze data.

GLE / COMPONENT 5.DS.A.2. Create a line plot to represent a given or generated data set, and analyze the data to answer questions and solve problems, recognizing the outliers and generating the median.

Missouri Learning Standards

Mathematics

RAND: BIG MO.6.NS. Number Sense and Operations A / ANDARD

CONCEPT: GLE / BENCHMARK	6.NS.C.	Apply and extend previous understandings of numbers to the system of rational numbers.
GLE /	6.NS.C.8.	Extend prior knowledge to generate equivalent representations of rational numbers between fractions, decimals and

Missouri Learning Standards

Science

percentages (limited to terminating decimals and/or benchmark fractions of 1/3 and 2/3).

Grade 5 - Adopted: 2016

ST RAND: BIG IDEA / ST ANDARD	MO.5.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	5.ET S1. A.	Defining and Delimiting Engineering Problems
GLE / COMPONENT	5.ETS1.A .1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

STRAND: BIG IDEA / STANDARD	MO.5.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	5.ET S1. B.	Developing Possible Solutions

GLE /5.ETS1.BGenerate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteriaCOMPONENT.1.and constraints of the problem.

ST RAND: BIG IDEA / ST ANDARD	MO.5.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	5.ET S1. C.	Optimizing the Solution Process
GLE /	5.ETS1.C	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of

.1. a model or prototype that can be improved.

Missouri Learning Standards

Science

Grade 6 - Adopted: 2016

STRAND: BIG IDEA / STANDARD	MO.6- 8.PS.	Physical Sciences
CONCEPT: GLE / BENCHMARK	6-8.PS3.	Energy
GLE / COMPONENT	6- 8.PS3.A.	Definitions of Energy

INDICATOR / 6-PROFICIENCY 8.PS3.A

COMPONENT

COMPONENT

6- Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an 8.PS3.A.1. object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a whiffle ball versus a tennis ball.]

STRAND: BIG IDEA / STANDARD	MO.6- 8.PS.	Physical Sciences
CONCEPT: GLE / BENCHMARK	6-8.PS3.	Energy
GLE / COMPONENT	6- 8.PS3.B.	Conservation of Energy and Energy Transfer

INDICATOR / 6-PROFICIENCY 8.PS

6- Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes,
 8.PS3.B.1. energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.]

STRAND: BIG IDEA / STANDARD	MO.6- 8.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	6- 8.ESS3.	Earth and Human Activity
GLE / COMPONENT	6- 8.ESS3.A	Natural Resources

INDICATOR / 6-PROFICIENCY 8.ES 1.

6- Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and 8.ESS3.A. groundwater resources are the result of past and current geoscience processes and human activity. [Clarification
 1. Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]

STRAND: BIG IDEA / STANDARD	MO.6- 8.ESS.	Earth and Space Sciences
CONCEPT: GLE / BENCHMARK	6- 8.ESS3.	Earth and Human Activity
GLE / COMPONENT	6- 8.ESS3. C.	Human Impacts on Earth's Systems
	6- 8 ESS3 C	Analyze data to define the relationship for how increases in human population and per-capita consumption of natural

 FICIENCY
 8.ESS3.C.
 resources impact Earth's systems. [Clarification Statement: Examples of data include grade-appropriate databases

 1.
 on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems

as well as the rates at which they change.]

STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	6- 8.ET S1.	Engineering Design
GLE / COMPONENT	6- 8.ET S1. A.	Defining and Delimiting Engineering Problems

INDICATOR /6-Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, takingPROFICIENCY8.ETS1.A.into account relevant scientific principles and potential impacts on people and the natural environment that may limit1.possible solutions.

STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science
CONCEPT: GLE / BENCHMARK	6- 8.ET S1.	Engineering Design
GLE / COMPONENT	6- 8.ETS1. B.	Developing Possible Solutions
INDICATOR / PROFICIENCY	6- 8.ETS1.B. 1.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
INDICATOR / PROFICIENCY	6- 8.ETS1.B. 3.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Key Ideas and Details
GLE / COMPONENT	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GLE / COMPONENT	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Craft and Structure
GLE / COMPONENT	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GLE / COMPONENT	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Integration of Knowledge and Ideas
GLE / COMPONENT	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

ST RAND: BIG IDEA / ST ANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Range of Reading and Level of Text Complexity
GLE /	RST 6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity hand

GLE /RST.6-By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity bandCOMPONENT8.10.independently and proficiently.

ST RAND: BIG IDEA / ST ANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Text Types and Purposes
GLE / COMPONENT	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

INDICATOR /WHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.PROFICIENCY8.2(d)

STRAND: BIG IDEA / STANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Production and Distribution of Writing
GLE / COMPONENT	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GLE / COMPONENT	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Missouri Learning Standards Technology Education

Grade 5 - Adopted: 2019

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Variables

INDICATOR /5.AP.V.0Create programs that use variables to store and modify grade level appropriate data.PROFICIENCY1.

STRAND: BIG IDEA /	Computer Science Performance Standards
STANDARD	

CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Control

INDICATOR / 5.AI PROFICIENCY 1.

5.AP.C.0 Create a program using control structures (e.g., sequence, conditionals, interactive-looping), event handlers and1. variables to solve a problem or express ideas both independently and collaboratively.

STRAND: BIG IDEA / STANDARD		Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK		Algorithms & Programming
GLE / COMPONENT		Program Development
INDICATOR / PROFICIENCY	5.AP.PD. 03.	Analyze, examine, create and debug a program that includes sequencing, repetition, conditionals and variables in a programming language.
INDICATOR / PROFICIENCY	5.AP.PD. 04.	Communicate and explain your program development using comments, presentations and interactive demonstrations.

Missouri Learning Standards Technology Education Grade 6 - Adopted: 2019

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Variables

INDICATOR / 6-PROFICIENCY 8.AP.V.01.

Create clearly named variables to store and manipulate information.

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Control

INDICATOR /

6- [8.AP.C.01

Design and develop combinations of control structures, nested loops and compound conditionals.

PROFICIENCY 8.AP.

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards

CONCEPT: GLE / BENCHMARK	Impacts of Computing
GLE / COMPONENT	Social Interaction

INDICATOR /6-Collaborate through strategies such as crowdsourcing or surveys when creating a computational artifact.PROFICIENCY8.IC.SI.01.

Montana Content Standards Mathematics Grade 5 - Adopted: 2011

CONTENT STANDARD / MT.CC.M Mathematical Practices DOMAIN **BENCHMARK** / MP.1. Make sense of problems and persevere in solving them. STANDARD Reason abstractly and quantitatively. **BENCHMARK /** MP.2. STANDARD Construct viable arguments and critique the reasoning of others. **BENCHMARK /** MP.3. STANDARD BENCHMARK / MP.4. Model with mathematics. STANDARD **BENCHMARK** / MP.5. Use appropriate tools strategically. STANDARD

CONTENT STANDARD / DOMAIN	MT.CC.5. MD.	Measurement and Data
BENCHMARK / STANDARD		Represent and interpret data.
GRADE LEVEL EXPECTATION / BENCHMARK	5.MD.2.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

Montana Content Standards Mathematics Grade 6 - Adopted: 2011

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.

BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK /	MP.5.	Use appropriate tools strategically.

STANDARD

Montana Content Standards

Science

Grade 6 - Adopted: 2016			
CONTENT STANDARD / DOMAIN	MT.6- 8.PS.	PHYSICAL SCIENCE content standards for sixth through eighth grades are that each student will:	
BENCHMARK / STANDARD	6- 8.PS.12.	Construct and interpret graphic displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object	
BENCHMARK / STANDARD	6- 8.PS.16.	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object	
CONTENT STANDARD / DOMAIN	MT.6- 8.ESS.	EARTH AND SPACE SCIENCE content standards for sixth through eighth grades are that students will:	
BENCHMARK / STANDARD	6- 8.ESS.9.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes	
BENCHMARK / STANDARD	6- 8.ESS.15.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems including indigenous populations	
		Grade 6 - Adopted: 2011	
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK / STANDARD		Key Ideas and Details	
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.	
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.	
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects	
BENCHMARK / STANDARD		Craft and Structure	

GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / ST ANDARD		Range of Reading Level of Text Complexity
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MT.WHST .6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6-	Use precise language and domain-specific vocabulary to inform about or explain the topic.

CONTENT STANDARD / DOMAIN	MT.WHS T.6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Montana Content Standards Technology Education Grade 5 - Adopted: 2020/Effective 2021

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR FIFTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	use digital and non-digital tools to plan and manage a design process; and
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(b)	use design process to develop and test prototypes.
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR FIFTH GRADE
BENCHMARK / STANDARD	(5)	The computational thinker content standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	explore or solve problems by selecting technology for data analysis, modeling and algorithmic thinking;
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR FIFTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(b)	use a variety of strategies for remixing or repurposing to create new works; and
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(c)	create digital objects to communicate ideas visually and graphically.
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR FIFTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(b)	create programs that use variables to store and modify data;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	create programs that include sequences, events, loops, and conditionals;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(d)	modify, remix, or incorporate portions of an existing program to develop something new or add more advanced features; and

CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR FIFTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for fifth grade are that each student will:
GRADE LEVEL	(4)(c)	utilize diverse perspectives for the purpose of improving computational artifacts;

EXPECTATION /

BENCHMARK

Montana Content Standards Technology Education Grade 6 - Adopted: 2020/Effective 2021

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	select and use digital tools to support design processes, identify constraints and trade-offs and weigh risks;
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(b)	engage in design process to develop, test and revise prototypes or create innovative products; and

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(5)	The computational thinker content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	investigate and practice solving problems by using data analysis, modeling or algorithmic thinking;

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(a)	select appropriate platforms and tools to create, share, and communicate work;
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(b)	create original works or responsibly remix and repurpose other digital resources into new creative works; and

CONTENT STANDARD / DOMAIN COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE BENCHMARK / ST ANDARD Computer science algorithms and programming standards for sixth through eighth grades are that each student will: (1)

GRADE LEVEL EXPECTATION / BENCHMARK	(1)(b)	create clearly named variables that represent different data types and perform operations on their values;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	develop programs that combine control structures, including nested loops and compound conditionals;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(d)	decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(i)	distribute tasks and maintain a project timeline when collaboratively developing computational artifacts; and
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(3)	Computer science data and analysis standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(3)(c)	refine computational models based on the data they have generated.
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION /	(4)(c)	collaborate with other contributors when creating a computational artifact; and