Main Criteria: Forward Education

Secondary Criteria: Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards, Pennsylvania Core and Academic Standards

Subjects: Mathematics, Science, Technology Education

Grades: 5, 6, Key Stage 2

Forward Education

How Wind Turbines Capture Kinetic Energy

Nebraska Content Area Standards

Mathematics

Grade 5 - Adopted: 2022

CONTENT STANDARD		Grade 5 Standards
STRAND	5.D.	DAT A: Students will solve problems and reason with data/probability using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	5.D.2.	Analyze Data and Interpret Results: Students will analyze the data and interpret the results.
STRAND	5.D.2.a.	Represent, analyze, and solve authentic problems using information presented in one or more tables or line plots

Nebraska Content Area Standards

Mathematics

Grade 6 - Adopted: 2022

CONTENT STANDARD		Grade 6 Standards
STRAND	6.R.	RATIOS AND PROPORTIONS: Students will understand ratio concepts and use ratio reasoning to solve problems.
INDICATOR	6.R.1.	Ratios and Rates: Students will understand the concept of ratios and unit rates, use language to describe the relationship between two quantities, and use ratios and unit rates to solve authentic situations.

STRAND

6.R.1.d. Convert among fractions, decimals, and percents using multiple representations.

CONTENT STANDARD		Grade 6 Standards
STRAND	6.D.	DAT A: Students will solve problems and reason with data/probability using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	6.D.1.	Data Collection and Statistical Methods: Students will formulate statistical investigative questions, collect data, and organize data.

STRAND

No additional indicators at this level.

including whole numbers and fractions.

CONTENT STANDARD		Grade 6 Standards
STRAND	6.D.	DAT A: Students will solve problems and reason with data/probability using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	6.D.2.	Analyze Data and Interpret Results: Students will represent and analyze the data and interpret the results.

STRAND 6.D.2.b. Solve problems using information presented in dot plots, box-and-whisker plots, histograms, and circle graphs.

Grade 5 - Adopted: 2017

CONTENT STANDARD	NE.SC.5. 13.	Earth's Systems
STRAND	SC.5.13. 4.	Gather and analyze data to communicate understanding of Earth's systems.
INDICATOR	SC.5.13.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and

4.E.

constraints on materials, time, or cost.

Nebraska Content Area Standards

Science

Grade 6 - Adopted: 2017

CONTENT STANDARD	NE.SC.6. 4.	Energy
STRAND	SC.6.4.1	Gather, analyze, and communicate evidence of energy.
INDICATOR	SC.6.4.1. B.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principle and potential impacts on people and the natural environment that may limit possible solutions.
INDICATOR	SC.6.4.1. D.	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Nebraska Content Area Standards

Technology Education

Grade 5 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	PRODUCTIVITY APPLICATIONS/TOOLS
INDICATOR	SPREADSHEETS STANDARDS
STRAND	Enter and edit data and perform calculations using formulas.
STRAND	Demonstrate and understanding of recording, organizing, and graphing information.
STRAND	Use mathematical symbols appropriately.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).
STRAND	Create and modify animations, and present work to others.

Create and modify animations, and present work to others.

Nebraska Content Area Standards Technology Education

Grade 6 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	PRODUCTIVITY APPLICATIONS/TOOLS
INDICATOR	SPREADSHEETS STANDARDS
STRAND	Enter and edit data and perform calculations using formulas.
STRAND	Demonstrate and understanding of recording, organizing, and graphing information.
STRAND	Use mathematical symbols appropriately.
STRAND	Enter formulas and functions in spreadsheet applications.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence

STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS

STRAND

Create simulations/models to understand natural phenomena and test hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).
STRAND	Create and modify animations, and present work to others.
STRAND	Write programs using text-based programming languages.

Nevada Academic Content Standards

Mathematics

Grade 5 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.5.	Mathematical Practices
STRAND / INDICATOR	MP.5.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.5.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.5.4.	Model with mathematics.

STRAND / INDICATOR MP.5.5. Use appropriate tools strategically.

CONTENT STANDARD	NV.CC.M D.5.	Measurement and Data
STRAND / INDICATOR		Represent and interpret data.
INDICATOR / GRADE LEVEL EXPECTATION	MD.5.2.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

Nevada Academic Content Standards

Mathematics

Grade 6 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.6.	Mathematical Practices
STRAND / INDICATOR	MP.6.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.6.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.6.4.	Model with mathematics.
STRAND / INDICATOR	MP.6.5.	Use appropriate tools strategically.

Nevada Academic Content Standards

Science

Grade 5 - Adopted: 2014

CONTENT STANDARD	NV.3-5- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	3-5- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Nevada Academic Content Standards

Science

Grade	6	_	Ado	nted:	20)14

CONTENT STANDARD	NV.MS- PS.	PHYSICAL SCIENCE			
STRAND / INDICATOR	MS-PS3.	. Energy			
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:			
GRADE LEVEL EXPECTATION	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.			
GRADE LEVEL EXPECTATION	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.			
CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE			
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity			
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:			
GRADE LEVEL EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.			
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.			
CONTENT STANDARD	NV.MS- ETS.	ENGINEERING DESIGN			
STRAND / INDICATOR	MS- ET S1.	Engineering Design			
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:			
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.			
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.			
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.			
		Grade 6 - Adopted: 2010			
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects			
STRAND / INDICATOR		Key Ideas and Details			

INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.			
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.			
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects			
STRAND / INDICATOR		Craft and Structure			
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.			
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.			
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects			
STRAND / INDICATOR		Integration of Knowledge and Ideas			
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.			
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects			
STRAND / INDICATOR		Range of Reading and Level of Text Complexity			
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.			
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects			
STRAND / INDICATOR		Text Types and Purposes			
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.			
GRADE LEVEL EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.			
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects			
STRAND / INDICATOR		Production and Distribution of Writing			

INDICATOR /	WHST.6-	Produce clear and coherent writing in which the development, organization, and style are appropriate to task,
GRADE LEVEL	8.4.	purpose, and audience.
EXPECTATION		

INDICATOR / GRADE LEVEL 8.6. EXPECTATION

WHST.6- Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Nevada Academic Content Standards

Technology Education

Grade 5 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture

GRADE LEVEL P1.3. EXPECTATION

STRAND /

INDICATOR

Practices

Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND /		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
INDICATOR / GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION	P4. P4.3. P4.4.	Developing and Using Abstractions Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.

INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

GRADE LEVELP5.2.Create a computational artifact for practical intent, personal expression, or to address a societal issue.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Knowledge Constructor
INDICATOR / GRADE LEVEL	5.KC.D.1.	Propose solutions to real-world problems using collected data and digital tools.

EXPECTATION

Nevada Academic Content Standards

Technology Education

Grade 6 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture

GRADE LEVEL

P1.3. Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
EXPECTATION		

GRADE LEVEL EXPECTATION

INDICATOR / 6-

EXPECTATION

GRADE LEVEL 8.KC.D.1. them, and evaluate and revise through the use of digital tools.

P4.4. Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE	
STRAND / INDICATOR		Practices	
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts	
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.	
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.	
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE	
STRAND / INDICATOR		Algorithms and Programming	
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.V.2.	Create clearly named variables that represent different data types and perform operations on their values.	
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.C.1.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.	
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.PD. 1.	Design meaningful solutions for others, incorporating data from collaborative team members and the end user, to meet the end user's needs.	
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE	
STRAND / INDICATOR		Data and Analysis	
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.DA.IM.1.	Refine computational models based on the reliability and validity of the data they generate.	
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY	
STRAND / INDICATOR		Knowledge Constructor	

Explore real-world issues and problems through inquiry and analysis, develop ideas, actively create solutions for

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.A.1.	Engage in a design process and employ it to inquire and analyze, generate ideas, create innovative products or solve authentic problems, and evaluate the process to revise if needed.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Global Collaborator
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.GC.D.1.	Select collaborative technologies and use them to work with others to investigate and develop solutions related to local and global issues.

New Hampshire College and Career Ready Standards

Ma	t he	mat	ics	
ivi a	LIIC	mau	103	

STRAND / STANDARD	NH.CC.M P.5.	Mathematical Practices
STANDARD / GLE	MP.5.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.5.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.5.4.	Model with mathematics.
STANDARD / GLE	MP.5.5.	Use appropriate tools strategically.

STRAND / STANDARD	NH.CC.M D.5.	Measurement and Data
STANDARD / GLE		Represent and interpret data.
GRADE LEVEL EXPECTATION	MD.5.2.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

Grade 6 - Adopted: 2010

STRAND / STANDARD	NH.CC.M P.6.	Mathematical Practices
STANDARD / GLE	MP.6.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.6.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.6.4.	Model with mathematics.
STANDARD / GLE	MP.6.5.	Use appropriate tools strategically.

New Hampshire College and Career Ready Standards

Science

Grade 5 - Adopted: 2016			
STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN	
STANDARD / GLE	3-5- ET S1.	Engineering Design	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.	
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	

New Hampshire College and Career Ready Standards

Science

Grade 6 - Adopted: 2016

STRAND / STANDARD	NGSS.MS -PS.	PHYSICAL SCIENCE
ST ANDARD / GLE	MS-PS3.	Energy
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
EXPECTATION	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE	
STANDARD / GLE	MS- ESS3.	Earth and Human Activity	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	
EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.	
EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption If natural resources impact Earth's systems.	
STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN	
STANDARD / GLE	MS- ET S1.	Engineering Design	
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:	
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	
		New Hampshire College and Career Ready Standards Technology Education Grade 5 - Adopted: 2005	
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program	
STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:	
GRADE LEVEL EXPECTATION	ICT.2.b.	Mathematics	
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program	
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:	
GRADE LEVEL EXPECTATION	ICT.3.b.	Numeracy	
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program	
STANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:	

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

		Grade 5 - Adopted: 2018
STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 09.	Create programs that use variables to store and modify data.
GRADE LEVEL EXPECTATION	1B-AP- 10.	Create programs that include sequences, events, loops, and conditionals.
		New Hampshire College and Career Ready Standards Technology Education Grade 6 - Adopted: 2005
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL EXPECTATION	ICT.2.b.	Mathematics
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.b.	Numeracy
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects
		Grade 6 - Adopted: 2018
STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Data & Analysis
GRADE LEVEL	2-DA-09.	Refine computational models based on the data they have generated.

EXPECTATION

ST ANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values.
GRADE LEVEL EXPECTATION	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

New Jersey Student Learning Standards Mathematics

Grade 5 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
CONTENT AREA / STANDARD	NJ.5.MD.	Measurement and Data
STRAND	5.MD.B.	Represent and interpret data.
CONTENT STATEMENT	5.MD.B.2	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in

New Jersey Student Learning Standards Mathematics

all the beakers were redistributed equally.

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.

New Jersey Student Learning Standards

Science Grade 5 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	3-5-ET S.	Engineering Design
STRAND	3-5- ET S1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STATEMENT	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Jersey Student Learning Standards

Science

Grade 6 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-PS.	Physical Science
STRAND	MS-PS3:	Energy
CONTENT STATEMENT	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
CONTENT STATEMENT	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Jersey Student Learning Standards

Technology Education

Grade 5 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CUMULATIVE PROGRESS INDICATOR	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

INDICATOR

INDICATOR

Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Networks and the Internet
CONTENT STATEMENT		Information needs a physical or wireless path to travel to be sent and received.

CUMULATIVE 8.1.5.NI.1: Develop models that successfully transmit and receive information using both wired and wireless methods. PROGRESS INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Programming languages provide variables, which are used to store and modify data.

CUMULATIVE8.1.5.AP.Create programs that use clearly named variables to store and modify data.PROGRESS2:INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		A variety of control structures are used to change the flow of program execution (e.g., sequences, events, loops, conditionals).

CUMULATIVE	8.1.5.AP.	Create programs that include sequences, events, loops, and conditionals.
PROGRESS	3:	
INDICATOR		

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals develop programs using an iterative process involving design, implementation, testing, and review.
CUMULATIVE PROGRESS	8.1.5.AP. 6:	Develop programs using an iterative process, implement the program design, and test the program to ensure it works as intended.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.

CUMULATIVE	8.2.5.ED.	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to
PROGRESS	2:	provide the best results with supporting sketches or models.
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		The technology developed for the human designed world can have unintended consequences for the environment. Technology must be continually developed and made more efficient to reduce the need for non-renewable resources.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ET W.4:	Explain the impact that resources, such as energy and materials used to develop technology, have on the environment.
CUMULATIVE PROGRESS INDICATOR	8.2.5.ET W.5:	Identify the impact of a specific technology on the environment and determine what can be done to increase positive effects and to reduce any negative effects, such as climate change.

New Jersey Student Learning Standards

Technology Education Grade 6 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:

Identify complex, interdisciplinary, real-world problems that can be solved computationally.

CUMULATIVE PROGRESS INDICATOR

CUMULATIVE	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or
PROGRESS	procedures.
INDICATOR	

CONTENT AREA / ST ANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CUMULATIVE PROGRESS INDICATOR	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.

CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		5 Creating Computational Artifacts
CONTENT STATEMENT		The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR		Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.
CUMULATIVE PROGRESS INDICATOR	8.1.8.DA. 5:	Test, analyze, and refine computational models.
CUMULATIVE PROGRESS INDICATOR	8.1.8.DA. 6:	Analyze climate change computational models and propose refinements.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Programmers create variables to store data values of different types and perform appropriate operations on their values.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 2:	Create clearly named variables that represent different data types and perform operations on their values.
CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Control structures are selected and combined in programs to solve more complex problems.
CUMULATIVE PROGRESS	8.1.8.AP. 3:	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.

CUMULATIVE8.1.8.AP.Design programs, incorporating existing code, media, and libraries, and give attribution.PROGRESS7:INDICATOR

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 3:	Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype, graphical/technical sketch).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.

CUMULATIVE	8.2.8.ED.	Design a product to address a real-world problem and document the iterative design process, including decisions
PROGRESS	7:	made as a result of specific constraints and trade-offs (e.g., annotated sketches).
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ET W.4:	Compare the environmental effects of two alternative technologies devised to address climate change issues and use data to justify which choice is best.

New Mexico Content Standards

Mathematics

Grade 5 - Adopted: 2012

BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / CONTENT STANDARD	NM.5.MD.	Measurement and Data
BENCHMARK / STANDARD		Represent and interpret data.
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	5.MD.2.	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

New Mexico Content Standards Mathematics

Grade 6 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.

New Mexico Content Standards

Science

Grade 5 - Adopted: 2013

BENCHMARK / STANDARD	3-5- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Mexico Content Standards

Science

Grade 6 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -PS.	PHYSICAL SCIENCE
BENCHMARK / STANDARD	MS-PS3.	Energy
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
PERFORMANCE STANDARD / INDICATOR	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.
STRAND / CONTENT	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STANDARD		
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
BENCHMARK / ST ANDARD PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	MS- ESS3.	Earth and Human Activity Students who demonstrate understanding can:
BENCHMARK / ST ANDARD PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY PERFORMANCE STANDARD / INDICATOR	MS- ESS3. MS- ESS3-1.	Earth and Human Activity Students who demonstrate understanding can: Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

STRAND / CONTENT STANDARD	NM.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Human Impacts
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3 NM.	Describe the advantages and disadvantages associated with technologies related to local industries and energy production.
STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMARK / ST ANDARD	MS- ETS1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		New Mexico Content Standards Technology Education Grade 5 - Adopted: 2019
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / ST ANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-NI.	Networks & The Internet
PERFORMANC E STANDARD / INDICATOR		Cybersecurity
INDICATOR	1B-NI-05.	Discuss real-world cybersecurity problems and how personal information can be protected. (P3.1)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards

BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Variables
INDICATOR	1B-AP- 09.	Create programs that use variables to store and modify data. (P5.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Control
INDICATOR	1B-AP- 10.	Create programs that include sequences, events, loops, and conditionals. (P5.2)
STRAND / CONTENT		CSTA K-12 Computer Science Standards
STANDARD		
ST ANDARD BENCHMARK / ST ANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
STANDARD BENCHMARK / STANDARD PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	CST A.1 B. 1B-AP.	Level 1B (Ages 8-11) Algorithms & Programming
STANDARD BENCHMARK / STANDARD PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY PERFORMANC E STANDARD / INDICATOR	CST A.1 B. 1B-AP.	Level 1B (Ages 8-11) Algorithms & Programming Program Development
STANDARD BENCHMARK / STANDARD PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY PERFORMANC E STANDARD / INDICATOR	CST A.1 B. 1B-AP. 1B-AP- 13.	Level 1B (Ages 8-11) Algorithms & Programming Program Development Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)
ST AND ARD BENCHMARK / ST AND ARD / PERFORMANC E ST AND ARD / BENCHMARK / PROFICIENCY PERFORMANC E ST AND ARD / INDICATOR INDICATOR	СST А.1 В. 1В-АР. 1В-АР- 13. 1В-АР- 16.	Level 1B (Ages 8-11) Algorithms & Programming Program Development Use an iterative process to plan the development of a program by including others'' perspectives and considering user preferences. (P1.1, P5.1) Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
ST AND ARD BENCHMARK / ST AND ARD PERFORMANC E ST AND ARD / BENCHMARK / PROFICIENCY PERFORMANC E ST AND ARD / INDICATOR INDICATOR ST RAND / CONTENT ST AND ARD	CST A.1 1B-AP. 1B-AP- 13. 1B-AP- 16.	Level 1B (Ages 8-11) Algorithms & Programming Program Development Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1) Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2) CSTA K-12 Computer Science Standards
ST AND ARD BENCHMARK / ST AND ARD / PERFORMANC E ST AND ARD / BENCHMARK / PROFICIENCY PERFORMANC E ST AND ARD / INDICATOR INDICATOR ST RAND / CONT ENT ST AND ARD BENCHMARK / ST AND ARD	CST A.1 B. 1B-AP. 13. 1B-AP- 13. 1B-AP- 16. CST A.1 B.	Level 1B (Ages 8-11) Algorithms & Programming Program Development Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1) Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2) CSTA K-12 Computer Science Standards Level 1B (Ages 8-11)

INDICATOR

1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

New Mexico Content Standards Technology Education Grade 6 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-DA.	Data & Analysis
PERFORMANC E STANDARD / INDICATOR		Inference & Models
INDICATOR	2-DA-09.	Refine computational models based on the data they have generated. (P5.3, P4.4)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Variables
INDICATOR	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values. (P5.1, P5.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Control
INDICATOR	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P5.1, P5.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards

BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR		Program Development
INDICATOR	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Safety, Law, & Ethics
INDICATOR	2-IC-23.	Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2)

Mathematics

Grade 5 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.

New York State Learning Standards and Core Curriculum Mathematics

Grade 6 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.

Grade 5 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.3- 5.ED.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum

Science

Grade 6 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.MS.4.	Energy
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-PS3- 5.	Construct, use, and present an argument to support the claim that when work is done on or by a system, the energy of the system changes as energy is transferred to or from the system.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.13	Earth's Systems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geologic processes.

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD /	MS-	Construct an argument supported by evidence for how increases in human population and per-capita consumption of

 STANDARD /
 MS Construct an argument supported by evidence for how increases in human population and per-capita consumption of

 CONCEPTUAL
 ESS3-4.
 natural resources impact Earth's systems.

 UNDERSTANDI
 NG

STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

NG

STRAND / DOMAIN / UNIFYING	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
THEME CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects

CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas

STANDARD /6-Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with thatCONCEPTUAL8.RST.9.gained from reading a text on the same topic.UNDERSTANDING

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD /	6- 8 RST 10	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

CONCEPTUAL 8.RST.10. independently and proficiently. UNDERSTANDI NG

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
	C	Lies practice language and domain an esife us solution to inform shout or ovals in the tenis

EXPECTATION /	6-	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT	8.WHST.2.	
SPECIFICATION	d.	

STRAND /	NY.6-	Writing Standards for Literacy in Science and Technical Subjects
DOMAIN /	8.WHST.	
UNIFYING		
ТНЕМЕ		

CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		New York State Learning Standards and Core Curriculum Technology Education Grade 5 - Adopted: 1996
STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.1.	Information Systems: Information technology is used to retrieve, process, and communicate information and as a tool to enhance learning.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.1.5.	Students use simple modeling programs to make predictions.
STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.1.	Connections: The knowledge and skills of mathematics, science, and technology are used together to make informed decisions and solve problems, especially those relating to issues of science/technology/society, consumer decision making, design, and inquiry into phenomena.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.3.	Students design solutions to problems involving a familiar and real context, investigate related science concepts to inform the solution, and use mathematics to model, quantify, measure, and compute.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.4.	Students observe phenomena and evaluate them scientifically and mathematically by conducting a fair test of the effect of variables and using mathematical knowledge and technological tools to collect, analyze, and present data and conclusions.

STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.2.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.1.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to work effectively (Contributing to the work of a brainstorming group, laboratory partnership, cooperative learning group, or project team; planning procedures; identify and managing responsibilities of team members; and staying on task, whether working alone or as part of a group.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.2.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to gather and process information (Accessing information from printed media, electronic data bases, and community resources and using the information to develop a definition of the problem and to research possible solutions.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.3.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to generate and analyze ideas (Developing ideas for proposed solutions, investigating ideas, collecting data, and showing relationships and patterns in the data.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.4.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to observe common themes (Observing examples of common unifying themes, applying them to the problem, and using them to better understand the dimensions of the problem.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.5.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to realize ideas (Constructing components or models, arriving at a solution, and evaluating the result.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.6.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to present results (Using a variety of media to present the solution and to communicate the results.)
		New York State Learning Standards and Core Curriculum
		Technology Education
		Grade 6 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.1.	Information Systems: Information technology is used to retrieve, process, and communicate information and as a tool to enhance learning.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.1.5.	Students use simple modeling programs to make predictions.
STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.

CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.1.	Connections: The knowledge and skills of mathematics, science, and technology are used together to make informed decisions and solve problems, especially those relating to issues of science/technology/society, consumer decision making, design, and inquiry into phenomena.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.3.	Students design solutions to problems involving a familiar and real context, investigate related science concepts to inform the solution, and use mathematics to model, quantify, measure, and compute.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.4.	Students observe phenomena and evaluate them scientifically and mathematically by conducting a fair test of the effect of variables and using mathematical knowledge and technological tools to collect, analyze, and present data and conclusions.
STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.2.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results.
CATEGORY / CLUSTER / KEY IDEA STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2. 7.2.1.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results. Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to work effectively (Contributing to the work of a brainstorming group, laboratory partnership, cooperative learning group, or project team; planning procedures; identify and managing responsibilities of team members; and staying on task, whether working alone or as part of a group.)
CAT EGORY / CLUSTER / KEY IDEA STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2. 7.2.1. 7.2.2.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results. Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to work effectively (Contributing to the work of a brainstorming group, laboratory partnership, cooperative learning group, or project team; planning procedures; identify and managing responsibilities of team members; and staying on task, whether working alone or as part of a group.) Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to gather and process information (Accessing information from printed media, electronic data bases, and community resources and using the information to develop a definition of the problem and to research possible solutions.)
CAT EGORY / CLUSTER / KEY IDEA STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2. 7.2.1. 7.2.2. 7.2.3.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results. Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to work effectively (Contributing to the work of a brainstorming group, laboratory partnership, cooperative learning group, or project team; planning procedures; identify and managing responsibilities of team members; and staying on task, whether working alone or as part of a group.) Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to gather and process information (Accessing information from printed media, electronic data bases, and community resources and using the information to develop a definition of the problem and to research possible solutions.) Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to generate and analyze ideas (Developing ideas for proposed solutions, investigating ideas, collecting data, and showing relationships and patterns in the data.)
CAT EGORY / CLUSTER / KEY IDEA STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results. Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to work effectively (Contributing to the work of a brainstorming group, laboratory partnership, cooperative learning group, or project team; planning procedures; identify and managing responsibilities of team members; and staying on task, whether working alone or as part of a group.) Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to gather and process information (Accessing information from printed media, electronic data bases, and community resources and using the information to develop a definition of the problem and to research possible solutions.) Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to generate and analyze ideas (Developing ideas for proposed solutions, investigating ideas, collecting data, and showing relationships and patterns in the data.) Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to observe common themes (Observing examples of common unifying themes, applying them to the problem, and using them to better understand the dimensions of the problem.)

Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to present results (Using a variety of media to present the solution and to communicate the results.)

North Carolina Standard Course of Study Mathematics

		Grade 5 - Adopted: 2017/IMPL 2018
CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.

North Carolina Standard Course of Study

Mathematics

Grade 6	 Adopted: 	2017/IMPL	2018
---------	------------------------------	-----------	------

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.

STRAND / ESSENTIAL STANDARD

North Carolina Standard Course of Study

Science

Grade 6 - Adopted: 2010

CONTENT AREA / STRAND	NC.CC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT AREA / STRAND	NC.CC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND	NC.CC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT AREA / STRAND	NC.CC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects

STRAND /	Range of Reading and Level of Text Complexity
ESSENTIAL	
STANDARD	

ESSENTIAL6-By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity bandSTANDARD /8.RST.10.independently and proficiently.CLARIFYING--OBJECTIVE--

CONTENT AREA / STRAND	NC.CC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CLARIFYING OBJECTIVE	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT AREA / STRAND	NC.CC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

North Carolina Standard Course of Study

Technology Education

Grade 5 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ESSENTIAL STANDARD / CLARIFYING	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.

OBJECTIVE

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

Grade 5 - Adopted: 2020		
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Computing Systems
CLARIFYING OBJECTIVE		Hardware & Software
	05.00	

INDICATOR 35-CS- Model how computer hardware and software work together as a system to accomplish tasks. 02.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Variables
INDICATOR	35-AP-	Create programs that use variables to store and modify data.

0

35-AP- Create programs that use variables to store and modify data.

0	2.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Control
INDICATOR	35-AP- 03.	Construct programs that include sequences.
INDICATOR	35-AP- 04.	Construct programs using simple loops.
INDICATOR	35-AP- 05.	Construct programs that implement conditionals.

North Carolina Standard Course of Study Technology Education Grade 6 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards	
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

Grade 6 - Adopted: 2020		
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE		Data & Analysis
CLARIFYING OBJECTIVE		Inference & Models
	60 D A	

INDICATOR 68-DA- Refine computational models based on the data they have generated and/or data collected. 04.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Variables
INDICATOR	68-AP- 02.	Create clearly named variables that represent different data types.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Control
INDICATOR	68-AP- 03.	Design and iteratively develop programs that combine control structures including nested loops and compound conditionals.
INDICATOR	68-AP- 04.	Construct programs that include events.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	68-AP- 11.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE

Impacts of Computing

INDICATOR 68-IC-05. Collaborate with many contributors to create a computational artifact.

North Dakota Content Standards Mathematics Grade 5 - Adopted: 2017

Grade 5 - Auopted: 2017			
CONTENT STANDARD		Standards for Mathematical Practice	
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.	
BENCHMARK	MP.2	Reason abstractly and quantitatively.	
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.	
BENCHMARK	MP.4	Model with mathematics.	
BENCHMARK	MP.5	Use appropriate tools strategically.	
CONTENT STANDARD		Measurement and Data	
BENCHMARK		Represent and interpret data.	
GRADE LEVEL EXPECTATION	5.MD.2	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots.	

North Dakota Content Standards

Mathematics

Grade 6 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.

North Dakota Content Standards

Science

Grade 5 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models

GRADE LEVEL EXPECTATION

Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	5	Using mathematics and computational thinking
GRADE LEVEL EXPECTATION		Using mathematics and computational thinking in K-12 builds logical reasoning and problem-solving skills.

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions

GRADE LEVEL EXPECTATION Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	5-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	5-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	5-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	5-ET1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

North Dakota Content Standards

Science

Grade 6 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	5	Using mathematics and computational thinking
GRADE LEVEL EXPECTATION		Using mathematics and computational thinking in K-12 builds logical reasoning and problem-solving skills.

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions

GRADE LEVELConstructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of
evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-1.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD		Physical Science (PS)

BENCHMARK	MS-PS3.	ENERGY
GRADE LEVEL EXPECTATION	MS-PS3- 1.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and/or the speed of an object.
GRADE LEVEL EXPECTATION	MS-PS3- 5.	Construct and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards Technology Education

Grade 5 - Adopted: 2012

CONTENT STANDARD		Library and Technology
BENCHMARK		Media and Technology Literacy
GRADE LEVEL EXPECTATION		Creative and Innovative Processes and Products
INDICATOR	K- 5.MTL.8.	Use models and simulations to investigate systems and issues.

Grade 5 - Adopted: 2019

BENCHMARK		Information Literacy
GRADE LEVEL EXPECTATION		Create
INDICATOR		It is important to both consume and produce information to be digitally literate.
INDICATOR	5.C.1.	Independently or collaboratively, create a digital product using two or more tools.

North Dakota Content Standards

Technology Education

Grade 6 - Adopted: 2012

BENCHMARK Media and Technology Literacy	
GRADE LEVEL Creative and Innovative Processes and Products	

INDICATOR

Use models and simulations to investigate and explain systems and issues. 8.MTL.8.

6-

Grade 6 - Adopted: 2019

CONTENT STANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms
INDICATOR	Strategies for understanding and solving problems.

INDICATOR 6.PSA.2. Debug a program that includes sequencing, loops, or conditionals.

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Development & Design
INDICATOR		Design processes to create new, useful, and imaginative solutions to solve problems.
INDICATOR	6.DD.1.	Use programs that utilize combinations of loops, conditionals, and the manipulation of variables representing different data types.

Ohio Learning Standards Mathematics Grade 5 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.

STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.

Ohio Learning Standards Mathematics Grade 6 - Adopted: 2017

		Glade 6 - Adopted. 2017
DOMAIN / ACADEMIC CONTENT STANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.6.SP.	STATISTICS AND PROBABILITY
STANDARD / BENCHMARK		Develop understanding of statistical problem solving.
BENCHMARK / GRADE LEVEL INDICATOR	6.SP.1.	Develop statistical reasoning by using the GAISE model:
PROFICIENCY LEVEL	6.SP.1.b.	Collect Data: Design and use a plan to collect appropriate data to answer a statistical question. (GAISE Model, step 2)
PROFICIENCY LEVEL	6.SP.1.c.	Analyze Data: Select appropriate graphical methods and numerical measures to analyze data by displaying variability within a group, comparing individual to individual, and comparing individual to group. (GAISE Model, step 3)
		Ohio Learning Standards
		Science
		Grade 6 - Adopted: 2018
DOMAIN / ACADEMIC CONTENT STANDARD		PHYSICAL SCIENCE (PS)

STANDARD / BENCHMARK		Topic: Matter and Motion - This topic focuses on the study of foundational concepts of the particulate nature of matter, linear motion, and kinetic and potential energy.
BENCHMARK / GRADE LEVEL INDICATOR	6.PS.3:	There are two categories of energy: kinetic and potential.

PROFICIENCY LEVEL Objects and substances in motion have kinetic energy.

Ohio Learning Standards Technology Education

Grade 5 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICAT OR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.
PROFICIENCY LEVEL	3- 5.ST.1.b.	Identify positive and negative impacts your use of personal technology and technology systems (e.g., agriculture, transportation, energy generation, water treatment) can have on your community.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	3- 5.ST.2.c.	Identify the positive and negative impact the use of technology can have on relationships, communities and self.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY LEVEL	3- 5.ST.3.a.	Describe the advantages/disadvantages of technology (past, present, future) to understand the relationship between technology, society and the individual.
PROFICIENCY LEVEL	3- 5.ST.3.c.	Identify and discuss how the use of technology affects self and others in various ways.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology

ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	3- 5.DT.1.c.	Describe a process as a series of actions and how it is used to produce a result.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology

STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	3- 5.DT.2.a.	Critique needs and opportunities for designing solutions.
PROFICIENCY LEVEL	3- 5.DT.2.b.	Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible solutions, test and evaluate solution(s), present a possible solution, and redesign to improve the solution.
PROFICIENCY LEVEL	3- 5.DT.2.c.	Generate, develop, and communicate design ideas and decisions using appropriate terms and graphical representations.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.

PROFICIENCY 3-LEVEL 5.DT.3.b.

Explore and document connections between technology and other fields of study.

DOMAIN / ACADEMIC CONTENT ST ANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICAT OR	Topic 4:	Evaluate designs using functional, aesthetic and creative elements.
PROFICIENCY LEVEL	3- 5.DT.4.a.	Use criteria developed with guidance to evaluate a new or improved product for its functional, aesthetic and creative elements.
PROFICIENCY LEVEL	3- 5.DT.4.b.	Examine a familiar product or process and suggest improvements to its design.

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 5
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .5.a.	Create a variable, a placeholder for storing a value, to understand how it is used in a multi-step process (i.e., algorithm).
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 5
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR		Control Structures
PROFICIENCY LEVEL	ATP.CS.5 .a.	Create a program using sequences, events, loops and conditionals to solve a problem.
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 5
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Modularity
PROFICIENCY LEVEL	ATP.M.5. a.	Decompose (i.e., break down) the steps needed or not needed (i.e., abstraction) into precise sequences of instructions to design an algorithm.
PROFICIENCY LEVEL	ATP.M.5. b.	With grade appropriate complexity, modify, remix or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features.
		Ohio Learning Standards Technology Education Grade 6 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.

PROFICIENCY6-Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in yourLEVEL8.ST.1.b.world.

PROFICIENCY LEVEL	6- 8.ST.1.d.	Analyze an environmental concern and investigate technology solutions to that problem.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	6- 8.ST.2.b.	Explain the positive and negative impact the use of technology can have on personal, professional and community relationships.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.a.	Explore and document how technology can impact efficiency.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY	6-	Apply a complete design process to solve an identified individual or community problem; research, develop, test

PROFICIENCY	6-	Apply a complete design process to solve an identified individual or community problem: research, develop, test,
LEVEL	8.DT.2.a.	evaluate and present several possible solutions, and redesign to improve the solution.

Grade 6 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 6
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .6.a.	Identify unknown values that need to be represented by a variable within a multi-step process.

DOMAIN / ACADEMIC CONTENT ST ANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCYATP.CS.6Identify and trace decisions and loops that exist in a multi-step process within a program.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Modularity

PROFICIENCY ATP.M.6. Decompose problems into parts to facilitate the design, implementation and review of programs. LEVEL a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.6Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Representation & Reasoning

PROFICIENCYAI.RR.6.a.Illustrate how a computer can solve a maze, find a route on a map or reason about concepts in a knowledge graphLEVELby drawing a search tree.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE

BENCHMARK / GRADE LEVEL INDICATOR		Machine Learning	
PROFICIENCY LEVEL	AI.ML.6.b.	Illustrate the structure of a neural network to describe how its parts form a set of functions that compute an output.	

Oklahoma Academic Standards

Mathematics

Grade 5 - Adopted: 2022

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD	Develop the Ability to Communicate Mathematically

CONTENT STANDARD / COURSE	5	Fifth Grade (5)
STRAND / STANDARD	5.N.	Numbers & Operations (N)
OBJECTIVE	5.N.2.	Divide multi-digit numbers and solve real-world and mathematical problems using arithmetic.
SKILL / CONCEPT	5.N.2.4.	Construct models to solve multi-digit whole number problems requiring addition, subtraction, multiplication, and division using various representations, including the inverse relationships between operations, the use of technology, and the context of the problem to assess the reasonableness of results.

Oklahoma Academic Standards

Mathematics Grade 6 - Adopted: 2022

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning

STRAND / STANDARD

STRAND / STANDARD Develop the Ability to Communicate Mathematically

CONTENT STANDARD / COURSE	6	Sixth Grade (6)
STRAND / STANDARD	6.N.	Numbers & Operations (N)
OBJECTIVE	6.N.1.	Read, write, and represent rational numbers expressed as integers, fractions, decimals, percents, and ratios; use these representations in real-world and mathematical situations.
SKILL / CONCEPT	6.N.1.4.	Determine equivalencies among fractions, mixed numbers, decimals, and percents.

CONTENT STANDARD / COURSE	6	Sixth Grade (6)
STRAND / STANDARD	6.N.	Numbers & Operations (N)
OBJECTIVE	6.N.3.	Explain and use the concept of ratio and its relationship to other rational numbers and to the multiplication and division of whole numbers. Use ratios to solve problems.
SKILL / CONCEPT	6.N.3.3.	Apply the relationship between ratios, equivalent fractions, unit rates, and percents to solve problems in various contexts.

Oklahoma Academic Standards

Technology Education

Grade 5 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions
SKILL / CONCEPT	Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the

development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

SKILL / CONCEPT Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.A.	Algorithms (A)

SKILL	5.AP.A.0	Model, compare and refine multiple algorithms for the same task and determine which is the most efficient.
	1.	

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.V.	Variables (V)

SKILL 5.AP.V.0 Create programs that use variables to store and modify grade level appropriate data. 1.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.C.	Control (C)
0.1/11.1		

SKILL

1.

5.AP.C.0 Create programs using a programming language that utilize sequencing, repetition, conditionals, event handlers and variables using math operations to manipulate values to solve a problem or express ideas both independently and collaboratively.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)

SKILL / CONCEPT	5.AP.M.	Modularity (M)

SKILL

5.AP.M.0 With grade appropriate complexity, modify, remix, or incorporate portions of an existing program into one's ownwork, to develop something new or add more advanced features.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.PD.	Program Development (PD)
SKILL	5.AP.PD. 01.	Use an iterative process to plan the development of a program that includes others' perspectives and user preferences while solving simple problems.

5.AP.PD. Analyze, create, and debug a program that includes sequencing, repetition, conditionals, and variables in aprogramming language.

Grade 5 - Adopted: 2019

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	IST E- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
OBJECTIVE	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
OBJECTIVE	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

Oklahoma Academic Standards Technology Education

Grade 6 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

 SKILL /
 Identify patterns and extract common features from specific examples to create generalizations. Students will

 CONCEPT
 manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

 SKILL /
 Understand the contexts in which people operate and consider the needs of different users during the design

 CONCEPT
 process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)
OBJECTIVE	6.CS.	Computing Systems (CS)

SKILL / CONCEPT	6.CS.HS.	Hardware & Software (HS)

```
SKILL
```

6.CS.HS. Model multiple methods of combining hardware and software to collect and exchange data.

01.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)
OBJECTIVE	6.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	6.AP.C.	Control (C)
SKILL	6.AP.C.0	Develop programs that utilize combinations of repetition, conditionals, and the manipulation of variables representing

6.AP.C.0 Develop programs that utilize combinations of repetition, conditionals, and the manipulation of variables representing different data types. 1.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)
OBJECTIVE	6.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	6.AP.PD.	Program Development (PD)
SKILL	6.AP.PD. 02.	Incorporate existing code, media, and libraries into original programs and give attribution.
SKILL	6.AP.PD.	Break down tasks and follow an individual timeline when developing a computational artifact.

6.AP.PD. Break down tasks and follow an individual timeline when developing a computational artifact. 04.

Grade 6 - Adopted: 2019

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

OBJECTIVE	

ISTE-

S.4.c.

S.6.c.

visualizations, models or simulations.

Students develop, test and refine prototypes as part of a cyclical design process.

CONTENT
STANDARD /
COURSEISTE for Students 2016 (ISTE-S)STRAND /
STANDARDISTE-
S.6.Creative Communicator: Students communicate clearly and express themselves creatively for a variety
of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.OBJECTIVEISTE-
Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

Oregon Academic Content Standards

Mathematics

Grade 5 - Adopted: 2021

STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
ST ANDARD / CONTENT AREA		Grade 5 Standards

CONTENT STANDARD / PROFICIENCY	5.DR.	Data Reasoning (5.DR)
BENCHMARK / STRAND	5.DR.A.	Pose investigative questions and collect/consider data.

BENCHMARK

STRAND

EXPECTATION / 5.DR.A.1. Generate questions to investigate situations within the classroom, school or community. Determine strategies for collecting or considering data involving operations with fractions for this grade that can naturally answer questions by using information presented in line plots.

ST ANDARD / CONTENT AREA		Grade 5 Standards
CONTENT STANDARD / PROFICIENCY	5.DR.	Data Reasoning (5.DR)
BENCHMARK / STRAND	5.DR.B.	Analyze, represent, and interpret data.

EXPECTATION / 5.DR.B.2. Analyze graphical representations and describe the distribution of the numerical data through line plots or BENCHMARK categorical data through bar graphs. Interpret information presented to answer investigative questions.

Oregon Academic Content Standards

Mathematics

Grade 6 - Adopted: 2021

ST ANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
STANDARD / CONTENT AREA		Grade 6 Standards
CONTENT STANDARD / PROFICIENCY	6.DR.	Data Reasoning (6.DR)
BENCHMARK /	6 DR B	Collect and Consider Data

EXPECTATION / 6.DR.B.2. Collect and record data with technology to identify and describe the characteristics of numerical data sets using BENCHMARK quantitative measures of center and variability.

STANDARD / CONTENT AREA		Grade 6 Standards
CONTENT STANDARD / PROFICIENCY	6.DR.	Data Reasoning (6.DR)
BENCHMARK / STRAND	6.DR.C.	Analyze, summarize, and describe data.

EXPECTATION /6.DR.C.3.Analyze data representations and describe measures of center and variability of quantitative data using appropriate
displays.BENCHMARKdisplays.

Oregon Academic Content Standards

Science

Grade 5 - Adopted: 2022		
ST ANDARD / CONTENT AREA	OR.3-5- ET S1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Oregon Academic Content Standards

Science

Grade 6 - Adopted: 2022

STANDARD / CONTENT AREA	OR.MS- PS3.	Energy
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS-PS3- 5.	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
STANDARD / CONTENT AREA	OR.MS- ET S1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:

BENCHMARK /MS-Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, takingSTRANDETS1-1.into account relevant scientific principles and potential impacts on people and the natural environment that may limit
possible solutions.

BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects

CONTENT STANDARD / PROFICIENCY		Text Types and Purposes		
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.		
EXPECTATION / BENCHMARK	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.		
ST ANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects		
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing		
BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.		
BENCHMARK / STRAND	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.		
	Pennsylvania Core and Academic Standards Mathematics Grade 5 - Adopted: 2014			
SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice		
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.		
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.		
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.		
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.		
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.		
SUBJECT / ST ANDARD AREA	PA.CC.2. 4.5.	Measurement, Data, and Probability		
ST ANDARD AREA / ST AT EMENT	CC.2.4. 5.A.	Measurement and Data		

STANDARD

E.2.

CC.2.4.5. Solve problems involving computation of fractions using information provided in a line plot. A.4.

Pennsylvania Core and Academic Standards

Mathematics

Grade 6 - Adopted: 2014

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.5	Use appropriate tools strategically.

SUBJECT / ST ANDARD AREA	PA.CC.2. 1.6.	Numbers and Operations
STANDARD AREA / STATEMENT	CC.2.1.6 .E.	The Number System
STANDARD	CC.2.1.6.	Identify and choose appropriate processes to compute fluently with multi-digit numbers.

Pennsylvania Core and Academic Standards

Science

Grade 5 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.

STANDARD AREA / STATEMENT	SI.8.	Use mathematics in all aspects of scientific inquiry.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education

ST ANDARD AREA / ST AT EMENT	3.2.	Physical Sciences: Chemistry and Physics
STANDARD	3.2.B.	Physics

DESCRIPTOR /3.2.5.B4aDemonstrate how electrical circuits provide a means of transferring electrical energy when heat, light, sound, and
chemical changes are produced.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.5.A1.	Explain how people use tools and techniques to help them do things.

/		
DESCRIPTOR /	3.4.5.A2.	Understand that a subsystem is a system that operates as part of a larger system.
STANDARD		

DESCRIPTOR / 3.4.5.A3. Describe how technologies are often combined. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society

DESCRIPTOR / 3.4.5.B1. Explain how the use of technology can have unintended consequences. STANDARD

SUBJECT / ST ANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design

DESCRIPTOR / 3.4.5.C1. Explain how the design process is a purposeful method of planning practical solutions to problems. STANDARD

DESCRIPTOR / 3.4.5.C2. Describe how design, as a dynamic process of steps, can be performed in different sequences and repeated. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World

DESCRIPTOR / 3.4.5.D1. Identify ways to improve a design solution. STANDARD

DESCRIPTOR / 3.4.5.D3. Determine if the human use of a product or system creates positive or negative results. STANDARD

SUBJECT / ST ANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.E.	The Designed World

DESCRIPTOR / 3.4.5.E3. Explain how tools, machines, products, and systems use energy in order to do work. STANDARD

Pennsylvania Core and Academic Standards

Science

Grade 6 - Adopted: 2010

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
STANDARD AREA / STATEMENT	SI.8.	Use mathematics in all aspects of scientific inquiry.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.2.	Physical Sciences: Chemistry and Physics
STANDARD	3.2.B.	Physics

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.6.A2.	Describe how systems thinking involves considering how every part relates to others.
DESCRIPTOR / STANDARD	3.4.6.A3.	Explain how knowledge from other fields of study (STEM) integrate to create new technologies.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.6.B2.	Describe how technologies can be used to repair damage caused by natural disasters and to break down waste from the use of various products and systems.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.6.C1.	Recognize that requirements for a design include such factors as the desired elements and features of a product or system or the limits that are placed on the design.
DESCRIPTOR / STANDARD	3.4.6.C2.	Show how models are used to communicate and test design ideas and processes.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.6.D1.	Apply a design process to solve problems beyond the laboratory classroom.

DESCRIPTOR / 3.4.6.D2. Use computers appropriately to access and organize and apply information. STANDARD

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.5.	Humans and the Environment

STANDARD 4.5.6.A. Examine how historical events have shaped the sustainable use of natural resources.

		Grade 6 - Adopted: 2014
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / ST ANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / ST ANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Range and Level of Complex Texts

STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6	Use technology, including the Internet, to produce and publish writing and present the relationships between

-8.E. information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Technology Education Grade 5 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
STANDARD AREA / STATEMENT	1B-NI.	Networks & The Internet
STANDARD		Cybersecurity

DESCRIPTOR / 1B-NI-05. Discuss real-world cybersecurity problems and how personal information can be protected. (P3.1) STANDARD

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
ST ANDARD AREA / ST AT EMENT	1B-AP.	Algorithms & Programming
STANDARD		Variables

DESCRIPTOR / 1B-AP- Create programs that use variables to store and modify data. (P5.2) STANDARD 09.

	SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
--	-------------------------------	----------	----------------------

ST ANDARD AREA / ST AT EMENT	1B-AP.	Algorithms & Programming
STANDARD		Control

DESCRIPTOR / STANDARD

1B-AP- Create 10.

Create programs that include sequences, events, loops, and conditionals. (P5.2)

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
ST ANDARD AREA / ST AT EMENT	1B-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	1B-AP- 13.	Use an iterative process to plan the development of a program by including others" perspectives and considering user preferences. (P1.1, P5.1)

DESCRIPTOR /	1B-AP-	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and
STANDARD	16.	review stages of program development. (P2.2)

SUBJECT / STANDARD AREA	CSTA.1B.	Level 1B (Ages 8-11)
STANDARD AREA / STATEMENT	1B-IC.	Impacts of Computing
STANDARD		Social Interactions

DESCRIPTOR / 1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1) STANDARD

Pennsylvania Core and Academic Standards

Technology Education Grade 6 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-DA.	Data & Analysis
STANDARD		Inference & Models

DESCRIPTOR / 2-DA-09. Refine computational models based on the data they have generated. (P5.3, P4.4) STANDARD

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Variables

DESCRIPTOR / 2-AP-11. Create clearly named variables that represent different data types and perform operations on their values. (P5.1, STANDARD P5.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Control

DESCRIPTOR / 2-AP-12. Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P5.1, P5.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity

DESCRIPTOR / 2-AP-13. Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. STANDARD (P3.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development

DESCRIPTOR / 2-AP-18. Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2) STANDARD

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions
	2 10 22	

DESCRIPTOR /2-IC-22.Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a
computational artifact. (P2.4, P5.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-IC.	Impacts of Computing
STANDARD		Safety, Law, & Ethics

DESCRIPTOR / 2-IC-23. Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2) STANDARD