Main Criteria: Forward Education

Secondary Criteria: Idaho Content Standards, Illinois Learning Standards, Indiana Academic Standards, Iowa Student Standards, Kansas Academic Standards, Kentucky Academic Standards, Louisiana Academic Standards, Maine Learning Results, Maryland College and Career-Ready Standards, Massachusetts Curriculum Frameworks, Michigan Academic Standards, Minnesota Academic Standards, Mississispipi College & Career Readiness Standards, Missouri Learning Standards, Montana Content Standards, Nepraka Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dako ta Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards

Subjects: Mathematics, Science, Technology Education

Grades: 5, 6, Key Stage 2

Forward Education

Smart Farming with Automated Watering

Idaho Content Standards

Mathematics

Grade 5 - Adopted: 2022

ST ANDARD / COURSE		Fifth Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.5.	Use appropriate tools strategically.
Content Knowledge And Skills / Goal	MP.7.	Look for and make use of structure.

ST ANDARD / COURSE	5.MD.	Measurement and Data
CONTENT KNOWLEDGE AND SKILLS / GOAL	5.MD.B.	Represent and interpret data.
GLE / BIG IDEA	5.MD.B. 2.	Collect, represent, and interpret numerical data, including whole numbers, and fractional and decimal values.

OBJECTIVE	5.MD.B.2. a.	Interpret numerical data, with whole-number values, represented with tables or line plots.
OBJECTIVE	5.MD.B.2. b.	Use graphic displays of data (line plots (dot plots), tables, etc.) to solve real-world problems using fractional data.
		Idaho Content Standards Mathematics Grade 6 - Adopted: 2022
STANDARD / COURSE		Sixth Grade Standards for Mathematical Practice
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.2.	Reason abstractly and quantitatively.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.4.	Model with mathematics.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.5.	Use appropriate tools strategically.
CONTENT KNOWLEDGE AND SKILLS / GOAL	MP.7.	Look for and make use of structure.
STANDARD / COURSE	6.RP.	Ratios and Proportional Relationships
CONTENT KNOWLEDGE AND SKILLS / GOAL	6.RP.A.	Understand ratio and rate concepts and use ratio and rate reasoning to solve problems.
GLE / BIG IDEA	6.RP.A.3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
OBJECTIVE	6.RP.A.3. a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

ST ANDARD / 6.EE. Expressions and Equations COURSE

CONTENT KNOWLEDGE AND SKILLS / GOAL	6.EE.B.	Reason about and solve one-variable equations and inequalities.
GLE / BIG IDEA	6.EE.B.5.	Understand solving an equation or inequality as a process of answering a question: Which values from a specified

6.EE.B.5. Understand solving an equation or inequality as a process of answering a question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Idaho Content Standards

Science

Grade 5 - Adopted: 2022

ST ANDARD / COURSE	5-LS.	Life Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	5-LS-1.	From Molecules to Organisms: Structure and Processes

GLE / BIG IDEA 5-LS-1.1. Support an argument that plants get what they need for growth chiefly from air, water, and energy from the Sun.

ST ANDARD / COURSE	5-LS.	Life Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	5-LS-2.	Biological Adaptation: Unity and Diversity

GLE / BIG IDEA 5-LS-2.3. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals living there may change.

STANDARD / COURSE	5-ESS.	Earth and Space Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	5-ESS- 3.	Earth and Human Activity
GLE / BIG IDEA	5-ESS-	Obtain and combine information about ways communities protect Earth's resources and environment using scientific

3.1.

ideas.

Idaho Content Standards

Science

Grade 6 - Adopted: 2022

STANDARD / COURSE	MS-PS.	Physical Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS-PS- 4.	Waves
GLE / BIG IDEA	MS-PS- 4.3.	Present qualitative scientific and technical information to support the claim that digitized signals (0s and 1s) can be used to encode and transmit information.
STANDARD /	MS-LS.	Life Science

CONTENT KNOWLEDGE AND SKILLS / GOAL	MS-LS- 2.	Ecosystems: Interactions, Energy, and Dynamics

2.6.

GLE / BIG IDEA MS-LS- Design and evaluate solutions for maintaining biodiversity and ecosystem services.

STANDARD / COURSE	MS-ESS.	Earth and Space Science
CONTENT KNOWLEDGE AND SKILLS / GOAL	MS- ESS-3.	Earth and Human Activity
gle / Big idea	MS-ESS- 3.3.	Apply scientific practices to design a method for monitoring human activity and increasing beneficial human influences on the environment.
GLE / BIG IDEA	MS-ESS-	Construct an argument based on evidence for how changes in human population and per-capita consumption of

3.4. natural resources positively and negatively affect Earth's systems.

Idaho Content Standards

Technology Education

Grade 5 - Adopted: 2017

ST ANDARD / COURSE	ID.ICT.3- 5.3.	STANDARD 3: KNOWLEDGE CONSTRUCTOR
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GLE / BIG IDEA	ICT.3- 5.3.d.	Students explore real-world problems and issues and collaborate with others to find answers or solutions.
STANDARD / COURSE	ID.ICT.3- 5.5.	STANDARD 5: COMPUTATIONAL THINKER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GLE / BIG IDEA	ICT.3- 5.5.a.	Students explore or solve problems by selecting technology for data analysis, modeling and algorithmic thinking, with guidance from an educator.
GLE / BIG IDEA	ICT.3- 5.5.c.	Students break down problems into smaller parts, identify key information, and propose solutions.
GLE / BIG IDEA	ICT.3- 5.5.d.	Students understand and explore basic concepts related to automation, patterns and algorithmic thinking.
ST ANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.IC.	Impacts of Computing (IC)
GLE / BIG IDEA		Fostering an Inclusive Computing Culture

OBJECTIVE

3-5.IC.02. Explore the connections between computer science and other fields. (Grades 3-5)

ST ANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Creating Computational Artifacts

OBJECTIVE

3-

Construct and test problem solutions using a block-based visual programming language, both independently and 5.AP.02. collaboratively (e.g. pair programming). (Grades K-5)

STANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Testing and Refining Computational Artifacts
OBJECTIVE	3-	Understand, explain and debug the sequencing in an algorithm. (Grades 3-5)

OBJECTIVE

5.AP.05.

STANDARD / ID.CS.3-5. COMPUTER SCIENCE COURSE CONTENT 3-5.AP. Algorithms and Programming (AP) **KNOWLEDGE** AND SKILLS / GOAL GLE / BIG **Creating Computational Artifacts** IDEA

OBJECTIVE

3-

3-

Construct and test problem solutions using a block-based visual programming language, both independently and 5.AP.06. collaboratively (e.g. pair programming). (Grades K-5)

ST ANDARD / COURSE	ID.CS.3-5.	COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	3-5.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Developing and Using Abstractions

OBJECTIVE

Construct an algorithm to accomplish a task, both independently and collaboratively. (Grades K-5) 5.AP.07.

Idaho Content Standards **Technology Education**

Grade 6 - Adopted: 2017

STANDARD /	ID.ICT.6-	STANDARD 3: KNOWLEDGE CONSTRUCTOR	
COURSE	8.3.		

CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 3: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GLE / BIG IDEA	ICT.6- 8.3.d.	Students explore real-world issues and problems and actively pursue an understanding of them and solutions for them.
ST ANDARD / COURSE	ID.ICT.6- 8.4.	STANDARD 4: INNOVATIVE DESIGNER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 4: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GLE / BIG IDEA	ICT.6- 8.4.b.	Students select and use digital tools to support a design process and expand their understanding to identify constraints and trade-offs and to weigh risks.
GLE / BIG IDEA	ICT.6- 8.4.d.	Students demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
ST ANDARD / COURSE	ID.ICT.6- 8.5.	STANDARD 5: COMPUTATIONAL THINKER
CONTENT KNOWLEDGE AND SKILLS / GOAL		Goal 5: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GLE / BIG IDEA	ICT.6- 8.5.a.	Students practice defining problems to solve by computing for data analysis, modeling or algorithmic thinking.
GLE / BIG IDEA	ICT.6- 8.5.b.	Students find or organize data and use technology to analyze and represent it to solve problems and make decisions and trade-offs and to weigh risks.
GLE / BIG IDEA	ICT.6- 8.5.c.	Students break problems into component parts, identify key pieces and use that information to problem solve.
GLE / BIG IDEA	ICT.6- 8.5.d.	Students demonstrate an understanding of how automation works and use algorithmic thinking to design and automate solutions.
ST ANDARD / COURSE	ID.CS.6-8	.COMPUTER SCIENCE
CONTENT KNOWLEDGE AND SKILLS / GOAL	6-8.AP.	Algorithms and Programming (AP)
GLE / BIG IDEA		Communicating About Computing
OBJECTIVE	6- 8.AP.02.	Compare different algorithms that may be used to solve the same problem by time and space efficiency. (Grades 6- 8)

Illinois Learning Standards Mathematics Grade 5 - Adopted: 2010

STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.5.	Use appropriate tools strategically.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.7.	Look for and make use of structure.

Illinois Learning Standards

Mathematics Grade 6 - Adopted: 2010

STATE GOAL / DISCIPLINARY CONCEPT	IL.K- 12.MP.	Mathematical Practices
LEARNING STANDARD / DISCIPLINE	K- 12.MP.1.	Make sense of problems and persevere in solving them.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.2.	Reason abstractly and quantitatively.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.3.	Construct viable arguments and critique the reasoning of others.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.4.	Model with mathematics.
LEARNING STANDARD / DISCIPLINE	K- 12.MP.5.	Use appropriate tools strategically.

LEARNING	K-	Look for and make use of structure.
STANDARD /	12.MP.7.	
DISCIPLINE		

STATE GOAL / DISCIPLINARY CONCEPT	IL.6.RP.	Ratios and Proportional Relationships
LEARNING ST ANDARD / DISCIPLINE		Understand ratio concepts and use ratio reasoning to solve problems.
DESCRIPTOR / CONTENT DISCIPLINE		Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

STANDARD

3.a.

CC.6.RP. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

STATE GOAL / DISCIPLINARY CONCEPT	IL.6.EE.	Expressions and Equations
LEARNING ST ANDARD / DISCIPLINE		Reason about and solve one-variable equations and inequalities.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6.EE. 5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Illinois Learning Standards

Science

Grade 5 - Adopted: 2014

STATE GOAL / DISCIPLINARY CONCEPT	IL.5-LS.	LIFE SCIENCE
LEARNING ST ANDARD / DISCIPLINE	5-LS1.	From Molecules to Organisms: Structures and Processes
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:

STANDARD 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

STATE GOAL / DISCIPLINARY CONCEPT	IL.5-ESS.	EARTH AND SPACE SCIENCE
LEARNING ST ANDARD / DISCIPLINE	5-ESS3.	Earth and Human Activity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:

5-ESS3- Obtain and combine information about ways individual communities use science ideas to protect the Earth's STANDARD 1. resources and environment.

STATE GOAL / DISCIPLINARY CONCEPT	IL.3-5- ETS.	ENGINEERING DESIGN
LEARNING ST ANDARD / DISCIPLINE	3-5- ET S1.	Engineering Design
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Illinois Learning Standards Science Grade 6 - Adopted: 2014

STATE GOAL / DISCIPLINARY CONCEPT	IL.MS-LS.	
LEARNING ST ANDARD / DISCIPLINE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:

STANDARD MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. 5.

STATE GOAL / DISCIPLINARY CONCEPT	IL.MS- ESS.	EARTH AND SPACE SCIENCE
LEARNING STANDARD / DISCIPLINE	MS- ESS3.	Earth and Human Activity
DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

STATE GOAL / DISCIPLINARY CONCEPT	IL.MS- ETS.	ENGINEERING DESIGN
LEARNING STANDARD / DISCIPLINE	MS- ET S1.	Engineering Design

DESCRIPTOR / CONTENT DISCIPLINE		Students who demonstrate understanding can:
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Key Ideas and Details
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Craft and Structure
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
LEARNING ST ANDARD / DISCIPLINE		Integration of Knowledge and Ideas
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.RST.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

DESCRIPTOR /CC.6-Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with thatCONTENT8.RST.9.gained from reading a text on the same topic.DISCIPLINE

DISCIPLINARY 8.RST. CONCEPT	
LEARNING STANDARD / DISCIPLINE	Range of Reading and Level of Text Complexity

 DESCRIPTOR /
 CC.6 By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

 CONTENT
 8.RST.10.
 independently and proficiently.

 DISCIPLINE

STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Text Types and Purposes
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
STANDARD	CC.6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.

STATE GOAL / DISCIPLINARY CONCEPT	IL.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
LEARNING STANDARD / DISCIPLINE		Production and Distribution of Writing
DESCRIPTOR / CONTENT DISCIPLINE	CC.6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
DESCRIPTOR / CONTENT	CC.6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Illinois Learning Standards Technology Education Grade 5 - Adopted: 2022

DISCIPLINE

.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.

DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
DESCRIPTOR / CONTENT DISCIPLINE	6	Testing and refining computational artifacts.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.CS.	Computing Systems
STANDARD		Troubleshooting
EXPECTATION	3- 5.CS.03.	Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.DA.	Data and Analysis
STANDARD		Interference and Models
EXPECTATION	3- 5.DA.07.	Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Algorithms

5.AP.08.

EXPECTATION 3- Compare and refine multiple algorithms for the same task and determine which is the most appropriate.

STATE GOAL / DISCIPLINARY CONCEPT	Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE	Computer Science Standards

DESCRIPTOR / CONTENT DISCIPLINE	3-5.AP.	Algorithms and Programming
STANDARD		Modularity

```
EXPECTATION
```

3-

Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. 5.AP.11.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	3-5.ET.	Emerging and Future Technologies

STANDARD

3-5.ET.E. Create new or original work by applying emerging technologies.

Grade 5 - Adopted: 2016		
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR /	ISTE-	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing

oping CONTENT S.3.d. answers and solutions. DISCIPLINE

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
	1075	

DESCRIPTOR /	ISTE-	Select and use digital tools to plan and manage a design process that considers design constraints and calculated
CONTENT	S.4.b.	risks.
DISCIPLINE		

STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING ST ANDARD / DISCIPLINE	IL.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.

DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Illinois Learning Standards
		Technology Education
		Grade 6 - Adopted: 2022
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Practices
DESCRIPTOR / CONTENT DISCIPLINE	3	Recognizing and defining computational problems.
DESCRIPTOR / CONTENT DISCIPLINE	5	Creating computational artifacts.
DESCRIPTOR / CONTENT DISCIPLINE	6	Testing and refining computational artifacts.
STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.CS.	Computing Systems
STANDARD		Troubleshooting
EXPECTATION	6- 8.CS.03.	Systematically identify and fix problems with computing devices and their components.
STATE GOAL /		Illinois Computer Science Standards

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Algorithms

EXPECTATION 6-

8.AP.11.

Use flowcharts or pseudocode to address complex problems as algorithms.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.AP.	Algorithms and Programming
STANDARD		Modularity

EXPECTATION 6-

8.AP.14.

Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING STANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.IC.	Impacts of Computing
STANDARD		Social Interactions

EXPECTATION 6-8.IC.23. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact.

STATE GOAL / DISCIPLINARY CONCEPT		Illinois Computer Science Standards
LEARNING ST ANDARD / DISCIPLINE		Computer Science Standards
DESCRIPTOR / CONTENT DISCIPLINE	6-8.ET.	Emerging and Future Technologies

STANDARD 6-8.ET.E. Create new or original work by applying emerging technologies.

		Grade 6 - Adopted: 2016
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students

LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STATE GOAL / DISCIPLINARY CONCEPT		ISTE Standards for Students
LEARNING STANDARD / DISCIPLINE	IL.ISTE- S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
DESCRIPTOR / CONTENT DISCIPLINE	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
DESCRIPTOR / CONTENT	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
DISCIPLINE	3.3.0.	

Indiana Academic Standards

DISCIPLINE

Mathematics

Grade 5 - Adopted: 2023

STANDARD / STRAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.5:	Use appropriate tools strategically.

Indiana Academic Standards Mathematics

Grade 6 - Adopted: 2023

STANDARD / STRAND		Mathematics Process Standards
PROFICIENCY STATEMENT / SUBSTRAND	PS.1:	Make sense of problems and persevere in solving them.
PROFICIENCY STATEMENT / SUBSTRAND	PS.2:	Reason abstractly and quantitatively.
PROFICIENCY STATEMENT / SUBSTRAND	PS.3:	Construct viable arguments and critique the reasoning of others.
PROFICIENCY STATEMENT / SUBSTRAND	PS.4:	Model with mathematics.
PROFICIENCY STATEMENT / SUBSTRAND	PS.5:	Use appropriate tools strategically.
PROFICIENCY	PS.7:	Look for and make use of structure.

PROFICIENCY	PS.7:	Look for and make use of structure.
STATEMENT /		
SUBSTRAND		

STANDARD / STRAND		Grade 6 Mathematics
PROFICIENCY STATEMENT / SUBSTRAND		Ratios and Proportional Reasoning – Learning Outcome: Students use ratios and reasoning to compare two quantities and understand unit rate. Students use ratios and unit rates to model and solve real-world problems.
INDICATOR / STANDARD	6.RP.3.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane.
INDICATOR / STANDARD	6.RP.4.	Solve real-world and other mathematical problems involving rates and ratios using models and strategies such as reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. (E)

Indiana Academic Standards

Science

Grade 5 - Adopted: 2023

ST ANDARD / ST RAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models

PROFICIENCY STATEMENT / SUBSTRAND	SEP.3.	Planning and carrying out investigations
PROFICIENCY STATEMENT / SUBSTRAND	SEP.4.	Analyzing and interpreting data
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)
PROFICIENCY STATEMENT / SUBSTRAND	SEP.8.	Obtaining, evaluating, and communicating information
STANDARD / STRAND		Grade 5
PROFICIENCY STATEMENT / SUBSTRAND	5-LS1-1.	From Molecules to Organisms: Structures and Processes
INDICATOR / STANDARD	5-LS1-1.	Support an argument that plants get the materials they need for growth chiefly from air and water.
STANDARD / STRAND		Grade 5
PROFICIENCY STATEMENT / SUBSTRAND	5-ESS3- 1.	Earth and Human Activity
INDICATOR / STANDARD	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.
STANDARD / STRAND		Grade 5
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ET S1-1.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / STRAND		Grade 5
PROFICIENCY STATEMENT / SUBSTRAND	3-5- ET S1-2.	Engineering Design
INDICATOR / STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / STRAND		Grade 5

PROFICIENCY STATEMENT / SUBSTRAND	3-5- ET S1-3.	Engineering Design
INDICATOR /	3-5-	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of
STANDARD	ETS1-3.	a model or prototype that can be improved.

Indiana Academic Standards

Science

Grade 6 - Adopted: 2023

ST ANDARD / ST RAND		Science and Engineering Practices
PROFICIENCY STATEMENT / SUBSTRAND	SEP.2.	Developing and using models
PROFICIENCY STATEMENT / SUBSTRAND	SEP.3.	Planning and carrying out investigations
PROFICIENCY STATEMENT / SUBSTRAND	SEP.4.	Analyzing and interpreting data
PROFICIENCY STATEMENT / SUBSTRAND	SEP.6.	Constructing explanations (for science) and designing solutions (for engineering)
PROFICIENCY STATEMENT / SUBSTRAND	SEP.8.	Obtaining, evaluating, and communicating information
ST ANDARD / ST RAND		Grade 6
PROFICIENCY STATEMENT / SUBSTRAND	MS-LS2- 5.	Ecosystems: Interactions, Energy, and Dynamics

INDICATOR /MS-LS2-Evaluate competing design solutions for maintaining biodiversity and ecosystem services.STANDARD5.

possible solutions.

ST ANDARD / ST RAND		Grade 6
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-1.	Engineering Design
INDICATOR / STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

STANDARD / STRAND		Grade 6
PROFICIENCY STATEMENT / SUBSTRAND	MS- ET S1-2.	Engineering Design

INDICATOR /MS-Evaluate competing design solutions using a systematic process to determine how well they meet the criteria andSTANDARDETS1-2.constraints of the problem.

STANDARD / STRAND		Grade 6
PROFICIENCY STATEMENT / SUBSTRAND	MS- ETS1-4.	Engineering Design
INDICATOR /	MS-	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such

STANDARD ETS1-4. that an optimal design can be achieved.

Indiana Academic Standards Technology Education

Grade 5 - Adopted: 2023

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Data & Information
INDICATOR / STANDARD	Learning Outcome: Students select aspects and portions of data to be transformed, clustered, and categorized to provide views and insights about the data.

EXPECTATION / 3-5.DI.1. Decompose problems and subproblems into parts as a means to solving complex problems. (E) INDICATOR

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Computing Devices & Systems
INDICATOR / STANDARD	Learning Outcome: Students identify similarities between computing systems to troubleshoot common problems and choose appropriate combinations of hardware and software to accomplish desired tasks.

EXPECTATION / 3-5.CD.2. Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies. (E)

STANDARD / STRAND	Computer Science
PROFICIENCY STATEMENT / SUBSTRAND	Programs & Algorithms
INDICATOR / STANDARD	Learning Outcome: Students collaboratively engage in computer program development with consideration of documenting design choices and giving appropriate attributions.

EXPECTATION / 3-5.PA.1. Collaborate with peers to implement problem-solving steps to create a variety of programming solutions. (E) INDICATOR

Indiana Academic Standards

Technology Education

Grade 6 - Adopted: 2023

PROFICIENCY STATEMENT / SUBSTRAND		Data & Information
INDICATOR / STANDARD		Learning Outcome: Students identify and implement multiple means of representing complex algorithms to communicate how applications store data as a representation understandable by people.
EXPECTATION / INDICATOR	6-8.DI.1.	Decompose (i.e., break down) problems into smaller, more manageable subsets by applying the algorithmic problem solving steps to make the possible solutions easier to follow, test, and debug. (E)

EXPECTATION / 6-8.DI.4. Create visuals such as flowcharts, diagrams, and pseudocode to represent complex problems as algorithms. (E) INDICATOR

STANDARD / STRAND		Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Computing Devices & Systems
INDICATOR / STANDARD		Learning Outcome: Students explain trade-offs, functionality, and accessibility of computer systems to improve the human-computer interaction.
EXPECTATION /	6-8 CD 1	Design projects that combine hardware and software components to collect and exchange data (E)

EXPECTATION / 6-8.CD.1. Design projects that combine hardware and software components to collect and exchange data. (E) INDICATOR

EXPECTATION /	6-8.CD.2.	Systematically identify and fix problems (i.e., troubleshoot) with computing devices and their components (e.g.,
INDICATOR		checklist, decision tree, flowchart).

ST ANDARD / ST RAND		Computer Science
PROFICIENCY STATEMENT / SUBSTRAND		Impact & Culture
INDICATOR / STANDARD		Learning Outcome: Students explain that society is faced with trade-offs due to the increasing globalization and automation that computing brings, as well as describe these trade-offs using multiple viewpoints from a diverse audience.
ΕΧΡΕΩΤΑΤΙΟΝΙ /	6-8103	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a

EXPECTATION /6-8.IC.3.Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a
computational artifact.

Iowa Student Standards Mathematics

Grade 5 - Adopted: 2012

STRAND / COURSE		Mathematical Practices
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.

ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.
ESSENTIAL CONCEPT AND/OR SKILL	5	Use appropriate tools strategically.
ESSENTIAL CONCEPT AND/OR SKILL	7	Look for and make use of structure.

Iowa Student Standards Mathematics Grade 6 - Adopted: 2012

Grade 6 - Adopted: 2012			
STRAND / COURSE		Mathematical Practices	
ESSENTIAL CONCEPT AND/OR SKILL	1	Make sense of problems and persevere in solving them.	
ESSENTIAL CONCEPT AND/OR SKILL	2	Reason abstractly and quantitatively.	
ESSENTIAL CONCEPT AND/OR SKILL	3	Construct viable arguments and critique the reasoning of others.	
ESSENTIAL CONCEPT AND/OR SKILL	4	Model with mathematics.	
ESSENTIAL CONCEPT AND/OR SKILL	5	Use appropriate tools strategically.	
ESSENTIAL CONCEPT AND/OR SKILL	7	Look for and make use of structure.	
STRAND / COURSE	6.RP.	Ratios and Proportional Relationships 6.RP	
ESSENTIAL CONCEPT AND/OR SKILL	6.RP.A.	Understand ratio concepts and use ratio reasoning to solve problems. (6.RP.A)	
DET AILED DESCRIPT OR	6.RP.A.3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	
GRADE LEVEL EXPECTATION	6.RP.A.3. a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	

STRAND / COURSE	6.EE.	Expressions and Equations 6.EE
--------------------	-------	--------------------------------

ESSENTIAL CONCEPT AND/OR SKILL	6.EE.B.	Reason about and solve one-variable equations and inequalities. (6.EE.B)
DETAILED DESCRIPTOR	6.EE.B.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. (6.EE.B.5) (DOK 1)

lowa Student Standards Science Grade 5 - Adopted: 2015

STRAND /
COURSEIA.5-LS1.From Molecules to Organisms: Structures and ProcessesESSENTIAL
CONCEPT
AND/OR SKILLStudents who demonstrate understanding can:

DETAILED 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. DESCRIPTOR

STRAND / COURSE	IA.5- ESS3.	Earth and Human Activity
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

STRAND / COURSE	IA.3-5- ET S1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
DETAILED DESCRIPTOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

lowa Student Standards Science

Grade 6 - Adopted: 2015

STRAND / COURSE	IA.MS- ET S1.	Engineering Design
ESSENTIAL CONCEPT AND/OR SKILL		Students who demonstrate understanding can:
DETAILED DESCRIPTOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

DETAILED DESCRIPTOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
DETAILED DESCRIPTOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2016
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Key Ideas and Details
DETAILED DESCRIPTOR	RST.6- 8.2.	Determine the central ideas or conclusions of a distinct from prior knowledge or opinions. (RST.6-8.2.)
DETAILED DESCRIPTOR	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (RST.6-8.3.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Craft and Structure
DETAILED DESCRIPTOR	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. (RST.6-8.4.)
DETAILED DESCRIPTOR	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic. (RST.6-8.5.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Integration of Knowledge and Ideas
DETAILED DESCRIPTOR	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (RST.6-8.7.)
DETAILED DESCRIPTOR	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (RST.6-8.9.)
STRAND / COURSE	IA.CC.RS T.6-8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Range of Reading and Level of Text Complexity
DETAILED DESCRIPTOR	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently. (RST.6-8.10.)
STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects

ESSENTIAL CONCEPT AND/OR SKILL	Text Types and Purposes
DET AILED DESCRIPT OR	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVELWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic. (WHST.6-8.2.)EXPECTATION8.2.d.

STRAND / COURSE	IA.CC.WH ST.6-8.	Writing Standards for Literacy Science, and Technical Subjects
ESSENTIAL CONCEPT AND/OR SKILL		Production and Distribution of Writing
DETAILED DESCRIPTOR	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (WHST.6-8.4.)
DETAILED DESCRIPTOR	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently. (WHST.6-8.6.)

Iowa Student Standards

Technology Education

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPT OR	1B-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Program Development
EXAMPLE	1B-AP- 13.	Use an iterative process to plan the development of a program by including others'' perspectives and considering user preferences. (P1.1, P5.1)
EXAMPLE	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
EXAMPLE	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.1 B.	Level 1B (Ages 8-11)
DET AILED DESCRIPT OR	1B-IC.	Impacts of Computing
GRADE LEVEL EXPECT AT ION		Social Interactions

Technology Education

Grade 6 - Adopted: 2018

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Algorithms

EXAMPLE

2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPTOR	2-AP.	Algorithms & Programming
GRADE LEVEL EXPECTATION		Modularity

EXAMPLE

2-AP-13. Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)

STRAND / COURSE		CSTA K-12 Computer Science Standards
ESSENTIAL CONCEPT AND/OR SKILL	CSTA.2.	Level 2 (Ages 11-14)
DET AILED DESCRIPT OR	2-IC.	Impacts of Computing
GRADE LEVEL EXPECTATION		Social Interactions

EXAMPLE 2-IC-22. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

Kansas Academic Standards

Mathematics

Grade 5 - Adopted: 2017

STANDARD	MP.	Standards for Mathematical Practice
BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.

BENCHMARK	MP.5.	Use appropriate tools strategically.
BENCHMARK	MP.7.	Look for and make use of structure.
		Kansas Academic Standards Mathematics Grade 6 - Adopted: 2017
STANDARD	MP.	Standards for Mathematical Practice
BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2.	Reason abstractly and quantitatively.
BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4.	Model with mathematics.
BENCHMARK	MP.5.	Use appropriate tools strategically.
BENCHMARK	MP.7.	Look for and make use of structure.
STANDARD	6.RP.	Ratios and Proportional Relationships
BENCHMARK		Understand ratio concepts and use ratio reasoning to solve problems.
INDICATOR / PROFICIENCY LEVEL	6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, (e.g. by reasoning about tables of equivalent ratios, tape diagrams, double number line diagram, or using calculations.)
INDICATOR	6.RP.3a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find the missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

STANDARD	6.EE.	Expressions and Equations
BENCHMARK		Reason about and solve one-variable equations and inequalities.
INDICATOR / PROFICIENCY LEVEL	6.EE.4.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Kansas Academic Standards

Science

Grade 5 - Adopted: 2013

STANDARD	KS.5-LS.	LIFE SCIENCE
BENCHMARK	5-LS1.	From Molecules to Organisms: Structures and Processes
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

INDICATOR 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

STANDARD	KS.5- ESS.	EARTH AND SPACE SCIENCE			
BENCHMARK	5-ESS3.	Earth and Human Activity			
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:			
INDICATOR	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.			
STANDARD	KS.3-5- ETS.	ENGINEERING DESIGN			
BENCHMARK	3-5- ETS1.	Engineering Design			
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:			
INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.			
INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criter and constraints of the problem.			
INDICATOR	3-5-	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of			

Kansas Academic Standards

Science

Grade 6 - Adopted: 2013

STANDARD	KS.MS- LS.	LIFE SCIENCE					
BENCHMARK	MS-LS2.	cosystems: Interactions, Energy, and Dynamics					
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:					

INDICATOR MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. 5.

a model or prototype that can be improved.

ETS1-3.

STANDARD	KS.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
INDICATOR	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

STANDARD	KS.MS- ETS.								
BENCHMARK	MS- ET S1.	Engineering Design							
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:							
INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.							
INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.							
INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.							
		Grade 6 - Adopted: 2010							
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects							
BENCHMARK		Key Ideas and Details							
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.							
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing teo tasks.							
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects							
BENCHMARK		Craft and Structure							
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.							
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.							
STANDARD	KS.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects							
BENCHMARK		Integration of Knowledge and Ideas							
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).							
INDICATOR / PROFICIENCY LEVEL	RST.6- 8.9.								

STANDARD	KS.RST.6 Reading Standards for Literacy in Science and Technical Subjects -8.							
BENCHMARK		Range of Reading and Level of Text Complexity						
INDICATOR /	RST.6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band						

PROFICIENCY 8.10. independently and proficiently. LEVEL

	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Text Types and Purposes
INDICATOR / PROFICIENCY LEVEL		Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

INDICATOR

LEVEL

WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic. 8.2(d)

STANDARD	KS.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects					
BENCHMARK		Production and Distribution of Writing					
INDICATOR / PROFICIENCY LEVEL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.					
INDICATOR / PROFICIENCY	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.					

Kansas Academic Standards

Technology Education

STANDARD		omputer Science Standards – Grade 5							
BENCHMARK		Algorithms and Programming							
INDICATOR / PROFICIENCY LEVEL		Modularity							
INDICATOR	5.AP.M.0 2.	With grade appropriate complexity, modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features.							

work, to deve	lop s	something	new o	or add r	nore	advanced	features	

STANDARD	Computer Science Standards – Grade 5
BENCHMARK	Algorithms and Programming
INDICATOR / PROFICIENCY LEVEL	Program Development

INDICATOR 5.AP.PD. Take on varying roles collaborating with peers to give feedback at different stages of program development, 04. including design and implementation.

> Kansas Academic Standards Technology Education Grade 6 - Adopted: 2019

STANDARD	Computer Science Standards - Middle Grades
BENCHMARK	Algorithms and Programing
INDICATOR / PROFICIENCY LEVEL	Program Development

INDICATOR

MG.AP.P Seek and incorporate feedback from team members and users to refine a solution to a problem that meets the D.01. needs of diverse users.

Kentucky Academic Standards

Mathematics

Grade 5 - Adopted: 2019

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.5.	Use appropriate tools strategically.
CATEGORY / GOAL	MP.7.	Look for and make use of structure.

Kentucky Academic Standards

Mathematics Grade 6 - Adopted: 2019

STRAND		Standards for Mathematical Practices
CATEGORY / GOAL	MP.1.	Make sense of problems and persevere in solving them.
CATEGORY / GOAL	MP.2.	Reason abstractly and quantitatively.
CATEGORY / GOAL	MP.3.	Construct viable arguments and critique the reasoning of others.
CATEGORY / GOAL	MP.4.	Model with mathematics.
CATEGORY / GOAL	MP.5.	Use appropriate tools strategically.

Look for and make use of structure.

STRAND		Ratios and Proportional Relationships
CATEGORY/ GOAL		Cluster: Understanding ratio concepts and use ratio reasoning to solve problems.
ST ANDARD / ORGANIZER	KY.6.RP .3.	Use ratio and rate reasoning to solve real-world and mathematical problems. (MP.1, MP.4, MP.7)

EXPECTATION

3.a.

KY.6.RP. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

STRAND		Expressions and Equations
CATEGORY / GOAL		Cluster: Reason about and solve one-variable equation and inequalities.
STANDARD / ORGANIZER	KY.6.EE. 5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified

Kentucky Academic Standards

set makes an equation or inequality true. (MP.1, MP.2, MP.7)

Science

Grade	5 -	Adopted: 2022
-------	-----	---------------

STRAND		Fifth Grade
CATEGORY / GOAL	5-LS1-1.	Support an argument that plants get the materials they need for growth chiefly from air and water.
CATEGORY / GOAL	5-ESS3- 1.	Obtain and combine information about solutions individual communities use to protect the Earth's resources and environment.
STRAND		3-5 Engineering Design
CATEGORY / GOAL	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CATEGORY / GOAL	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CATEGORY / GOAL	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
		Kentucky Academic Standards Science

Grade 6 - Adopted: 2022 STRAND 6-8 Engineering Design CATEGORY / MS-Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking GOAL ETS1-1. into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

CATEGORY / GOAL	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CATEGORY /	MS-	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such

GOAL

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such ETS1-4. that an optimal design can be achieved.

Kentucky Academic Standards

Technology Education

Grade 5 - Adopted: 2018

STRAND		Kentucky Academic Standards (KAS) for Computer Science			
CATEGORY/ GOAL		lgorithms and Programming			
ST ANDARD / ORGANIZER	E-AP- 01.	Freate, follow, compare and refine algorithms for a task. Algorithms (step-by-step instructions) are ommon in many primary classrooms. Just as people use algorithms to complete daily routines, they an program computers to use algorithms to complete different tasks. Algorithms are commonly nplemented using a precise language that computers can interpret. Different algorithms can be used o perform the same task. While the end results may be similar, the paths may be different. Students hould be able to look at different ways to solve the same task and decide which would be the best olution. Algorithms can be expressed in non-computer languages, including natural language, owcharts, and pseudocode.			
EXPECTATION		Algorithms			
INDICATOR	E-AP- 01.5.	Modify a set of algorithms and discuss how multiple paths can lead to the same solution.			

Grade 5 - Adopted: 2015

STRAND	Technology – Intermediate
CATEGORY/ GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
STANDARD / ORGANIZER	Academic Expectations

EXPECTATION

I.BI1.AE.6 Students connect knowledge and experiences from different subject areas.

STRAND		Technology – Intermediate
CATEGORY <i> </i> GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		Academic Expectations
EXPECTATION	I.BI3.AE.5 .5.	Students use problem-solving processes to develop solutions to relatively complex problems.
EXPECTATION	I.BI3.AE.6	Students connect knowledge and experiences from different subject areas.

.1.

STRAND	Technology – Intermediate
CATEGORY/ GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.

^{.1.}

STANDARD / ORGANIZER		Intermediate Enduring Knowledge – Understandings
EXPECTATION	I.BI3.EK.1.	Technology assists in gathering, organizing and evaluating information from a variety of sources to answer essential questions.
EXPECTATION	I.BI3.EK.2.	Technology supports critical thinking skills used in inquiry/problem solving to make informed decisions.
STRAND		Technology – Intermediate
CATEGORY / GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER		Intermediate Skills and Concepts – Inquiry/Problem-solving
EXPECTATION	I.BI3.SC2. 2.	Use technology to solve problems using critical thinking and problem-solving strategies.

EXPECTATION

I.BI3.SC2. Solve content-specific problems using a combination of technologies.

3.

STRAND		Technology – Intermediate
CATEGORY <i>I</i> GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER		Intermediate Skills and Concepts – Innovation
EXPECTATION	I.BI3.SC3. 1.	Use technology to organize and develop creative solutions, ideas or product.

Kentucky Academic Standards

Technology Education

Grade 6 - Adopted: 2015

STRAND	Technology – Middle
CATEGORY / GOAL	Big Idea: Information, Communication and Productivity – Students demonstrate a sound understanding of the nature and operations of technology systems. Students use technology to learn, to communicate, increase productivity and become competent users of technology. Students manage and create effective oral, written and multimedia communication in a variety of forms and contexts.
STANDARD / ORGANIZER	Academic Expectations

EXPECTATION M.BI1.AE. Students connect knowledge and experiences from different subject areas. 6.1.

STRAND	Technology – Middle
CATEGORY / GOAL	Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
STANDARD / ORGANIZER	Academic Expectations

EXPECTATION

M.BI3.AE. Students use problem-solving processes to develop solutions to relatively complex problems.

EXPECTATION

6.1.

 ${\sf M.BI3.AE}. \hspace{0.1in} {\sf Students} \hspace{0.1in} {\sf connect} \hspace{0.1in} {\sf knowledge} \hspace{0.1in} {\sf and} \hspace{0.1in} {\sf experiences} \hspace{0.1in} {\sf from} \hspace{0.1in} {\sf different} \hspace{0.1in} {\sf subject} \hspace{0.1in} {\sf areas}.$

 STRAND
 Technology – Middle

 CATEGORY / GOAL
 Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.

 ST ANDARD / ORGANIZER
 Middle Enduring Knowledge – Understandings

EXPECTATION M.BI3.EK. Technology problem solving strategies is applied to innovative design for authentic, creative and real-world 5. applications.

STRAND		Technology – Middle
CATEGORY / GOAL		Big Idea: Research, Inquiry/Problem-Solving and Innovation – Students understand the role of technology in research and experimentation. Students engage technology in developing solutions for solving problems in the real world. Students will use technology for original creation and innovation.
ST ANDARD / ORGANIZER		Middle Skills and Concepts – Inquiry/Problem-solving
EXPECTATION	M.BI3.SC	Use appropriate technology and strategies to solve content-specific problems in the real-world.

2.1.

. . . .

Louisiana Academic Standards Mathematics

Grade 5 - Adopted: 2016/Updated 2017

STRAND		Standards for Mathematical Practice
TITLE	MP.1.	Make sense of problems and persevere in solving them.
TITLE	MP.2.	Reason abstractly and quantitatively.
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.
TITLE	MP.4.	Model with mathematics.
TITLE	MP.5.	Use appropriate tools strategically.
TITLE	MP.7.	Look for and make use of structure.

Louisiana Academic Standards

Mathematics

STRAND		Standards for Mathematical Practice	
TITLE	MP.1.	Make sense of problems and persevere in solving them.	
TITLE	MP.2.	Reason abstractly and quantitatively.	
TITLE	MP.3.	Construct viable arguments and critique the reasoning of others.	

TITLE	MP.4.	Model with mathematics.
TITLE	MP.5.	Use appropriate tools strategically.
TITLE	MP.7.	Look for and make use of structure.
STRAND	6.RP.	Ratios and Proportional Relationships
TITLE	6.RP.A.	Understand ratio concepts and use ratio reasoning to solve problems.
PERFORMANC E EXPECTATION	6.RP.A.3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
INDICATOR	6.RP.A.3. a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
STRAND	6.EE.	Expressions and Equations
TITLE	6.EE.B.	Reason about and solve one-variable equations and inequalities.

PERFORMANC6.EE.B.5.Understand solving an equation or inequality as a process of answering a question: which values from a specifiedEset, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specifiedEXPECTATIONset makes an equation or inequality true.

Louisiana Academic Standards

Science

Grade 5 - Adopted: 2017

STRAND	LA.SC.5.	Science – Grade 5
TITLE	5-LS1.	FROM MOLECULES TO ORGANISMS: STRUCTURES AND PROCESSES

PERFORMANC	5-LS1-1.	Ask questions about how air and water affect the growth of plants.
E		

EXPECTATION

STRAND	LA.SC.5.	Science – Grade 5
TITLE	5-ESS3.	EARTH AND HUMAN ACTIVITY
PERFORMANC E	5-ESS3- 1.	Generate and compare multiple solutions about ways individual communities can use science to protect the Earth's resources and environment.

EXPECTATION

Louisiana Academic Standards

Science

Grade 6 - Adopted: 2017

STRAND	LA.SC.6.	Science – Grade 6
TITLE	6-MS- ESS1.	EARTH'S PLACE IN THE UNIVERSE
PERFORMANC E EXPECTATION	6-MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
Technology Education

Grade 5 - Adopted: 2008

STRAND	LA.ET.	Educational Technology
TITLE		PreK-12 Educational Technology Content Standards
PERFORMANC E EXPECTATION	ET.4.	Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.

STRAND	LA.ET.	Educational Technology	
TITLE		Performance Indicators for Grades 3-5	
PERFORMANC E EXPECTATION	ET.E.	Identify and investigate a world issue and generate a possible solution using digital tools and resources. (3, 4)	

Louisiana Academic Standards Technology Education

Grade 6 - Adopted: 2008

STRAND	LA.ET.	Educational Technology	
TITLE		PreK-12 Educational Technology Content Standards	
PERFORMANC E EXPECTATION	ET.4.	Critical Thinking, Problem Solving, and Decision Making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.	

Maine Learning Results

Mathematics

Grade 5 - Adopted: 2020/Implemented 2020

STRAND / DOMAIN		Standards for Mathematical Practice	
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.	
CATEGORY / PERFORMANC E INDICATOR	MP2.	Reason abstractly and quantitatively: Students will think about numbers in many ways and make sense of numer relationships as they solve problems.	
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sens of the thinking of others.	
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.	
CATEGORY / PERFORMANC E INDICATOR	MP5.	Use appropriate tools strategically: Students will use math tools such as tables, diagrams, and technology to explore and deepen their understanding of concepts.	

Look for and make use of structure: Students will use their current mathematical understandings to identify patterns and structure to make sense of new learning.

Maine Learning Results Mathematics

Grade 6 - Adopted: 2020/Implemented 2020

STRAND / DOMAIN		Standards for Mathematical Practice			
CATEGORY / PERFORMANC E INDICATOR	MP1.	Make sense of problems and persevere in solving them: Students will plan strategies to use and persevere in solving math problems.			
CATEGORY / PERFORMANC E INDICATOR	MP2.	ison abstractly and quantitatively: Students will think about numbers in many ways and make sense of numerical tionships as they solve problems.			
CATEGORY / PERFORMANC E INDICATOR	MP3.	Construct viable arguments and critique the reasoning of others: Students will explain their thinking and make sense of the thinking of others.			
CATEGORY / PERFORMANC E INDICATOR	MP4.	Model with mathematics: Students will use representations to show their thinking in a variety of ways.			
CATEGORY / PERFORMANC E INDICATOR	MP5.	Use appropriate tools strategically: Students will use math tools such as tables, diagrams, and technology to explore and deepen their understanding of concepts.			
CATEGORY / PERFORMANC	MP7.	Look for and make use of structure: Students will use their current mathematical understandings to identify patterns and structure to make sense of new learning.			

CATEGORY / MP7. Look for and make use of structure: Students will use their current mathematical understandings to identify patterns PERFORMANC and structure to make sense of new learning. E INDICATOR

STRAND / DOMAIN		Quantitative Reasoning – Ratio and Proportional Relationships
CATEGORY / PERFORMANC E INDICATOR	QR.EA.1	Understand ratio and rate concepts and use ratio and rate reasoning to solve problems.
STANDARD	6.RP.A.3 :	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

EXPECTATION 6.1 a:

6.RP.A.3 Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the a: tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

STRAND / DOMAIN		Algebraic Reasoning – Expressions and Equations
CATEGORY / PERFORMANC E INDICATOR	AR.EA.2	Reason about and solve one-variable equations and inequalities.
STANDARD	6.EE.B.5:	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Maine Learning Results Science

Grade 5 - Adopted: 2019

STRAND / DOMAIN	NGSS.5- LS.	LIFE SCIENCE	
CATEGORY / PERFORMANC E INDICATOR	5-LS1.	From Molecules to Organisms: Structures and Processes	
STANDARD		Students who demonstrate understanding can:	

EXPECTATION 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

STRAND / DOMAIN	NGSS.5- ESS.	EARTH AND SPACE SCIENCE
CATEGORY / PERFORMANC E INDICATOR	5-ESS3.	Earth and Human Activity
STANDARD		Students who demonstrate understanding can:

EXPECTATION 5-ESS3- Obtain and combine information about ways individual communities use science ideas to protect the Earth's 1. resources and environment.

STRAND / DOMAIN	NGSS.3- 5-ETS.	ENGINEERING DESIGN	
CATEGORY / PERFORMANC E INDICATOR	3-5- ETS1.	Engineering Design	
STANDARD		Students who demonstrate understanding can:	
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and onstraints on materials, time, or cost.	
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the crite and constraints of the problem.	
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	

Maine Learning Results Science

Grade 6 - Adopted: 2019

FRAND / NG OMAIN -LS.			
ATEGORY / MS ERFORMANC INDICATOR	S-LS2.	Ecosystems: Interactions, Energy, and Dynamics	
TANDARD		Students who demonstrate understanding can:	

EXPECTATION MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

F		
Э		

STRAND /	NGSS.MS	EARTH AND SPACE SCIENCE
DOMAIN	-ESS.	

CATEGORY / PERFORMANC E INDICATOR	MS- ESS3.	Earth and Human Activity
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

EXPECTATION MS- Construct an argument supported by evidence for how increases in human population and per-capita consumption ESS3-4. of natural resources impact Earth's systems.

STRAND / DOMAIN	NGSS.MS -ETS.	ENGINEERING DESIGN
CATEGORY / PERFORMANC E INDICATOR	MS- ETS1.	Engineering Design
STANDARD		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Maryland College and Career-Ready Standards

Mathematics

STRAND / TOPIC / STANDARD		Grade 6 Math
TOPIC / INDICATOR	6.RP.	Ratios and Proportional Relationships
INDICATOR / PROFICIENCY LEVEL	6.RP.A.	Understanding ratio concepts and use ratio reasoning to solve problems.
OBJECTIVE	6.RP.A.3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
EXPECTATION	6.RP.A.3. a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

STRAND / TOPIC / STANDARD		Grade 6 Math
TOPIC / INDICATOR	6.EE.	Expressions and Equations
INDICATOR / PROFICIENCY LEVEL	6.EE.B.	Reason about and solve one-variable equations and inequalities.

OBJECTIVE

6.EE.B.5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Maryland College and Career-Ready Standards

Science

Grade 5 - Adopted: 2013

STRAND / TOPIC / STANDARD	NGSS.5- LS.	LIFE SCIENCE
TOPIC / INDICATOR	5-LS1.	From Molecules to Organisms: Structures and Processes
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

STRAND / TOPIC / STANDARD	NGSS.5- ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	5-ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:

OBJECTIVE 5-ESS3- Obtain and combine information about ways individual communities use science ideas to protect the Earth's 1. resources and environment.

STRAND / TOPIC / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
TOPIC / INDICATOR	3-5- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
OBJECTIVE	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
OBJECTIVE	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Maryland College and Career-Ready Standards

Science

STRAND / TOPIC / STANDARD	NGSS.MS -LS.	LIFE SCIENCE
TOPIC / INDICATOR	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics

INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
-------------------------------------	--	---

OBJECTIVE

0 202

5.

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

STRAND / TOPIC / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
TOPIC / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
OBJECTIVE	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / TOPIC /	NGSS.MS -ETS.	ENGINEERING DESIGN

TOPIC / STANDARD	-ETS.	
TOPIC / INDICATOR	MS- ET S1.	Engineering Design
INDICATOR / PROFICIENCY LEVEL		Students who demonstrate understanding can:
OBJECTIVE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
OBJECTIVE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
OBJECTIVE	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Maryland College and Career-Ready Standards

Technology Education

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE	Explain how the design process is an iterative, systematic approach to problem solving that includes collaboratively:
EXPECTATION	Defining a problem – students will be able to employ technical reading and writing skills to develop concise problem statement.

EXPECTATION	Selecting an Approach – students will be able to employ a decision matrix to select the best approach to solve the problem.
EXPECTATION	Testing and Evaluating Design Using Specifications – students will be able to use establish specifications to assess their design product.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Three: Engineering Design and Development – Students will demonstrate knowledge of and apply the engineering design process to develop solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Engineering design and development includes but is not limited to research and development, invention and innovation, problem solving, and using and maintaining technological products and systems.
OBJECTIVE	Discriminate between ethical and unethical engineering practices.
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Agricultural Technologies
EXPECTATION	Explore the function and application of a variety of technological processes, equipment, and systems used in agriculture (e.g. agroforestry, irrigation, global positioning systems).
EXPECTATION	Design, develop, use, manage, maintain, and assess a closed system that supports living organisms (e.g. terrarium
	hydroponics station).
EXPECTATION	
EXPECTATION	hydroponics station).
	hydroponics station). Evaluate the positive and negative effects of technological solutions to agricultural problems. Describe techniques used to provide long-term storage of food and reduce the health risk caused by tainted food
EXPECTATION STRAND / TOPIC /	hydroponics station). Evaluate the positive and negative effects of technological solutions to agricultural problems. Describe techniques used to provide long-term storage of food and reduce the health risk caused by tainted food (STL, 15J).
EXPECTATION STRAND / TOPIC / STANDARD TOPIC /	hydroponics station). Evaluate the positive and negative effects of technological solutions to agricultural problems. Describe techniques used to provide long-term storage of food and reduce the health risk caused by tainted food (STL, 15J). Maryland Technology Education Standards: Grades 6-8 Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power,
EXPECTATION ST RAND / T OPIC / ST ANDARD T OPIC / INDICAT OR / PROFICIENCY	hydroponics station). Evaluate the positive and negative effects of technological solutions to agricultural problems. Describe techniques used to provide long-term storage of food and reduce the health risk caused by tainted food (STL, 15J). Maryland Technology Education Standards: Grades 6-8 Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.

Explore applications of biotechnology.

STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Four: Core Technologies and The Designed World – Students will demonstrate knowledge of the core technologies that underpin the designed world and major enterprises that produce the goods and services of the designed world. Core technologies include but are not limited to biotechnology, electrical, electronics, fluid, material, mechanical, optical, structural, and thermal technologies. Major enterprises include medical, agriculture, biotechnology, energy and power, information and communication, transportation, and manufacturing and construction technologies.
INDICATOR / PROFICIENCY LEVEL	Analyze the function of select core technologies in the designed world.
OBJECTIVE	Energy and Power Technologies
EXPECTATION	Design, construct, and test a device that either minimizes or maximizes energy transfer (MS-PS3-3).
STRAND / TOPIC / STANDARD	Maryland Technology Education Standards: Grades 6-8
TOPIC / INDICATOR	Standard Five: Computational Thinking and Computer Science Applications – Students will be able to apply computational thinking skills and computer science applications as tools to develop solutions to engineering problems.
INDICATOR / PROFICIENCY LEVEL	Select and use appropriate tools and technology resources to accomplish a variety of tasks and solve problems.
INDICATOR / PROFICIENCY LEVEL	Use the basic steps in algorithmic problem solving to design solutions to problems.
INDICATOR / PROFICIENCY LEVEL	Implement problem solutions using a programming language.
INDICATOR / PROFICIENCY LEVEL	Analyze how computational thinking and computer programing can be used as tools for problem solving.

Massachusetts Curriculum Frameworks

Mathematics Grade 5 - Adopted: 2017

FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.

MP.7.

Massachusetts Curriculum Frameworks

Mathematics

Grade 6 - Adopted: 2017

		Grade 6 - Adopted: 2017
FOCUS / COURSE	MA.MP.	Mathematical Practice
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.
FOCUS / COURSE	MA.6.RP.	Ratios and Proportional Relationships
STRAND	6.RP.A.	Understand ratio and rate concepts and use ratio and rate reasoning to solve problems.
STANDARD / CONCEPT / SKILL	6.RP.A.3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
INDICATOR	6.RP.A.3. a.	Make tables of equivalent ratios relating quantities with whole-number measurements. Find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
FOCUS / COURSE	MA.6.EE.	Expressions and Equations
STRAND	6.EE.B.	Reason about and solve one-variable equations and inequalities.
STANDARD / CONCEPT / SKILL	6.EE.B.5.	Understand solving an equation or inequality as a process of answering a question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Massachusetts Curriculum Frameworks

Science

FOCUS / COURSE	MA.5- ESS.	Grade 5: Earth and Space Sciences
STRAND	ESS3.	Earth and Human Activity
STANDARD / CONCEPT / SKILL	5-ESS3- 1.	Obtain and combine information about ways communities reduce human impact on the Earth's resources and environment by changing an agricultural, industrial, or community practice or process.

STRAND	LS1.	From Molecules to Organisms: Structures and Processes
STANDARD / CONCEPT / SKILL	5-LS1-1.	Ask testable questions about the process by which plants use air, water, and energy from sunlight to produce sugars and plant materials needed for growth and reproduction.

FOCUS / COURSE	MA.5- ETS.	Grade 5: Technology/Engineering
STRAND	ET S3.	Technological Systems
STANDARD / CONCEPT / SKILL	5.3-5- ETS3- 1(MA).	Use informational text to provide examples of improvements to existing technologies (innovations) and the development of new technologies (inventions). Recognize that technology is any modification of the natural or designed world done to fulfill human needs or wants.

Massachusetts Curriculum Frameworks

Science

Grade 6 - Adopted: 2016

FOCUS / COURSE	MA.6- ETS.	Grade 6: Technology/Engineering
STRAND	ET S1.	Engineering Design
STANDARD / CONCEPT / SKILL	6.MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution. Include potential impacts on people and the natural environment that may limit possible solutions.
STANDARD / CONCEPT / SKILL	6.MS- ETS1- 6(MA).	Communicate a design solution to an intended user, including design features and limitations of the solution.
FOCUS / COURSE	MA.6- ET S.	Grade 6: Technology/Engineering
STRAND	ET S2.	Materials, Tools, and Manufacturing
STANDARD / CONCEPT / SKILL	6.MS- ETS2- 2(MA).	Given a design task, select appropriate materials based on specific properties needed in the construction of a solution.
STANDARD / CONCEPT / SKILL	6.MS- ETS2- 3(MA).	Choose and safely use appropriate measuring tools, hand tools, fasteners, and common hand-held power tools used to construct a prototype.
		Grade 6 - Adopted: 2010
FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Key Ideas and Details
STANDARD / CONCEPT / SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPT / SKILL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Craft and Structure
STANDARD / CONCEPT / SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPT / SKILL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Integration of Knowledge and Ideas
STANDARD / CONCEPT / SKILL	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
STANDARD / CONCEPT / SKILL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
FOCUS / COURSE	MA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND		Range of Reading and Level of Text Complexity
STRAND STANDARD / CONCEPT / SKILL	RST.6- 8.10.	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONCEPT /	8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band
STANDARD / CONCEPT / SKILL	8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONCEPT / SKILL FOCUS / COURSE	8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONCEPT / SKILL FOCUS / COURSE ST RAND ST ANDARD / CONCEPT /	8.10. MA.WHST .6-8. WHST.6	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/
STANDARD / CONCEPT / SKILL FOCUS / COURSE ST RAND ST RAND ST ANDARD / CONCEPT / SKILL	8.10. MA.WHST .6-8. WHST.6 -8.2. WHST.6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
STANDARD / CONCEPT / SKILL FOCUS / COURSE ST RAND ST RAND ST ANDARD / CONCEPT / SKILL INDICATOR	8.10. MA.WHST. .6-8. WHST.6 8.2(d) MA.WHS	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD / CONCEPT / SKILL FOCUS / COURSE ST RAND ST RAND ST ANDARD / CONCEPT / SKILL INDICATOR	8.10. MA.WHST. .6-8. WHST.6 8.2(d) MA.WHS	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects

Massachusetts Curriculum Frameworks

Technology Education

FOCUS / COURSE	MA.3- 5.CT.	Grade 5 - Adopted: 2016 Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.a.	Abstraction
STANDARD / CONCEPT / SKILL	3- 5.CT.a.3.	Make a list of sub-problems to consider, while addressing a larger problem.

FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.b.	Algorithms
STANDARD / CONCEPT / SKILL	3- 5.CT.b.1.	Define an algorithm as a sequence of instructions that can be processed by a computer.
STANDARD / CONCEPT /	3- 5.CT.b.4.	Individually and collaboratively create an algorithm to solve a problem (e.g., move a character/robot/person through a maze).

FOCUS / COURSE	MA.3- 5.CT.	Grades 3 – 5: Computational Thinking (CT)
STRAND	3- 5.CT.d.	Programming and Development
STANDARD / CONCEPT / SKILL	3- 5.CT.d.1.	Individually and collaboratively create, test, and modify a program in a graphical environment (e.g., block-based visual programming language).

SKILL

Massachusetts Curriculum Frameworks

Technology Education

FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.b.	Algorithms
STANDARD / CONCEPT / SKILL	6- 8.CT.b.3.	Individually and collaboratively decompose a problem and create a sub-solution for each of its parts (e.g., video game, robot obstacle course, making dinner).

FOCUS / COURSE	MA.6- 8.CT.	Grades 6 – 8: Computational Thinking (CT)
STRAND	6- 8.CT.d.	Programming and Development
STANDARD / CONCEPT / SKILL	6- 8.CT.d.2.	Use functions to hide the detail in a program.

STANDARD / CONCEPT / SKILL	6- 8.CT.d.3.	Create a program, individually and collaboratively, that implements an algorithm to achieve a given goal.
STANDARD / CONCEPT / SKILL	6- 8.CT.d.5.	Trace programs step-by-step in order to predict their behavior.

Michigan Academic Standards

Mathematics

Grade 5 - Adopted: 2010

STRAND / STANDARD CATEGORY	MI.CC.MP .5.	Mathematical Practices
STANDARD	MP.5.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.5.2.	Reason abstractly and quantitatively.
STANDARD	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.5.4.	Model with mathematics.
STANDARD	MP.5.5.	Use appropriate tools strategically.
STANDARD	MP.5.7.	Look for and make use of structure.

Michigan Academic Standards

Mathematics

STRAND / STANDARD CATEGORY	MI.CC.MP .6.	Mathematical Practices
STANDARD	MP.6.1.	Make sense of problems and persevere in solving them.
STANDARD	MP.6.2.	Reason abstractly and quantitatively.
STANDARD	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STANDARD	MP.6.4.	Model with mathematics.
STANDARD	MP.6.5.	Use appropriate tools strategically.
STANDARD	MP.6.7.	Look for and make use of structure.
STRAND / STANDARD CATEGORY	MI.CC.RP. 6.	Ratios and Proportional Relationships
STANDARD		Understand ratio concepts and use ratio reasoning to solve problems.

		GRADE LEVEL EXPECTATION	RP.6.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
--	--	----------------------------	---------	---

EXPECTATION RP.6.3(a) Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

STRAND / STANDARD CATEGORY	MI.CC.EE .6.	Expressions and Equations
STANDARD		Reason about and solve one-variable equations and inequalities.
GRADE LEVEL EXPECTATION	EE.6.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified

Michigan Academic Standards

set makes an equation or inequality true.

MI.SC.9. Interdependent Relationships in Ecosystems

STRAND / STANDARD CATEGORY

Science

Grade 5 - Adopted: 2015		
STRAND / STANDARD CATEGORY	MI.SC.2.	Matter and Energy in Organisms and Ecosystems
STANDARD	5-LS1-1.	Support an argument that plants get the materials they need for growth chiefly from air and water.
STRAND / STANDARD CATEGORY	MI.SC.3.	Earth's Systems
STANDARD	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.
STRAND / STANDARD CATEGORY	MI.SC.5.	Engineering Design
STANDARD	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
		Michigan Academic Standards
		Science
		Grade 6 - Adopted: 2015
STRAND / STANDARD CATEGORY	MI.SC.5.	Waves and Electromagnetic Radiation
STANDARD	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

STANDARD	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
STRAND / STANDARD CATEGORY	MI.SC.17.	Human Impacts
STANDARD	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / STANDARD CATEGORY	MI.SC.18.	Engineering Design
STANDARD	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details
STANDARD CATEGORY		
ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL	-8. RST.6-	Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior
ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL GRADE LEVEL	-8. RST.6- 8.2. RST.6- 8.3.	Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical
ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION ST RAND / ST RAND / ST RAND ARD	-8. RST.6- 8.2. RST.6- 8.3. MI.RST.6	Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION ST RAND / ST RAND / ST RAND ARD CAT EGORY	-8. RST.6- 8.2. RST.6- 8.3. MI.RST.6	Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Reading Standards for Literacy in Science and Technical Subjects
ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL	-8. RST.6- 8.2. RST.6- 8.3. MI.RST.6 -8.	Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Reading Standards for Literacy in Science and Technical Subjects Craft and Structure Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a
ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION ST ANDARD CAT EGORY ST ANDARD GRADE LEVEL EXPECTATION GRADE LEVEL	-8. RST.6- 8.2. RST.6- 8.3. MI.RST.6 8.4. RST.6- 8.4. RST.6- 8.5.	Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Reading Standards for Literacy in Science and Technical Subjects Craft and Structure Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and

GRADE LEVEL EXPECTATION	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / STANDARD CATEGORY	MI.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STRAND / STANDARD CATEGORY	MI.WHST. 6-8.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Michigan Academic Standards Technology Education Grade 5 - Adopted: 2017

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .3.	Knowledge Constructor - Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	MITECS. 3.d.	Build knowledge by actively exploring realworld issues and problems, developing ideas and theories, and pursuing answers and solutions.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.

GRADE LEVEL EXPECTATION	MITECS. 4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GRADE LEVEL EXPECTATION	MITECS. 4.c.	Develop, test, and refine prototypes as part of a cyclical design process.
GRADE LEVEL EXPECTATION	MITECS. 4.d.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 5 - Adopted: 2019
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 1B: UPPER ELEMENTARY (GRADES 3-5)
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING
	1B-AP- 11.	ALGORIT HMS AND PROGRAMMING Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2
EXPECTATION	1B-AP-	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development
EXPECTATION	1B-AP- 11. 1B-AP-	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2 Use an iterative process to plan the development of a program by including others' perspectives and considering
EXPECTATION EXPECTATION	1B-AP- 11. 1B-AP- 13. 1B-AP-	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2 Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. Subconcept: Program Development; Practice 1.1, 5.1 Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and
EXPECTATION EXPECTATION EXPECTATION	1B-AP- 11. 1B-AP- 13. 1B-AP- 16. 1B-AP-	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2 Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. Subconcept: Program Development; Practice 1.1, 5.1 Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. Subconcept: Program Development; Practice 2.2 Describe choices made during program development using code comments, presentations, and demonstrations.
EXPECTATION EXPECTATION EXPECTATION	1B-AP- 11. 1B-AP- 13. 1B-AP- 16. 1B-AP- 17.	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2 Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. Subconcept: Program Development; Practice 1.1, 5.1 Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. Subconcept: Program Development; Practice 2.2 Describe choices made during program development using code comments, presentations, and demonstrations. Subconcept: Program Development; Practice 7.2 Michigan Academic Standards Technology Education
EXPECTATION EXPECTATION EXPECTATION EXPECTATION EXPECTATION	1В-АР- 11. 1В-АР- 13. 1В-АР- 16. 1В-АР- 17. МІ.МІТ ЕС	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Subconcept: Modularity; Practice 3.2 Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. Subconcept: Program Development; Practice 1.1, 5.1 Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. Subconcept: Program Development; Practice 2.2 Describe choices made during program development using code comments, presentations, and demonstrations. Subconcept: Program Development; Practice 7.2 Michigan Academic Standards Technology Education Grade 6 - Adopted: 2017

STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	MITECS. 4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GRADE LEVEL EXPECTATION	MITECS. 4.c.	Develop, test, and refine prototypes as part of a cyclical design process.
GRADE LEVEL EXPECTATION	MITECS. 4.d.	Exhibit a tolerance for ambiguity, perseverance, and the capacity to work with open-ended problems.
STRAND / STANDARD CATEGORY	MI.MITEC S.	Michigan Integrated Technology Competencies for Students
STANDARD	MITECS .5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	MITECS. 5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 6 - Adopted: 2019
STRAND / STANDARD CATEGORY		Michigan Computer Science Standards
STANDARD		LEVEL 2: MIDDLE SCHOOL (GRADES 6-8)
GRADE LEVEL EXPECTATION		ALGORITHMS AND PROGRAMMING
EXPECTATION	2-AP-10.	Use flowcharts and/or pseudocode to address complex problems as algorithms. Subconcept: Algorithms; Practice

Minnesota Academic Standards

Science

Grade 5 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.5.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.1.1.	The Practice of Science
INDICATORS OF PROGRESS / STRAND	5.1.1.2.	The student will understand that scientific inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations.

INDICATORS5.1.1.2.2.Identify and collect relevant evidence, make systematic observations and accurate measurements, and identifyOF PROGRESSvariables in a scientific investigation.

CONTENT STANDARD / DOMAIN	MN.5.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	5.1.3.2.	The student will understand that men and women throughout the history of all cultures, including Minnesota American Indian tribes and communities, have been involved in engineering design and scientific inquiry.

INDICATORS 5.1.3.2.1. Describe how science and engineering influence and are influenced by local traditions and beliefs. OF PROGRESS

CONTENT STANDARD / DOMAIN	MN.5.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	5.1.3.	Interactions Among Science, Technology, Engineering, Mathematics, and Society
INDICATORS OF PROGRESS / STRAND	5.1.3.4.	The student will understand that tools and mathematics help scientists and engineers see more, measure more accurately, and do things that they could not otherwise accomplish.

5.1.3.4.1. Use appropriate tools and techniques in gathering, analyzing and interpreting data.

OF PROGRESS

CONTENT STANDARD / DOMAIN MN.5.3. Earth and Space Science PERFORMANC 5.3.4. Human Interaction with Earth Systems E INDICATOR / DOMAIN COMPONENT INDICATORS 5.3.4.1. The student will understand that in order to maintain and improve their existence, humans interact OF with and influence Earth systems. PROGRESS / STRAND

INDICATORS 5.3.4.1.3. Compare the impact of individual decisions on natural systems. OF PROGRESS

Minnesota Academic Standards

Science

CONTENT STANDARD / DOMAIN	MN.6.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6.1.2.	The Practice of Engineering
INDICATORS OF PROGRESS / STRAND	6.1.2.1.	The student will understand that engineers create, develop and manufacture machines, structures, processes and systems that impact society and may make humans more productive.

INDICATORS	6.1.2.1.2.	Recognize that there is no perfect design and that new technologies have consequences that may increase some
OF PROGRESS		risks and decrease others.

INDICATORS 6.1.2.1.4. Explain the importance of learning from past failures, in order to inform future designs of similar products or systems. OF PROGRESS

CONTENT STANDARD / DOMAIN	MN.6.1.	The Nature of Science and Engineering
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6.1.2.	The Practice of Engineering
INDICATORS OF PROGRESS / STRAND	6.1.2.2.	The student will understand that engineering design is the process of devising products, processes and systems that address a need, capitalize on an opportunity, or solve a specific problem.
INDICATORS	6.1.2.2.1.	Apply and document an engineering design process that includes identifying criteria and constraints, making

OF PROGRESS

. Apply and document an engineering design process that includes identifying criteria and constraints, making representations, testing and evaluation, and refining the design as needed to construct a product or system that solves a problem.

CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICAT OR / DOMAIN COMPONENT		Key Ideas and Details
INDICATORS OF PROGRESS / STRAND	6.13.2.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATORS OF PROGRESS / STRAND	6.13.3.3.	Follow precisely a multistep procedure when carrying out experiments, designing solutions, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICAT OR / DOMAIN COMPONENT		Craft and Structure
INDICATORS OF PROGRESS / STRAND	6.13.4.4.	Determine the meaning of symbols, equations, graphical representations, tabular representations, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATORS OF PROGRESS / STRAND	6.13.5.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
INDICATORS OF PROGRESS / STRAND	6.13.6.6.	Analyze the author's purpose in describing phenomena, providing an explanation, describing a procedure, or discussing/reporting an experiment in a text.

CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Integration of Knowledge and Ideas
INDICATORS OF PROGRESS / STRAND	6.13.7.7.	Compare and integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, table, map).
INDICATORS OF PROGRESS / STRAND	6.13.9.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MN.6.13.	Reading Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Range of Reading and Level of Text Complexity
INDICATORS OF PROGRESS / STRAND	6.13.10.1 0.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Text Types and Purposes
INDICATORS OF PROGRESS / STRAND	6.14.2.2	Write informative/explanatory texts, as they apply to each discipline and reporting format, including the narration of historical events, of scientific procedures/ experiments, or description of technical processes.
INDICATORS OF PROGRESS	6.14.2.2.d	Use precise language and domain-specific vocabulary to inform about or explain the topic.

CONTENT STANDARD / DOMAIN	MN.6.14.	Writing Benchmarks: Literacy in Science and Technical Subjects 6-12
PERFORMANC E INDICATOR / DOMAIN COMPONENT		Production and Distribution of Writing
INDICATORS OF PROGRESS / STRAND	6.14.4.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Minnesota Academic Standards Technology Education Grade 5 - Adopted: 2009

CONTENT STANDARD / DOMAIN	MN.IT L.3- 5.	Information and Technology Literacy Standards (Refresh 2009)
PERFORMANC E INDICATOR / DOMAIN COMPONENT	3-5.3.	Technology Use and Concepts: explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.
INDICATORS OF PROGRESS / STRAND	3-5.3.I.	Use of Technology
INDICATORS OF PROGRESS	3- 5.3.I.D.	Strategically solve information and technology issues.
INDICATOR	3- 5.3.I.D.1.	Seek assistance to trouble shoot technical problems.
		Minnesota Academic Standards
		Technology Education
		Grade 6 - Adopted: 2009
CONTENT STANDARD /	MN.IT L.6- 8.	Information and Technology Literacy Standards (Refresh 2009)

DOMAIN		
PERFORMANC E INDICATOR / DOMAIN COMPONENT	6-8.3.	Technology Use and Concepts: Students will explore multiple technologies, evaluate their suitability for the desired educational or personal task, and apply the tools needed.
INDICATORS OF PROGRESS / STRAND	6-8.3.I.	Use of Technology
INDICATORS OF PROGRESS	6- 8.3.I.D.	Strategically solve information and technology issues.
INDICATOR	6- 8.3.I.D.1.	Independently troubleshoot technology issues, following organizational policies.
INDICATOR	6- 8.3.I.D.2.	Locate assistance independently or through the help of others as needed.

Mississippi College & Career Readiness Standards

Mathematics

Grade 5 - Adopted: 2016 тнеме MS.MP. Standards for Mathematical Practice SUBJECT MP.1. Make sense of problems and persevere in solving them. SUBJECT MP.2. Reason abstractly and quantitatively. SUBJECT MP.3. Construct viable arguments and critique the reasoning of others. SUBJECT MP.4. Model with mathematics. SUBJECT MP.5. Use appropriate tools strategically.

MP.7.

Look for and make use of structure.

Mississippi College & Career Readiness Standards

Mathematics

		Grade 6 - Adopted: 2016
ТНЕМЕ	MS.MP.	Standards for Mathematical Practice
SUBJECT	MP.1.	Make sense of problems and persevere in solving them.
SUBJECT	MP.2.	Reason abstractly and quantitatively.
SUBJECT	MP.3.	Construct viable arguments and critique the reasoning of others.
SUBJECT	MP.4.	Model with mathematics.
SUBJECT	MP.5.	Use appropriate tools strategically.
SUBJECT	MP.7.	Look for and make use of structure.
тнеме	MS.6.RP.	Ratios and Proportional Relationships (RP)
SUBJECT		Understand ratio concepts and use ratio reasoning to solve problems
STANDARD	6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
OBJECTIVE	6.RP.3.a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
тнеме	MS.6.EE.	Expressions and Equations (EE)
SUBJECT		Reason about and solve one-variable equations and inequalities
STANDARD	6.EE.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Mississippi College & Career Readiness Standards

Science

Grade 5 - Adopted: 2018

тнеме	MS.E.5.	GRADE FIVE: Earth and Space Science
SUBJECT		Earth's Resources
STANDARD	E.5.10.	Students will demonstrate an understanding of the effects of human interaction with Earth and how Earth's natural resources can be protected and conserved.
OBJECTIVE	E.5.10.1.	Collect and organize scientific ideas that individuals and communities can use to conserve Earth's natural resources and systems (e.g., implementing watershed management practices to conserve water resources, utilizing no-till

farming to improve soil fertility, reducing emissions to abate air pollution, or recycling to reduce landfill waste).

Mississippi College & Career Readiness Standards Technology Education

тнеме		Mississippi College- and Career-Readiness Standards for Computer Science
SUBJECT		Level 2: GRADES 6-8 - Algorithms and Programming
STANDARD	AP.2.	Algorithms and Programming (AP.2)
OBJECTIVE	AP.2.1.	Use flowcharts and/or pseudocode to address complex problems as algorithms. [ALGORITHMS] (P4.4, P4.1)
OBJECTIVE	AP.2.1a.	Students will use pseudocode and/or flowcharts to organize and sequence an algorithm that addresses a complex problem, even though they may not actually program the solutions.

Missouri Learning Standards

Mathematics

		Grade 5 - Adopted: 2016
STRAND: BIG IDEA / STANDARD	MO.5.RA.	Relationships and Algebraic Thinking
CONCEPT: GLE / BENCHMARK	5.RA.C.	Use the four operations to represent and solve problems.

GLE / COMPONENT 5.RA.C.5. Solve and justify multi-step problems involving variables, whole numbers, fractions and decimals.

Missouri Learning Standards Mathematics Grade 6 - Adopted: 2016

STRAND: BIG IDEA / STANDARD	MO.6.RP.	Ratios and Proportional Relationships
CONCEPT: GLE / BENCHMARK	6.RP.A.	Understand and use ratios to solve problems.
GLE / COMPONENT	6.RP.A.3	Solve problems involving ratios and rates.
INDICATOR / PROFICIENCY	6.RP.A.3 a.	Create tables of equivalent ratios, find missing values in the tables and plot the pairs of values on the Cartesian coordinate plane.
STRAND: BIG IDEA / STANDARD	MO.6.EEI.	Expressions, Equations and Inequalities
CONCEPT: GLE / BENCHMARK	6.EEI.A.	Apply and extend previous understandings of arithmetic to algebraic expressions.
GLE / COMPONENT	6.EEI.A.1.	Describe the difference between an expression and an equation.

STRAND: BIG IDEA / STANDARD	MO.6.EEI.	Expressions, Equations and Inequalities
CONCEPT: GLE / BENCHMARK	6.EEI.B.	Reason about and solve one-variable equations and inequalities.

GLE /6.EEI.B.4.Use substitution to determine whether a given number in a specified set makes a one-variable equation or inequalityCOMPONENTtrue.

GLE / COMPONENT	6.EEI.B.5.	Understand that if any solutions exist, the solution set for an equation or inequality consists of values that make the equation or inequality true.
GLE / COMPONENT	6.EEI.B.7.	Solve one-step linear equations in one variable involving non-negative rational numbers.
		Missouri Learning Standards
		Science
		Grade 5 - Adopted: 2016
STRAND: BIG IDEA / STANDARD	MO.5.LS1	From Molecules to Organisms: Structure and Processes
CONCEPT: GLE / BENCHMARK	5.LS1.C.	Organization for Matter and Energy Flow in Organisms
GLE / COMPONENT	5.LS1.C. 1.	Support an argument that plants get the materials (i.e. carbon dioxide, water, sunlight) they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil. Clarification Statement: [Do not assess photosynthesis.]
STRAND: BIG IDEA / STANDARD	MO.5.ES S3.	Earth and Human Activity
CONCEPT: GLE / BENCHMARK	5.ESS3. C.	Human Impacts on Earth's Systems
GLE / COMPONENT	5.ESS3. C.1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.
STRAND: BIG IDEA / STANDARD	MO.5.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	5.ET S1. A.	Defining and Delimiting Engineering Problems
GLE / COMPONENT	5.ETS1.A .1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STRAND: BIG IDEA / STANDARD	MO.5.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	5.ET S1. B.	Developing Possible Solutions
GLE / COMPONENT	5.ETS1.B .1.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

STRAND: BIG IDEA / STANDARD	MO.5.ET S1.	Engineering Design
CONCEPT: GLE / BENCHMARK	5.ET S1. C.	Optimizing the Solution Process

GLE /	5.ET
COMPONENT	.1.

TS1.C Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Missouri Learning Standards Science

Grade 6 - Adopted: 2016

STRAND: BIG IDEA / STANDARD	MO.6- 8.LS.	Life Sciences
CONCEPT: GLE / BENCHMARK	6-8.LS2.	Ecosystems: Interactions, Energy, and Dynamics
GLE / COMPONENT	6- 8.LS2.C.	Ecosystem Dynamics, Functioning and Resilience

INDICATOR / 6-PROFICIENCY 8.LS2

 6- Evaluate benefits and limitations of differing design solutions for maintaining an ecosystem. [Clarification Statement:
 8.LS2.C.2. Examples of design solutions could include water, land, and species protection, and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]

STRAND: BIG IDEA / STANDARD	MO.6- 8.ESS.	Earth and Space Sciences	
CONCEPT: GLE / BENCHMARK	6- 8.ESS3.	Earth and Human Activity	
GLE / COMPONENT	6- 8.ESS3. C.	Human Impacts on Earth's Systems	
INDICATOR / PROFICIENCY	6- 8.ESS3.C. 1.	Analyze data to define the relationship for how increases in human population and per-capita consumption of natural resources impact Earth's systems. [Clarification Statement: Examples of data include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change.]	
INDICATOR / PROFICIENCY	6- 8.ESS3.C. 2.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]	
STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science	
CONCEPT: GLE / BENCHMARK	6- 8.ET S1.	Engineering Design	
GLE / COMPONENT	6- 8.ETS1. A.	Defining and Delimiting Engineering Problems	
INDICATOR / PROFICIENCY	6- 8.ETS1.A. 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	
STRAND: BIG IDEA / STANDARD	MO.6- 8.ET S.	Engineering, Technology, and Application of Science	

CONCEPT: GLE / BENCHMARK	6- 8.ET S1.	Engineering Design
GLE / COMPONENT	6- 8.ET S1. B.	Developing Possible Solutions
INDICATOR / PROFICIENCY	6- 8.ETS1.B. 1.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
INDICATOR / PROFICIENCY	6- 8.ETS1.B. 3.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Key Ideas and Details
GLE / COMPONENT	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GLE / COMPONENT	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Craft and Structure
GLE / COMPONENT	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GLE / COMPONENT	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Integration of Knowledge and Ideas
GLE / COMPONENT	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
GLE / COMPONENT	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND: BIG IDEA / STANDARD	MO.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects

CONCEPT: GLE / BENCHMARK		Range of Reading and Level of Text Complexity
GLE /	RST.6-	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band

COMPONENT 8.10. independently and proficiently.

STRAND: BIG IDEA / STANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Text Types and Purposes
GLE / COMPONENT	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

INDICATOR /WHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.PROFICIENCY8.2(d)

STRAND: BIG IDEA / STANDARD	MO.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONCEPT: GLE / BENCHMARK		Production and Distribution of Writing
GLE / COMPONENT	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GLE / COMPONENT	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Missouri Learning Standards

Technology Education

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Computing Systems
GLE / COMPONENT	Troubleshooting

 INDICATOR /
 5.CS.T.01
 Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use.

 PROFICIENCY
 .
 Discuss problems with peers and adults, apply strategies for solving these problems and explain why the strategy should work.

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Algorithms

INDICATOR /5.AP.A.0Compare and simplify multiple algorithms (sets of step-by-step instructions) for accomplishing the same taskPROFICIENCY1.verbally and kinesthetically, with robot devices or a programming language, then determine which is the most
efficient.

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Control

INDICATOR / 5.Al PROFICIENCY 1.

5.AP.C.0 Create a program using control structures (e.g., sequence, conditionals, interactive-looping), event handlers and1. variables to solve a problem or express ideas both independently and collaboratively.

Missouri Learning Standards Technology Education Grade 6 - Adopted: 2019

STRAND: BIG IDEA / STANDARD	Computer Science Performance Standards
CONCEPT: GLE / BENCHMARK	Algorithms & Programming
GLE / COMPONENT	Algorithms

INDICATOR /6-Design algorithms with flow charts and/or pseudocode to show solutions to complex problems.PROFICIENCY8.AP.A.01.

Montana Content Standards Mathematics

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.

Montana Content Standards

Mathematics

Grade 6 - Adopted: 2011			
CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices	
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.	
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.	
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.	
BENCHMARK / STANDARD	MP.4.	Model with mathematics.	
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.	
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.	
CONTENT STANDARD / DOMAIN	MT.CC.6. RP.	Ratios and Proportional Relationships	
BENCHMARK / ST ANDARD		Understand ratio concepts and use ratio reasoning to solve problems.	
GRADE LEVEL EXPECTATION / BENCHMARK	6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems from a variety of cultural contexts, including those of Montana American Indians, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	
EXPECTATION	6.RP.3.a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	
CONTENT STANDARD / DOMAIN	MT.CC.6. EE.	Expressions and Equations	
BENCHMARK / STANDARD		Reason about and solve one-variable equations and inequalities.	
GRADE LEVEL EXPECTATION / BENCHMARK	6.EE.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	
		Montana Content Standards Science Grade 5 - Adopted: 2016	
CONTENT STANDARD / DOMAIN	MT.5.LS.	LIFE SCIENCE content standards for fifth grade are that each student will:	

BENCHMARK / 5.LS.1. Support an argument that plants get the materials they need for growth chiefly from air and water STANDARD

CONTENT STANDARD / DOMAIN	MT.5.ESS	EARTH AND SPACE SCIENCE content standards for fifth grade are that each student will:
BENCHMARK / STANDARD	5.ESS.3.	Obtain and combine information from various sources about ways individual communities use science ideas to protect the Earth's resources, environment, and systems and describe examples of how American Indians use scientific knowledge and practices to maintain relationships with the natural world

Montana Content Standards

Science

Grade 6 - Adopted: 2016

BENCHMARK / 6-8.LS.9. Evaluate competing design solutions for maintaining biodiversity and ecosystem services STANDARD

CONTENT STANDARD / DOMAIN	MT.6- 8.ESS.	EARTH AND SPACE SCIENCE content standards for sixth through eighth grades are that students will:
BENCHMARK / STANDARD	6- 8.ESS.14.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment
BENCHMARK / STANDARD	6- 8.ESS.15.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems including indigenous populations
		Grade 6 - Adopted: 2011
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Craft and Structure

GRADE LEVELRST.6-Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a
specific scientific or technical context relevant to grades 6–8 texts and topics.BENCHMARK

EXPECTATION / 8.5. BENCHMARK

GRADE LEVEL RST.6- Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Range of Reading Level of Text Complexity
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MT.WHST .6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2.d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD / DOMAIN	MT.WHS T.6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / BENCHMARK		Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Montana Content Standards Technology Education Grade 5 - Adopted: 2020/Effective 2021

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR FIFTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	use digital and non-digital tools to plan and manage a design process; and
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(b)	use design process to develop and test prototypes.
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR FIFTH GRADE
BENCHMARK / STANDARD	(5)	The computational thinker content standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	explore or solve problems by selecting technology for data analysis, modeling and algorithmic thinking;
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(b)	break down problems into smaller parts, identify key information, and propose solutions; and
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR FIFTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(b)	use a variety of strategies for remixing or repurposing to create new works; and
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(c)	create digital objects to communicate ideas visually and graphically.
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR FIFTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for fifth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(e)	describe choices made during program development.
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR FIFTH GRADE

BENCHMARK / (4) Computer science impacts of computing standards for fifth grade are that each student will: STANDARD

Montana Content Standards Technology Education

Grade 6 - Adopted: 2020/Effective 2021			
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE	
BENCHMARK / STANDARD	(4)	The innovative designer content standards for sixth-eighth grade are that each student will:	
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	select and use digital tools to support design processes, identify constraints and trade-offs and weigh risks;	
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(b)	engage in design process to develop, test and revise prototypes or create innovative products; and	
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE	
BENCHMARK / STANDARD	(5)	The computational thinker content standards for sixth-eighth grade are that each student will:	
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(a)	investigate and practice solving problems by using data analysis, modeling or algorithmic thinking;	
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(b)	organize data and use technology to display, analyze, solve problems and make decisions;	
GRADE LEVEL EXPECTATION / BENCHMARK	(5)(c)	break down problems into component parts, identify key pieces and use that information to problem solve; and	
CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE	
BENCHMARK / STANDARD	(6)	The creative communicator content standards for sixth-eighth grade are that each student will:	
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(a)	select appropriate platforms and tools to create, share, and communicate work;	
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(b)	create original works or responsibly remix and repurpose other digital resources into new creative works; and	
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE	

BENCHMARK / ST ANDARD	(1)	Computer science algorithms and programming standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(a)	use algorithms to address complex problems;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	develop programs that combine control structures, including nested loops and compound conditionals;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(d)	decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs;
CONTENT STANDARD /		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE

ST ANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIATH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(c)	collaborate with other contributors when creating a computational artifact; and

Nebraska Content Area Standards Mathematics

Grade 6 - Adopted: 2022

CONTENT STANDARD		Grade 6 Standards
STRAND	6.R.	RATIOS AND PROPORTIONS: Students will understand ratio concepts and use ratio reasoning to solve problems.
INDICATOR	6.R.2.	Represent: Students will represent ratios and rates on the coordinate plane.
STRAND	6.R.2.d.	Make tables of equivalent ratios relating quantities with whole number measurements.

CONTENT STANDARD		Grade 6 Standards
STRAND	6.A.	ALGEBRA: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	6.A.1.	Algebraic Processes: Students will apply the operational properties when evaluating expressions and solving equations and inequalities.

STRAND

6.A.1.c. Use substitution to determine if a given value for a variable makes an equation or inequality true.

Nebraska Content Area Standards

Science

		Grade 5 - Adopted: 2017
CONTENT ST ANDARD	NE.SC.5. 8.	Matter and Energy in Organisms and Ecosystems
STRAND	SC.5.8.2	Gather and analyze data to communicate understanding of matter and energy in organisms and ecosystems.
INDICATOR	SC.5.8.2. B.	Support an argument that plants get the materials they need for growth chiefly from air and water.

CONTENT STANDARD	NE.SC.5. 13.	Earth's Systems
STRAND	SC.5.13. 4.	Gather and analyze data to communicate understanding of Earth's systems.
INDICATOR	SC.5.13. 4.C.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.
INDICATOR	SC.5.13. 4.E.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Nebraska Content Area Standards

Science

Grade 6 - Adopted: 2017

CONTENT STANDARD	NE.SC.6. 4.	Energy
STRAND	SC.6.4.1	Gather, analyze, and communicate evidence of energy.
INDICATOR	SC.6.4.1. B.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principle and potential impacts on people and the natural environment that may limit possible solutions.

Nebraska Content Area Standards Technology Education

Grade 5 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST ANDARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS

Write programs using visual (block-based) programming languages (scratch, code.org).
Nebraska Content Area Standards

Technology Education Grade 6 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	BASIC TECHNOLOGY - Operations/Concepts
INDICATOR	HARDWARE/SOFT WARE ST ANDARDS

STRAND

Apply strategies for identifying and solving routine problems that occur during everyday computer use.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	DIGITAL MEDIA
INDICATOR	DIGITAL MEDIA STANDARDS

STRAND

Independently use appropriate technology tools (graphic organizers, audio and video) to define problems and propose hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS
STRAND	Create algorithms, or series of ordered steps, to solve problems.
STRAND	Decompose a problem into smaller more manageable parts.
STRAND	Optimize an algorithm for execution by a computer.
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).

Write programs using visual (block-based) programming languages (scratch, code.org).

Nevada Academic Content Standards

Mathematics

Grade 5 - Adopted: 2010

CONTENT ST ANDARD	NV.CC.M P.5.	Mathematical Practices
STRAND / INDICATOR	MP.5.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.5.2.	Reason abstractly and quantitatively.

STRAND / INDICATOR	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.5.4.	Model with mathematics.
STRAND / INDICATOR	MP.5.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.5.7.	Look for and make use of structure.

Nevada Academic Content Standards

Mathematics

Grade 6 - Adopted: 2010

		Grade 6 - Adopted: 2010
CONTENT STANDARD	NV.CC.M P.6.	Mathematical Practices
STRAND / INDICATOR	MP.6.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.6.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.6.4.	Model with mathematics.
STRAND / INDICATOR	MP.6.5.	Use appropriate tools strategically.
STRAND / INDICATOR	MP.6.7.	Look for and make use of structure.
CONTENT STANDARD	NV.CC.RF .6.	PRatios and Proportional Relationships
STRAND / INDICATOR		Understand ratio concepts and use ratio reasoning to solve problems.
INDICATOR / GRADE LEVEL EXPECTATION	RP.6.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
GRADE LEVEL EXPECTATION	RP.6.3(a)	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
CONTENT STANDARD	NV.CC.E E.6.	Expressions and Equations

STRAND /	Reason about and solve one-variable equations and inequalities.
INDICATOR	· · · · · · · · · · · · · · · · · · ·

INDICATOR /	EE.6.5.
GRADE LEVEL	
EXPECTATION	

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

Nevada Academic Content Standards

Science

Grade 5 - Adopted: 2014

CONTENT STANDARD	NV.5-LS.	LIFE SCIENCE
STRAND / INDICATOR	5-LS1.	From Molecules to Organisms: Structures and Processes
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL EXPECTATION

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

	NV.5- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	5-ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
	5 5000	

GRADE LEVEL5-ESS3-Obtain and combine information about ways individual communities use science ideas to protect the Earth'sEXPECTATION1.resources and environment.

CONTENT STANDARD	NV.3-5- ET S.	ENGINEERING DESIGN
STRAND / INDICATOR	3-5- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Nevada Academic Content Standards

Science

Grade 6 - Adopted: 2014

CONTENT STANDARD	NV.MS- LS.	LIFE SCIENCE
STRAND / INDICATOR	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics

GRADE LEVELMS-LS2-Evaluate competing design solutions for maintaining biodiversity and ecosystem services.EXPECTATION5.

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT STANDARD	NV.MS- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ET S1.	Engineering Design
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects

STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Nevada Academic Content Standards

Technology Education

Grade 5 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE

STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.

GRADE LEVEL	P3.3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.
EXPECTATION		

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL P4.3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts

GRADE LEVELP5.1.Plan the development of a computational artifact using an iterative process that includes reflection on andEXPECTATIONmodification of the plan, taking into account key features, time and resource constraints, and user expectations.

GRADE LEVEL EXPECTATION P5.2. Create a computational artifact for practical intent, personal expression, or to address a societal issue.

CONTENT ST ANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Testing and Refining Computational Artifacts

GRADE LEVEL P6.1. EXPECTATION

Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.

Nevada Academic Content Standards Technology Education

Grade 6 - Adopted: 2019

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture
GRADE LEVEL EXPECTATION	P1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
GRADE LEVEL EXPECTATION	P1.3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.

GRADE LEVEL EXPECTATION P3.3.

Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT ST ANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL P4.3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity. EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

GRADE LEVELP5.2.Create a computational artifact for practical intent, personal expression, or to address a societal issue.EXPECTATION

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Testing and Refining Computational Artifacts

GRADE LEVELP6.1.Systematically test computational artifacts by considering all scenarios and using test cases.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P7.	Communicating About Computing
GRADE LEVEL EXPECTATION	P7.1.	Select, organize, and interpret large data sets from multiple sources to support a claim.

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR	Innovative Designer

INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.B.1.	Select and use digital tools to support a design process and expand their understanding to identify constraints, trade-offs, and to weigh risks.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.D.1.	Demonstrate an ability to persevere and handle greater ambiguity as they work to solve open-ended problems.
CONTENT ST ANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY

STANDARD		
STRAND / INDICATOR		Computational Thinker
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.B.1.	Find or organize data and use technology to analyze and represent the data to solve problems and make decisions.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.CT.C.1.	Break problems into component parts, identify key pieces, and use that information to problem solve.

New Hampshire College and Career Ready Standards

Mathematics

		Grade 5 - Adopted: 2010
STRAND / STANDARD	NH.CC.M P.5.	Mathematical Practices
STANDARD / GLE	MP.5.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.5.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.5.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.5.4.	Model with mathematics.
STANDARD / GLE	MP.5.5.	Use appropriate tools strategically.
STANDARD / GLE	MP.5.7.	Look for and make use of structure.

New Hampshire College and Career Ready Standards

Mathematics Grade 6 - Adopted: 2010

STANDARD / GLE	MP.6.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.6.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.6.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.6.4.	Model with mathematics.
STANDARD / GLE	MP.6.5.	Use appropriate tools strategically.
STANDARD / GLE	MP.6.7.	Look for and make use of structure.

STRAND / STANDARD	NH.CC.R P.6.	Ratios and Proportional Relationships
STANDARD / GLE		Understand ratio concepts and use ratio reasoning to solve problems.
GRADE LEVEL EXPECTATION		Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
EXPECTATION	RP.6.3(a)	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the

STRAND / STANDARD	NH.CC.E E.6.	Expressions and Equations
STANDARD / GLE		Reason about and solve one-variable equations and inequalities.
GRADE LEVEL EXPECTATION	EE.6.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

New Hampshire College and Career Ready Standards

Science

Grade 5 - Adopted: 2016

STRAND / STANDARD	NGSS.5- LS.	LIFE SCIENCE
STANDARD / GLE	5-LS1.	From Molecules to Organisms: Structures and Processes
GRADE LEVEL EXPECT AT ION		Students who demonstrate understanding can:

EXPECTATION 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

STRAND / STANDARD	NGSS.5- ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / GLE	5-ESS3.	Earth and Human Activity

EXPECTATION	GRADE LEVEL EXPECTATION	Students who demonstrate understanding can:
-------------	----------------------------	---

EXPECTATION 5-ESS3- Obtain and combine information about ways individual communities use science ideas to protect the Earth's 1. resources and environment.

STRAND / STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
STANDARD / GLE	3-5- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
EXPECTATION	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
EXPECTATION	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Hampshire College and Career Ready Standards

Science

Grade 6 - Adopted: 2016

STRAND / STANDARD	NGSS.MS -LS.	LIFE SCIENCE
ST ANDARD / GLE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. 5.

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

EXPECTATION MS- Construct an argument supported by evidence for how increases in human population and per-capita consumption ESS3-4. of natural resources impact Earth's systems.

	NGSS.MS -ETS.	ENGINEERING DESIGN
ST ANDARD / GLE	MS- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Hampshire College and Career Ready Standards

		Technology Education
		Grade 5 - Adopted: 2005
STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:

GRADE LEVEL	ICT.2.d.	Science	
EXPECTATION			

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.5.	DIGITAL PORTFOLIOS: Create digital portfolios which:
GRADE LEVEL EXPECTATION	ICT.5.b.	Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects

Grade 5 - Adopted: 2018

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	1B-AP- 13.	Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences.
GRADE LEVEL EXPECTATION	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations.

New Hampshire College and Career Ready Standards

Technology Education

NH.ICT. Information and Communication Technologies Program

STANDARD / GLE	ICT.2.	USE WITH CORE SUBJECTS: Become proficient in the use of 21st century tools to access, manage, integrate, evaluate, and create information within the context of the core subjects of:
GRADE LEVEL	ICT.2.d.	Science

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
ST ANDARD / GLE	ICT.3.	COGNITIVE PROFICIENCY: Use 21st century tools to develop cognitive proficiency in:
GRADE LEVEL EXPECTATION	ICT.3.c.	Problem solving

STRAND / STANDARD	NH.ICT.	Information and Communication Technologies Program
STANDARD / GLE	ICT.5.	DIGIT AL PORT FOLIOS: Create digital portfolios which:

GRADE LEVEL ICT.5.b. Represent proficient, ethical, responsible use of 21st century tools within the context of the core subjects EXPECTATION

Grade 6 - Adopted: 2018		
STRAND / STANDARD		Computer Science
ST ANDARD / GLE		Algorithms & Programming

GRADE LEVEL 2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. EXPECTATION

New Jersey Student Learning Standards

Mathematics

Grade 5 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.

New Jersey Student Learning Standards Mathematics Grade 6 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.5.	Use appropriate tools strategically.
STRAND	MP.7.	Look for and make use of structure.
CONTENT	NJ.6.RP.	Ratios and Proportional Relationships

CONTENT AREA / STANDARD	NJ.6.RP.	Ratios and Proportional Relationships
STRAND	6.RP.A.	Understand ratio concepts and use ratio reasoning to solve problems.
CONTENT STATEMENT	6.RP.A.3	Use ratio and rate reasoning to solve real[world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
CUMULATIVE PROGRESS INDICATOR	6.RP.A.3. a.	Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

CONTENT AREA / STANDARD	NJ.6.EE.	Expressions and Equations
STRAND	6.EE.B.	Reason about and solve one®variable equations and inequalities.
CONTENT STATEMENT	6.EE.B.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

New Jersey Student Learning Standards

Science

Grade 5 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	3-5-ETS.	Engineering Design
STRAND	3-5- ET S1:	Engineering Design
CONTENT STATEMENT	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
CONTENT STATEMENT	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
CONTENT STATEMENT	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

CONTENT AREA / STANDARD	5-LS.	Life Science
STRAND	5-LS1:	From Molecules to Organisms: Structures and Processes
CONTENT	5-LS1-1.	Support an argument that plants get the materials they need for growth chiefly from air and water.

STATEMENT

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

CONTENT AREA / ST ANDARD	5-ESS.	Earth and Space Science
STRAND	5-ESS3:	Earth and Human Activity
CONTENT STATEMENT	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources, environment, and address climate change issues.

New Jersey Student Learning Standards Science

Grade 6 - Adopted: 2020/Effective 2021

CONTENT AREA / ST ANDARD	MS-LS.	Life Science
STRAND	MS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STATEMENT	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STATEMENT	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
CONTENT AREA / STANDARD	MS-ET S.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Jersey Student Learning Standards

Technology Education

	Grade 5 - Adopted: 2020		
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices		
STRAND	1 Fostering an Inclusive Computing and Design Culture		
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:		
CUMULATIVE PROGRESS INDICATOR	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.		
CONTENT	Computer Science and Design Thinking Practices		

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts

CONT ENT ST AT EMENT		The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.	
CUMULATIVE PROGRESS INDICATOR		Create a computational artifact for practical intent, personal expression, or to address a societal issue.	
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices	
STRAND		6 Testing and Refining Computational Artifacts	
CONTENT STATEMENT		Testing and refinement is the deliberate and iterative process of improving a computational artifact This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users ar improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Systematically test computational artifacts by considering all scenarios and using test cases.	
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking	
STRAND		Engineering Design	
CONTENT STATEMENT		Engineering design is a systematic and creative process of communicating and collaborating to meet a design challenge. Often, several design solutions exist, each better in some way than the others.	
CUMULATIVE PROGRESS INDICATOR	8.2.5.ED. 2:	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.	
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking	
STRAND		Engineering Design	
CONTENT STATEMENT		Engineering design requirements include desired features and limitations that need to be considered.	
CUMULATIVE	8.2.5.ED.	Explain factors that influence the development and function of products and systems (e.g., resources, criteria, desired	

CUMULATIVE 8.2.5.ED. Explain factors that inf PROGRESS 4: features, constraints). INDICATOR

features, constraints).

CUMULATIVE	8.2.5.ED.	Describe how specifications and limitations impact the engineering design process.
PROGRESS	5:	
INDICATOR		

CUMULATIVE	8.2.5.ED.	Evaluate and test alternative solutions to a problem using the constraints and tradeoffs identified in the design
PROGRESS	6:	process.
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Nature of Technology
CONTENT STATEMENT		Technology innovation and improvement may be influenced by a variety of factors. Engineers create and modify technologies to meet people's needs and wants; scientists ask questions about the natural world.
	8 2 5 NT 1	Troubleshoot a product that has stopped working and brainstorm ideas to correct the problem

CUMULATIVE 8.2.5.NT.1 Troubleshoot a product that has stopped working and brainstorm ideas to correct the problem. PROGRESS : INDICATOR

New Jersey Student Learning Standards

Technology Education

Grade 6 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices	
STRAND	1 Fostering an Inclusive Computing and Design Culture	
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts which people operate. Considering the needs of diverse users during the design process is essent to producing inclusive computational products. When engaging in this practice, students:	

CUMULATIVE Employ self- and peer-advocacy to address bias in interactions, product design, and development methods. PROGRESS INDICATOR

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions

CONTENT STATEMENT		Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Evaluate existing technological functionalities and incorporate them into new designs.	
CUMULATIVE PROGRESS INDICATOR		Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.	
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices	
STRAND		5 Creating Computational Artifacts	
CONTENT STATEMENT		The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.	
CUMULATIVE PROGRESS INDICATOR		Create a computational artifact for practical intent, personal expression, or to address a societal issue.	
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices	
STRAND		6 Testing and Refining Computational Artifacts	
CONTENT STATEMENT		Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:	
CUMULATIVE PROGRESS INDICATOR		Systematically test computational artifacts by considering all scenarios and using test cases.	
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science	
STRAND		Computing Systems	
CONTENT STATEMENT		Software and hardware determine a computing system's capability to store and process information. The design or selection of a computing system involves multiple considerations and potential trade- offs.	
CUMULATIVE PROGRESS INDICATOR	8.1.8.CS. 3:	Justify design decisions and explain potential system trade-offs.	

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Data & Analysis
CONTENT STATEMENT		Computer models can be used to simulate events, examine theories and inferences, or make predictions.

CUMULATIVE	8.1.8.DA.	Test, analyze, and refine computational models.
PROGRESS	5:	
INDICATOR		

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design algorithms that are reusable in many situations. Algorithms that are readable are easier to follow, test, and debug.

 CUMULATIVE
 8.1.8.AP.
 Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.

 PROGRESS
 1:

 INDICATOR
 1:

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science	
STRAND		Algorithms & Programming	
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.	
CUMULATIVE	8.1.8.AP.	Systematically test and refine programs using a range of test cases and users.	

PROGRESS 8: INDICATOR

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 2:	Identify the steps in the design process that could be used to solve a problem.

CUMULATIVE	8.2.8.ED.	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot,
PROGRESS	4:	evaluate, and test options to repair the product in a collaborative team.
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.

CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 6:	Analyze how trade-offs can impact the design of a product.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
CONTENT	8.2.	Computer Science and Design Thinking – Design Thinking
AREA / ST ANDARD		
		Nature of Technology

CUMULATIVE 8.2.8.NT.1 Examine a malfunctioning tool, product, or system and propose solutions to the problem. PROGRESS : INDICATOR

INDICATOR

CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE PROGRESS	8.2.8.ET W.3:	Analyze the design of a product that negatively impacts the environment or society and develop possible solutions to lessen its impact.

New Mexico Content Standards

Mathematics

Grade 5 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.

BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
		New Marries, Os attents Chandrade
		New Mexico Content Standards Mathematics
		Grade 6 - Adopted: 2012
STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.5.	Use appropriate tools strategically.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
STRAND / CONTENT STANDARD	NM.6.RP.	Ratios and Proportional Relationships
BENCHMARK / ST ANDARD		Understand ratio concepts and use ratio reasoning to solve problems.
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
PERFORMANCE STANDARD / INDICATOR	6.RP.3(a)	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
STRAND / CONTENT STANDARD	NM.6.EE.	Expressions and Equations
BENCHMARK / STANDARD		Reason about and solve one-variable equations and inequalities.

PERFORMANC6.EE.5.Understand solving an equation or inequality as a process of answering a question: which values from a specifiedE STANDARD /set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specifiedBENCHMARK /set makes an equation or inequality true.PROFICIENCYset makes an equation or inequality true.

New Mexico Content Standards

Science

Grade 5 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.5- LS.	LIFE SCIENCE	
BENCHMARK / STANDARD	5-LS1.	From Molecules to Organisms: Structures and Processes	
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:	

PERFORMANCE 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. STANDARD /

INDICATOR

STRAND / CONTENT STANDARD	NGSS.5- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	5-ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 5-ESS3 Obtain and combine information about ways individual communities use science ideas to protect the Earth's

 STANDARD /
 1.
 resources and environment.

 INDICATOR

STRAND / CONTENT STANDARD	NGSS.3- 5-ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	3-5- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New Mexico Content Standards

Science

Grade 6 - Adopted: 2013

BENCHMARK / ST AND ARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. STANDARD / 5. INDICATOR

INDICATOR

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE MS- STANDARD / ESS3-3. INDICATOR	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
PERFORMANCE MS- STANDARD / ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

STRAND / CONTENT STANDARD	NM.MS- ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Human Impacts
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE	MS-	Describe the advantages and disadvantages associated with technologies related to local industries and energy
STANDARD /	ESS3-3	production.
INDICATOR	NM.	

STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMARK / STANDARD	MS- ET S1.	Engineering Design
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCEMS-Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, takingSTANDARD /ETS1-1.into account relevant scientific principles and potential impacts on people and the natural environment that may limitINDICATORpossible solutions.

PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Mexico Content Standards Technology Education

Grade 5 - Adopted: 2019

		Grade 5 - Adopted: 2019
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR		Program Development
INDICATOR	1B-AP- 13.	Use an iterative process to plan the development of a program by including others'' perspectives and considering user preferences. (P1.1, P5.1)
INDICATOR	1B-AP- 16.	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. (P2.2)
INDICATOR	1B-AP- 17.	Describe choices made during program development using code comments, presentations, and demonstrations. (P7.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.1 B.	Level 1B (Ages 8-11)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	1B-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
	10 10 20	Sock diverse perspectives for the purpose of improving computational artifacts (D1.1)

INDICATOR

1B-IC-20. Seek diverse perspectives for the purpose of improving computational artifacts. (P1.1)

New Mexico Content Standards Technology Education

Grade 6 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)

PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Algorithms

INDICATOR

2-AP-10. Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity

INDICATOR

2-AP-13. Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

New York State Learning Standards and Core Curriculum

Mathematics

Grade 5 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.

CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
Category / Cluster / Key Idea	MP.5	Use appropriate tools strategically.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.

New York State Learning Standards and Core Curriculum Mathematics

Grade 6 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.5	Use appropriate tools strategically.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
ST RAND / DOMAIN / UNIFYING THEME		Grade 6
CATEGORY / CLUSTER / KEY IDEA	NY-6.RP.	Ratios and Proportional Relationships

STANDARD / CONCEPTUAL UNDERSTAND ING		Understand ratio concepts and use ratio reasoning to solve problems.
EXPECTATION / CONTENT SPECIFICATIO N	NY- 6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems.
GRADE EXPECTATION	NY- 6.RP.3.a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
STRAND / DOMAIN / UNIFYING THEME		Grade 6
CATEGORY / CLUSTER / KEY IDEA	NY-6.EE.	Expressions, Equations, and Inequalities
ST ANDARD / CONCEPT UAL UNDERST AND ING		Reason about and solve one-variable equations and inequalities.
EXPECTATION / CONTENT SPECIFICATION	NY- 6.EE.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
		New York State Learning Standards and Core Curriculum Science Grade 5 - Adopted: 2016
STRAND / DOMAIN / UNIFYING THEME	NY.5.2.	Matter and Energy in Organisms and Ecosystems
CATEGORY <i> </i> CLUSTER <i> </i> KEYIDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	5-LS1-1.	Support an argument that plants get the materials they need for growth chiefly from air and water.
STRAND / DOMAIN / UNIFYING THEME	NY.5.3.	Earth's Systems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

STANDARD /	5-ESS3-	Obtain and combine information about ways individual communities use science ideas to protect Earth's resources
CONCEPTUAL	1.	and environment.
UNDERSTANDI		
NG		

NY.3-5.ED.

STRAND / DOMAIN / UNIFYING THEME

CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

New York State Learning Standards and Core Curriculum

Science

Grade 6 - Adopted: 2016

STRAND / DOMAIN / UNIFYING THEME	NY.MS.8.	Interdependent Relationships in Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

NG

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-4.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:

STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 6 - Adopted: 2011
STRAND /	NY.6-	Reading Standards for Literacy in Science and Technical Subjects

DOMAIN / UNIFYING THEME	8.RST.	reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

UNDERSTANDI NG

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas

STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / CONTENT SPECIFICATION	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

New York State Learning Standards and Core Curriculum Technology Education Grade 5 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.
		New York State Learning Standards and Core Curriculum Technology Education

Grade 6 - Adopted: 1996			
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.	
CATEGORY / CLUSTER / KEY IDEA	5.1.	Engineering Design: Engineering design is an iterative process involving modeling and optimization used to develop technological solutions to problems within given constraints.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.1.	Students identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.	
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.3.	Students consider constraints and generate several ideas for alternative solutions, using group and individual ideation techniques (group discussion, brainstorming, forced connections, role play); defer judgment until a number of ideas have been generated; evaluate (critique) ideas; and explain why the chosen solution is optimal.	

STANDARD / CONCEPTUAL UNDERSTANDI NG	5.1.4.	Students develop plans, including drawings with measurements and details of construction, and construct a model of the solution, exhibiting a degree of craftsmanship.
STRAND / DOMAIN / UNIFYING THEME	NY.5.	Technology: Students will apply technological knowledge and skills to design, construct, use, and evaluate products and systems to satisfy human and environmental needs.
CATEGORY / CLUSTER / KEY IDEA	5.4.	Technological Systems: Technological systems are designed to achieve specific results and produce outputs, such as products, structures, services, energy, or other systems.
STANDARD / CONCEPTUAL UNDERSTANDI NG	5.4.2.	Students assemble, operate, and explain the operation of simple open- and closed-loop electrical, electronic, mechanical, and pneumatic systems.

North Carolina Standard Course of Study

Mathematics

Grade 5 - Adopted: 2017/IMPL 2018

CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
		North Carolina Standard Course of Study
		Mathematics
		Grade 6 - Adopted: 2017/IMPL 2018

CONTENT	Standards for Mathematical Practice
AREA / STRAND	

STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.5.	Use appropriate tools strategically.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.

CONTENT AREA / STRAND		Ratio and Proportional Relationships
STRAND / ESSENTIAL STANDARD		Understand ratio concepts and use ratio reasoning to solve problems.
ESSENTIAL STANDARD /	NC.6.RP. 2.	Understand that ratios can be expressed as equivalent unit ratios by finding and interpreting both unit ratios in context.

CLARIFYING OBJECTIVE

CONTENT AREA / STRAND		Ratio and Proportional Relationships
STRAND / ESSENTIAL STANDARD		Understand ratio concepts and use ratio reasoning to solve problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.6.RP .3.	Use ratio reasoning with equivalent whole-number ratios to solve real-world and mathematical problems by:
CLARIFYING OBJECTIVE	NC.6.RP. 3.a.	Creating and using a table to compare ratios.
CLARIFYING OBJECTIVE	NC.6.RP. 3.b.	Finding missing values in the tables.
CONTENT AREA / STRAND		Expressions and Equations
STRAND / ESSENTIAL STANDARD		Reason about and solve one-variable equations.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE

5.

NC.6.EE. Use substitution to determine whether a given number in a specified set makes an equation true.

North Carolina Standard Course of Study

Science

Grade 6 - Adopted: 2010

CONTENT AREA / STRAND	NC.6.E.	Earth Science
STRAND / ESSENTIAL STANDARD		Earth: Systems, Structures and Processes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6.E.2.	Understand the structure of the earth and how interactions of constructive and destructive forces have resulted in changes in the surface of the Earth over time and the effects of the lithosphere on humans.
CLARIFYING OBJECTIVE	6.E.2.4.	Conclude that the good health of humans requires: monitoring the lithosphere, maintaining soil quality and stewardship.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL	6-	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior

STANDARD / CLARIFYING OBJECTIVE	8.RST.2.	knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
OBJECTIVE		

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
FOOTNELL	C	Compare and contract the information gained from experiments simulations video, or multimedia coveres with that

ESSENTIAL	6-	compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
STANDARD /	8.RST.9.	gained from reading a text on the same topic.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

OBJECTIVE

CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
CLARIFYING OBJECTIVE	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		North Carolina Standard Course of Study Technology Education Grade 5 - Adopted: 2020 (ISTE-S)
CONTENT		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
--	-----------------	---
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.
		Grade 5 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR

35-AP- 0

01.

Create multiple algorithms for the same task to determine which is the most accurate and efficient.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 3-5 (Ages 8-11)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE	L	Program Development
INDICATOR	35-AP-	Describe choices made during program development using code comments, presentations, and demonstrations.

12.

North Carolina Standard Course of Study

Technology Education

Grade 6 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

	ONTENT REA / STRAND		Digital Learning Standards
E	TRAND / SSENTIAL TANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.

ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Grade 6 - Adopted: 2020

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Algorithms

INDICATOR

01.

68-AP-Implement flowcharts and/or pseudocode to address complex problems as algorithms.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	Algorithms & Programming
CLARIFYING OBJECTIVE	Modularity

Organize problems and subproblems into parts.

68-AP-	
05.	

CONTENT AREA / STRAND NC K-12 Computer Science Standards STRAND / Grades 6-8 (Ages 11-14) ESSENTIAL STANDARD ESSENTIAL Algorithms & Programming STANDARD / CLARIFYING OBJECTIVE CLARIFYING Program Development OBJECTIVE

INDICATOR

68-AP- Syster

10.

Systematically test and refine programs using a range of test cases.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD	Grades 6-8 (Ages 11-14)
ESSENTIAL ST ANDARD / CLARIFYING OBJECTIVE	Impacts of Computing
CLARIFYING OBJECTIVE	Social Interactions

INDICATOR 68-IC-05. Collaborate with many contributors to create a computational artifact.

North Dakota Content Standards

Mathematics

Grade 5 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.
BENCHMARK	MP.7	Look for and make use of structure.

North Dakota Content Standards

Mathematics

Grade 6 - Adopted: 2017

CONTENT STANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.5	Use appropriate tools strategically.

BENCHMARK MP.7

Look for and make use of structure.

CONTENT STANDARD		Ratios and Proportional Relationships
BENCHMARK		Understand ratio concepts and use ratio reasoning to solve problems.
GRADE LEVEL EXPECTATION	6.RP.3	Use tables of equivalent ratios, tape diagrams, double number line diagrams, and equations to reason about ratios and rates in real world and mathematical problems.
INDICATOR	6.RP.3.a.	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

CONTENT STANDARD		Expressions and Equations
BENCHMARK		Reason about and solve one-variable equations and inequalities.
GRADE LEVEL EXPECTATION	6.EE.5	Understand solving an equation or inequality as a process of answering a question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

North Dakota Content Standards

Science Grade 5 - Adopted: 2019 CONTENT Science and Engineering Practices STANDARD BENCHMARK 2 Developing and using models **GRADE LEVEL** Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., **EXPECTATION** diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions. CONTENT STANDARD Science and Engineering Practices Analyzing and interpreting data BENCHMARK 4 GRADE LEVEL Analyzing data in K-12 builds on prior experiences and progresses to collecting, recording, and sharing EXPECTATION observations. CONTENT Science and Engineering Practices STANDARD BENCHMARK 6 Constructing explanations and designing solutions Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of **GRADE LEVEL EXPECTATION** evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions. Life Science (LS) CONTENT STANDARD BENCHMARK 5-LS1. From Molecules to Organisms: Structures and Processes

GRADE LEVEL 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. EXPECTATION

CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	5-ESS3.	Earth & Human Activity
GRADE LEVEL	5-ESS3-	Obtain and combine information about ways individual communities use science ideas to protect the Earth's

GRADE LEVEL	0-E333-	Obtain and combine mornation about ways individual communities use science ideas to p
EXPECTATION	1.	resources and environment.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	5-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	5-ET1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
GRADE LEVEL EXPECTATION	5-ET1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	5-ET1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

North Dakota Content Standards

Science Grade 6 - Adopted

	Grade 6 - Adopted: 2019	
--	-------------------------	--

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	4	Analyzing and interpreting data
GRADE LEVEL EXPECTATION		Analyzing data in K-12 builds on prior experiences and progresses to collecting, recording, and sharing observations.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity

GRADE LEVELMS-Construct an argument supported by evidence for how increases in human population and per-capita consumption ofEXPECTATIONESS3-4.natural resources impact Earth's systems.

CONTENT STANDARD		Life Science (LS)
BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics

GRADE LEVEL MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. EXPECTATION 5.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

Technology Education

Grade 5 - Adopted: 2019

CONTENT ST ANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Problem Solving & Algorithms
INDICATOR	Strategies for understanding and solving problems.

INDICATOR 5.PSA.1. Create a sequence of instructions from a previous decomposed task.

	Computer Science and Cybersecurity Standards
	Computational Thinking
	Development & Design
	Design processes to create new, useful, and imaginative solutions to problems.
.DD.1.	Continued growth independently or collaboratively creating programs that use sequencing, loops, and conditions.

INDICATOR 5.DD.2. Create solutions to problems using a design method.

North Dakota Content Standards Technology Education Grade 6 - Adopted: 2012

CONTENT STANDARD	Library and Technology
BENCHMARK	Media and Technology Literacy
GRADE LEVEL EXPECTATION	Creative and Innovative Processes and Products

INDICATOR

6- Create unique products and processes by selecting digital resources, tools, and formats for a real-world task. 8.MTL.7.

Grade 6 - Adopted: 2019

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Computational Thinking
GRADE LEVEL EXPECTATION		Problem Solving & Algorithms
INDICATOR		Strategies for understanding and solving problems.
INDICATOR	6.PSA.1.	Identify and test an algorithm to solve a problem.

Ohio Learning Standards

Mathematics

Grade 5 - Adopted: 2017

Grade 5 - Adopted. 2017		
DOMAIN / ACADEMIC CONTENT STANDARD	он.мр.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
		Ohio Learning Standards Mathematics Grade 6 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD	OH.MP.	Standards for Mathematical Practice

STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.5.	Use appropriate tools strategically.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.6.RP.	RATIOS AND PROPORTIONAL RELATIONSHIPS
ST ANDARD / BENCHMARK		Understand ratio concepts and use ratio reasoning to solve problems.
BENCHMARK / GRADE LEVEL INDICATOR	6.RP.3.	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagramsG, double number line diagramsG, or equations.
PROFICIENCY LEVEL	6.RP.3.a.	Make tables of equivalent ratios relating quantities with whole-number measurements; find missing values in the tables; and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.6.EE.	EXPRESSIONS AND EQUATIONS
STANDARD / BENCHMARK		Reason about and solve one-variable equations and inequalities.
BENCHMARK / GRADE LEVEL INDICATOR	6.EE.5.	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
		Ohio Learning Standards Technology Education Grade 5 - Adopted: 2017
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.

PROFICIENCY LEVEL	3- 5.ST.1.b.	Identify positive and negative impacts your use of personal technology and technology systems (e.g., agriculture, transportation, energy generation, water treatment) can have on your community.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY	3-	Identify the positive and negative impact the use of technology can have on relationships, communities and self.
LEVEL	5.ST.2.c.	

STANDARD		
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Explain how technology, society, and the individual impact one another.
PROFICIENCY	3-	Identify and discuss how the use of technology affects self and others in various ways.

PROFICIENCY LEVEL

5.ST.3.c.

Identify and discuss how the use of technology affects self and others in various ways.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.

PROFICIENCY 3-Give examples of how requirements for a product can limit the design possibilities for that product. LEVEL 5.DT.1.b.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.

Plan and implement a design process: identify a problem, think about ways to solve the problem, develop possible PROFICIENCY 3-LEVEL solutions, test and evaluate solution(s), present a possible solution, and redesign to improve the solution. 5.DT.2.b.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 3:	Demonstrate that solutions to complex problems require collaboration, interdisciplinary understanding, and systems thinking.
PROFICIENCY LEVEL	3- 5.DT.3.b.	Explore and document connections between technology and other fields of study.
		Grade 5 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
ST ANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY CS.T.5.a. Diagnose problems and develop strategies to resolve technology issues. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCYATP.A.5.Evaluate a multi-step process to diagram the proper steps to solve a problem.LEVELa.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Variables and Data Representation

PROFICIENCYATP.VDRCreate a variable, a placeholder for storing a value, to understand how it is used in a multi-step process (i.e.,LEVEL.5.a.algorithm).

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING

PROFICIENCYATP.CS.5Create a program using sequences, events, loops and conditionals to solve a problem.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 5
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICAT OR	Modularity

PROFICIENCY ATP.M.5. Deco LEVEL a. instru

ATP.M.5. Decompose (i.e., break down) the steps needed or not needed (i.e., abstraction) into precise sequences of a. instructions to design an algorithm.

Ohio Learning Standards Technology Education

Grade 6 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT ST ANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Analyze the impact of communication and collaboration in both digital and physical environments.
PROFICIENCY LEVEL	6- 8.ST.2.b.	Explain the positive and negative impact the use of technology can have on personal, professional and community relationships.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Define and describe technology, including its core concepts of systems, resources, requirements, processes, controls, optimization and trade-offs.
PROFICIENCY LEVEL	6- 8.DT.1.c.	Define and categorize the requirements of a design as either criteria or constraints.
PROFICIENCY LEVEL	6- 8.DT.1.f.	Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.

BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.
PROFICIENCY LEVEL	6- 8.DT.2.d.	Consider multiple factors, including criteria and constraints, (e.g. research, cost, time, materials, feedback, safety, etc.) to justify decisions when developing products and systems to solve problems.
PROFICIENCY LEVEL	6- 8.DT.2.e.	Identify and explain why effective designs develop from non-linear, flexible application of the design process.
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ACADEMIC CONTENT		Ohio Learning Standards in Technology Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
ACADEMIC CONTENT STANDARD	Topic 3:	Design and Technology: Addresses the nature of technology to develop and improve products and

Grade 6 - Adopted: 2022

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	COMPUTING SYSTEMS
BENCHMARK / GRADE LEVEL INDICATOR	Troubleshooting

PROFICIENCY CS.T.6.a. Use a solution

CS.T.6.a. Use a systematic process to identify and evaluate the source of a routine computing problem. Select the best solution to solve the computing problem and communicate the solution to others.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Algorithms

PROFICIENCY ATP.A.6. Compare and refine multiple algorithms for the same task to determine which is the most efficient. LEVEL a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING

BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation
PROFICIENCY LEVEL	ATP.VDR .6.a.	Identify unknown values that need to be represented by a variable within a multi-step process.

 PROFICIENCY
 ATP.VDR
 Create variables and use them within a multi-step process.

 LEVEL
 .6.b.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCYATP.CS.6Identify and trace decisions and loops that exist in a multi-step process within a program.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Modularity

PROFICIENCYATP.M.6.Decompose problems into parts to facilitate the design, implementation and review of programs.LEVELa.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.6Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 6
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions

PROFICIENCY	AI.NI.6.a.	Individually and collaboratively compare language processing algorithms to solve a problem based on a given
LEVEL		criteria (e.g., time, resource, accessibility).

Oklahoma Academic Standards Mathematics

Grade 5 - Adopted: 2022		
CONTENT STANDARD / COURSE	Mathematical Actions and Processes	
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding	
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency	
STRAND / STANDARD	Develop Strategies for Problem Solving	
STRAND / STANDARD	Develop Mathematical Reasoning	
STRAND / STANDARD	Develop a Productive Mathematical Disposition	
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize	
STRAND / STANDARD	Develop the Ability to Communicate Mathematically	
	Oklaho ma Academic Standards	

Mathematics Grade 6 - Adopted: 2022

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition

STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD	Develop the Ability to Communicate Mathematically

Oklahoma Academic Standards

Science

Grade 5 - Adopted: 2020

CONTENT ST ANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		From Molecules to Organisms: Structure and Processes (LS1)
OBJECTIVE	5.LS1.1	Support an argument that plants get the materials they need for growth chiefly from air and water.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Earth and Human Activity (ESS3)
OBJECTIVE	5.ESS3.1	Obtain and combine information about ways individual communities use science ideas to protect the Earth's

Oklahoma Academic Standards Technology Education Grade 5 - Adopted: 2023

resources and environments.

Grade 5 - Adopted: 2023		
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Creating Computational Artifacts
SKILL / CONCEPT		Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD		Computer Science Practices
OBJECTIVE		Developing and Using Abstractions
SKILL / CONCEPT		Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science

STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment
SKILL / CONCEPT	Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Recognizing and Defining Computational Problems

SKILL / CONCEPT Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.CS.	Computing Systems (CS)
SKILL / CONCEPT	5.CS.T.	Troubleshooting (T)

 SKILL
 5.CS.T.01
 Identify, using accurate terminology, simple hardware and software problems that may occur during everyday use.

 .
 Discuss problems with peers and adults, apply strategies for solving these problems and explain why the strategies should work.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.A.	Algorithms (A)

SKILL

5.AP.A.0 Model, compare and refine multiple algorithms for the same task and determine which is the most efficient. 1.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	5.AP.PD.	Program Development (PD)

SKILL

5.AP.PD. Use an iterative process to plan the development of a program that includes others' perspectives and user preferences while solving simple problems.

04.

01.

2.

5.AP.PD. Communicate and explain program development choices using comments, presentations, and demonstrations.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	5	Fifth Grade (5)
OBJECTIVE	5.IC.	Impacts of Computing (IC)
SKILL / CONCEPT	5.IC.CU.	Culture (CU)

SKILL

5.IC.CU.0 Develop, test, and refine digital artifacts to improve accessibility and usability.

Grade 5 - Adopted: 2019			
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)	
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.	
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.	

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

SKILL

Oklahoma Academic Standards

Technology Education Grade 6 - Adopted: 2023

Grade 6 - Adopted: 2023			
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Creating Computational Artifacts	
SKILL / CONCEPT		Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Developing and Using Abstractions	
SKILL / CONCEPT		Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Developing a Productive Computing Environment	
SKILL / CONCEPT		Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD		Computer Science Practices	
OBJECTIVE		Recognizing and Defining Computational Problems	
SKILL / CONCEPT		Recognize appropriate and worthwhile opportunities to apply computation. Students will work to solve a problem by defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.	
CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science	
STRAND / STANDARD	6	Sixth Grade (6)	
OBJECTIVE	6.CS.	Computing Systems (CS)	

SKIL CON	L / ICEPT	6.CS.T.	Troubleshooting (T)

6.CS.T.01 Identify and resolve software and hardware problems with computing devices and their components involving

CONTENT STANDARD / Oklahoma Academic Standards - Computer Science COURSE STRAND / 6 Sixth Grade (6) **STANDARD** OBJECTIVE 6.AP. Algorithms & Programming (AP) SKILL / 6.AP.A. Algorithms (A) CONCEPT

SKILL

settings and connections.

6.AP.A.0 Use an existing algorithm in natural language or pseudocode to solve complex problems.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	6	Sixth Grade (6)
OBJECTIVE	6.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	6.AP.PD.	Program Development (PD)
SKILL	6.AP.PD.	Break down tasks and follow an individual timeline when developing a computational artifact.

04.

1.

Grade 6 - Adopted: 2019

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
CONTENT		ISTE for Students 2016 (ISTE-S)

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
---------------------------------	--	---------------------------------

SKILL

STRAND / STANDARD	ISTE- S.5.	Computational Thinker: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
OBJECTIVE	ISTE- S.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions.
OBJECTIVE	ISTE- S.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
OBJECTIVE	ISTE- S.5.d.	Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.

Oregon Academic Content Standards

Mathematics

Grade 5 - Adopted: 2021

STANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.
		Ore yes a Academic Content Standarde

Oregon Academic Content Standards

Mathematics

	Grade 6 - Adopted: 2021		
ST ANDARD / CONTENT AREA		Mathematical Practice Standards	
CONTENT STANDARD / PROFICIENCY	1	Make sense of problems and persevere in solving them.	

CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	5	Use appropriate tools strategically.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.

STANDARD / CONTENT AREA		Grade 6 Standards
CONTENT STANDARD / PROFICIENCY	6.AEE.	Algebraic Reasoning: Expressions and Equations (6.AEE)
BENCHMARK / STRAND	6.AEE.B	Reason about and solve one-variable equations and inequalities.
EXPECTATION / BENCHMARK	6.AEE.B. 4.	Understand solving an equation or inequality as a process of answering which values from a specified set, if any, make the equation or inequality true. Use substitution to determine which number(s) in a given set make an equation

or inequality true.

Oregon Academic Content Standards

Science Grade 5 - Adopted: 2022			
ST ANDARD / CONTENT AREA	OR.5- LS1.	From Molecules to Organisms: Structures and Processes	
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:	

STRAND

BENCHMARK / 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

ST ANDARD / CONTENT AREA	OR.5- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	5-ESS3- 1.	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

STANDARD / CONTENT AREA	OR.3-5- ET S1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	3-5- ETS1-1.	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
BENCHMARK / STRAND	3-5- ETS1-2.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
BENCHMARK / STRAND	3-5- ETS1-3.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Oregon Academic Content Standards

Science

Grade 6 - Adopted: 2022

		Grade 6 - Adopted: 2022
STANDARD / CONTENT AREA	OR.MS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STANDARD / CONTENT AREA	OR.MS- ETS1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
ST ANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.7.	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
ST ANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT		Reading Standards for Literacy in Science and Technical Subjects Range of Reading and Level of Text Complexity
CONTENT AREA CONTENT STANDARD /		
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK /	6-8. RST.6- 8.10.	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT	6-8. RST.6- 8.10. OR.WHST	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD /	6-8. RST.6- 8.10. OR.WHST	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects
CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK /	6-8. RST.6- 8.10. OR.WHST .6-8.	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/
CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND	6-8. RST.6- 8.10. OR.WHST .6-8. WHST.6 -8.2. WHST.6-	Range of Reading and Level of Text Complexity By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently. Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.