Main Criteria: Forward Education

Secondary Criteria: Montana Content Standards, Nebraska Content Area Standards, Nevada Academic Content Standards, New Hampshire College and Career Ready Standards, New Jersey Student Learning Standards, New Mexico Content Standards, New York State Learning Standards and Core Curriculum, North Carolina Standard Course of Study, North Dakota Content Standards, Ohio Learning Standards, Oklahoma Academic Standards, Oregon Academic Content Standards, Pennsylvania Core and Academic Standards

Subjects: Mathematics, Science, Technology Education

Grades: 7, 8, Key Stage 3

Forward Education

Wildfire detection with Autonomous Vehicles

Montana Content Standards

Mathematics

Grade 7 - Adopted: 2011

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / DOMAIN	MT.CC.7. EE.	Expressions and Equations
BENCHMARK / STANDARD		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
GRADE LEVEL EXPECTATION / BENCHMARK	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, including those represented in Montana American Indian cultural contexts, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
EXPECTATION	7.EE.4.a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
		Montana Content Standards

Mathematics

Grade 8 - Adopted: 2011

CONTENT STANDARD / DOMAIN	MT.CC.M P.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / DOMAIN	MT.CC.8. EE.	Expressions and Equations
BENCHMARK / STANDARD		Understand the connections between proportional relationships, lines, and linear equations.
GRADE LEVEL EXPECTATION / BENCHMARK	8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
		Montana Content Standards Science
CONTENT STANDARD / DOMAIN	MT.6- 8.PS.	Grade 7 - Adopted: 2016 PHYSICAL SCIENCE content standards for sixth through eighth grades are that each student will:
BENCHMARK / STANDARD	6- 8.PS.14.	Apply scientific principles to design, construct, and test a device that minimizes or maximizes thermal energy transfer
CONTENT STANDARD / DOMAIN	MT.6- 8.LS.	LIFE SCIENCE content standards for sixth through eighth grades are that each student will:
BENCHMARK / STANDARD	6-8.LS.9.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services
CONTENT STANDARD / DOMAIN	MT.6- 8.ESS.	EARTH AND SPACE SCIENCE content standards for sixth through eighth grades are that students will:

BENCHMARK / STANDARD	6- 8.ESS.12.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century
BENCHMARK / STANDARD	6- 8.ESS.13.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects
BENCHMARK / STANDARD	6- 8.ESS.14.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment
		Grade 7 - Adopted: 2011
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Range of Reading Level of Text Complexity

GRADE LEVELRST.6-By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity bandEXPECTATION /8.10.independently and proficiently.BENCHMARK

CONTENT STANDARD / DOMAIN	MT.WHST .6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2.d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD / DOMAIN	MT.WHS T.6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Montana Content Standards

information and ideas clearly and efficiently.

EXPECTATION / 8.6.

BENCHMARK

Science

	Grade 8 - Adopted: 2016		
CONTENT STANDARD / DOMAIN	MT.6- 8.PS.	PHYSICAL SCIENCE content standards for sixth through eighth grades are that each student will:	
BENCHMARK / STANDARD	6- 8.PS.14.	Apply scientific principles to design, construct, and test a device that minimizes or maximizes thermal energy transfer	
CONTENT STANDARD / DOMAIN	MT.6- 8.LS.	LIFE SCIENCE content standards for sixth through eighth grades are that each student will:	
BENCHMARK / STANDARD	6-8.LS.9.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services	
CONTENT STANDARD / DOMAIN	MT.6- 8.ESS.	EARTH AND SPACE SCIENCE content standards for sixth through eighth grades are that students will:	
BENCHMARK / STANDARD	6- 8.ESS.12.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century	
BENCHMARK / STANDARD	6- 8.ESS.13.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects	

BENCHMARK /6-Apply scientific principles to design a method for monitoring and minimizing a human impact on the environmentSTANDARD8.ESS.14.

Grade 8 - Adopted: 2011		
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / ST ANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / DOMAIN	MT.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / ST ANDARD		Range of Reading Level of Text Complexity
GRADE LEVEL EXPECTATION / BENCHMARK	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
CONTENT STANDARD / DOMAIN	MT .WHST .6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / STANDARD		Text Types and Purposes

GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION	WHST.6- 8.2.d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD / DOMAIN	MT.WHS T.6-8.	Writing Standards for Literacy in Science, and Technical Subjects
BENCHMARK / ST ANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / BENCHMARK	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Montana Content Standards Technology Education Grade 7 - Adopted: 2020/Effective 2021

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(a)	select and use digital tools to support design processes, identify constraints and trade-offs and weigh risks;
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(b)	engage in design process to develop, test and revise prototypes or create innovative products; and

 CONTENT
STANDARD /
DOMAIN
 CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE

 BENCHMARK /
STANDARD
 (5)
 The computational thinker content standards for sixth-eighth grade are that each student will:

 GRADE LEVEL
EXPECTATION /
BENCHMARK
 (5)(a)
 investigate and practice solving problems by using data analysis, modeling or algorithmic thinking;

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(6)	The creative communicator content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(a)	select appropriate platforms and tools to create, share, and communicate work;

GRADE LEVEL	(6)(b)	create original works or responsibly remix and repurpose other digital resources into new creative works; and
EXPECTATION /		
BENCHMARK		

CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(b)	create clearly named variables that represent different data types and perform operations on their values;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	develop programs that combine control structures, including nested loops and compound conditionals;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(d)	decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(i)	distribute tasks and maintain a project timeline when collaboratively developing computational artifacts; and
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(3)	Computer science data and analysis standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(3)(c)	refine computational models based on the data they have generated.
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION /	(4)(c)	collaborate with other contributors when creating a computational artifact; and

BENCHMARK

Montana Content Standards Technology Education Grade 8 - Adopted: 2020/Effective 2021

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	The innovative designer content standards for sixth-eighth grade are that each student will:

GRADE LEVEL	(4)
EXPECTATION /	
BENCHMARK	

(a) select and use digital tools to support design processes, identify constraints and trade-offs and weigh risks;

GRADE LEVEL EXPECTATION / BENCHMARK

(4)(b) engage in design process to develop, test and revise prototypes or create innovative products; and

CONTENT STANDARD / DOMAIN		CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(5)	The computational thinker content standards for sixth-eighth grade are that each student will:

GRADE LEVEL investigate and practice solving problems by using data analysis, modeling or algorithmic thinking; (5)(a) EXPECTATION /

BENCHMARK CONTENT CONTENT STANDARDS FOR TECHNOLOGY INTEGRATION FOR SIXTH THROUGH EIGHTH GRADE

ST ANDARD / DOMAIN		
BENCHMARK / STANDARD	(6)	The creative communicator content standards for sixth-eighth grade are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(6)(a)	select appropriate platforms and tools to create, share, and communicate work;

GRADE LEVEL	(6)(b)	create original works or responsibly remix and repurpose other digital resources into new creative works; and
EXPECTATION /		
BENCHMARK		

CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(1)	Computer science algorithms and programming standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(b)	create clearly named variables that represent different data types and perform operations on their values;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(c)	develop programs that combine control structures, including nested loops and compound conditionals;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(d)	decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs;
GRADE LEVEL EXPECTATION / BENCHMARK	(1)(i)	distribute tasks and maintain a project timeline when collaboratively developing computational artifacts; and
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE

BENCHMARK / STANDARD	(3)	Computer science data and analysis standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(3)(c)	refine computational models based on the data they have generated.
CONTENT STANDARD / DOMAIN		COMPUTER SCIENCE CONTENT STANDARDS FOR SIXTH THROUGH EIGHTH GRADE
BENCHMARK / STANDARD	(4)	Computer science impacts of computing standards for sixth through eighth grades are that each student will:
GRADE LEVEL EXPECTATION / BENCHMARK	(4)(c)	collaborate with other contributors when creating a computational artifact; and

Nebraska Content Area Standards

Mathematics

Grade 8 - Adopted: 2022

CONTENT ST ANDARD		Grade 8 Standards
STRAND	8.A.	ALGEBRA: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.
INDICATOR	8.A.2.	Applications: Students will solve authentic problems involving multi-step equations.
STRAND	8.A.2.c.	Graph proportional relationships and interpret the rate of change.

Nebraska Content Area Standards

Science Grade 7 - Adopted: 2017

CONTENT STANDARD	NE.SC.7. 7.	Interdependent Relationships in Ecosystems
STRAND	SC.7.7.3	Gather, analyze, and communicate evidence of interdependent relationships in ecosystems.
INDICATOR	SC.7.7.3. B.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT STANDARD	NE.SC.7. 8.	Matter and Energy in Organisms and Ecosystems
STRAND	SC.7.8.4	Gather, analyze, and communicate evidence of the flow of energy and cycling of matter in organisms and ecosystems.
INDICATOR	SC.7.8.4. E.	Construct an argument supported by evidence that changes to physical or biological components of an ecosystem affect populations.
CONTENT STANDARD	NE.SC.7. 14.	History of Earth
STRAND	SC.7.14. 6.	Gather, analyze, and communicate evidence to explain Earth's history.
INDICATOR	SC.7.14.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at

6.A. varying time and spatial scales.

.

INDICATOR

SC.7.14. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of6.C. technologies to mitigate their effects.

Nebraska Content Area Standards

Science

Grade 8 - Adopted: 2017

CONTENT STANDARD	NE.SC.8. 1.	Forces and Interactions
STRAND	SC.8.1.1	Gather, analyze, and communicate evidence of forces and interactions.
INDICATOR	SC.8.1.1. B.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Nebraska Content Area Standards

Technology Education

Grade 7 - Adopted: 2018

CONTENT ST ANDARD	I	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND		PRODUCTIVITY APPLICATIONS/TOOLS
INDICATOR		SPREADSHEETS STANDARDS

STRAND

Demonstrate and understanding of recording, organizing, and graphing information.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUTATIONAL THINKING STANDARDS

STRAND

Create simulations/models to understand natural phenomena and test hypotheses.

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).
STRAND	Create and modify animations, and present work to others.
STRAND	Write programs using text-based programming languages.

Nebraska Content Area Standards

Technology Education

Grade 8 - Adopted: 2018

CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	PRODUCTIVITY APPLICATIONS/TOOLS
INDICATOR	SPREADSHEETS STANDARDS

STRAND	Demonstrate and understanding of recording, organizing, and graphing information.
CONTENT ST ANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	COMPUT AT IONAL THINKING ST ANDARDS
STRAND	Create simulations/models to understand natural phenomena and test hypotheses.
CONTENT STANDARD	NEBRASKA K-12 TECHNOLOGY Scope & Sequence
STRAND	COMPUTER SCIENCE/PROGRAMMING
INDICATOR	PROGRAMMING STANDARDS
STRAND	Write programs using visual (block-based) programming languages (scratch, code.org).
STRAND	Create and modify animations, and present work to others.
STRAND	Write programs using text-based programming languages.

Nevada Academic Content Standards Mathematics

Grade 7 - Adopted: 2010

CONTENT STANDARD	NV.CC.M P.7.	Mathematical Practices
STRAND / INDICATOR	MP.7.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.7.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.7.4.	Model with mathematics.
STRAND / INDICATOR	MP.7.6.	Attend to precision.
STRAND / INDICATOR	MP.7.7.	Look for and make use of structure.
STRAND / INDICATOR	MP.7.8.	Look for and express regularity in repeated reasoning.
CONTENT ST ANDARD	NV.CC.EE	Expressions and Equations

STRAND / INDICATOR		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
INDICATOR / GRADE LEVEL EXPECTATION	EE.7.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
GRADE LEVEL EXPECTATION	EE.7.4(a)	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54

cm. Its length is 6 cm. What is its width?

Nevada Academic Content Standards

Mathematics

CONTENT ST ANDARD	NV.CC.M P.8.	Mathematical Practices
STRAND / INDICATOR	MP.8.1.	Make sense of problems and persevere in solving them.
STRAND / INDICATOR	MP.8.2.	Reason abstractly and quantitatively.
STRAND / INDICATOR	MP.8.3.	Construct viable arguments and critique the reasoning of others.
STRAND / INDICATOR	MP.8.4.	Model with mathematics.
STRAND / INDICATOR	MP.8.6.	Attend to precision.
STRAND / INDICATOR	MP.8.7.	Look for and make use of structure.
STRAND / INDICATOR	MP.8.8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD	NV.CC.E E.8.	Expressions and Equations
STRAND / INDICATOR		Understand the connections between proportional relationships, lines, and linear equations.
INDICATOR / GRADE LEVEL EXPECTATION	EE.8.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

Nevada Academic Content Standards

Science

Grade 7 - Adopted: 2014

CONTENT ST ANDARD	NV.MS- PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	MS-PS3.	Energy

GRADE LEVELMS-PS3-Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energyEXPECTATION3.transfer.

CONTENT STANDARD	NV.MS- LS.	LIFE SCIENCE
STRAND / INDICATOR	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVELMS-LS2-Construct an argument supported by empirical evidence that changes to physical or biological components of an
ecosystem affect populations.

GRADE LEVELMS-LS2-Evaluate competing design solutions for maintaining biodiversity and ecosystem services.EXPECTATION5.

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS2.	Earth's Systems
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL	MS-	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at

GRADE LEVELMS-Construct an explanation based on evidence for how geoscience processes have changed Earth's surface atEXPECTATIONESS2-2.varying time and spatial scales.

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
CONTENT STANDARD	NV.MS- ETS.	ENGINEERING DESIGN
STRAND / INDICATOR	MS- ET S1.	Engineering Design

INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Key Ideas and Details
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity

INDICATOR /RST.6-By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity bandGRADE LEVEL8.10.independently and proficiently.EXPECTATION

CONTENT ST ANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	-8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVELWHST.6-Use precise language and domain-specific vocabulary to inform about or explain the topic.EXPECTATION8.2(d)

CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Nevada Academic Content Standards

Science

Grade 8 - Adopted: 2014

	NV.MS- PS.	PHYSICAL SCIENCE
STRAND / INDICATOR	MS-PS3.	Energy
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

GRADE LEVEL	MS-PS3-	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy
EXPECTATION	3.	transfer.

CONTENT STANDARD	NV.MS- LS.	LIFE SCIENCE
STRAND / INDICATOR	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS2.	Earth's Systems
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
CONTENT STANDARD	NV.MS- ESS.	EARTH AND SPACE SCIENCE
STRAND / INDICATOR	MS- ESS3.	Earth and Human Activity
INDICATOR / GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
CONTENT STANDARD	NV.MS- ETS.	ENGINEERING DESIGN
		ENGINEERING DESIGN Engineering Design
STANDARD	ET S. MS-	
ST ANDARD ST RAND / INDICAT OR INDICAT OR / GRADE LEVEL	ET S. MS-	Engineering Design
ST AND ARD ST RAND / INDICAT OR INDICAT OR / GRADE LEVEL GRADE LEVEL	ET S. MS- ET S1. MS-	Engineering Design Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit
STANDARD ST RAND / INDICAT OR INDICAT OR / GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION	ET S. MS- ET S1. MS- ETS1-1. MS-	Engineering Design Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and
STANDARD ST RAND / INDICAT OR GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL	ET S. MS- ET S1. MS- ETS1-1. MS- ETS1-2.	Engineering Design Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such
STANDARD ST RAND / INDICAT OR GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL	ET S. MS- ET S1. MS- ETS1-1. MS- ETS1-2. MS- ETS1-4.	Engineering Design Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD ST RAND / INDICAT OR INDICAT OR / GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION GRADE LEVEL EXPECTATION CONTENT	ET S. MS- ET S1. MS- ETS1-1. MS- ETS1-2. MS- ETS1-4.	Engineering Design Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. Grade 8 - Adopted: 2010

EXPECTATION

INDICATOR /	RST.6-	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical
GRADE LEVEL	8.3.	tasks.
EXPECTATION		

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Craft and Structure
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
	DST6	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and

INDICATOR /	RST.6-	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and
GRADE LEVEL	8.5.	to an understanding of the topic.
EXPECTATION		

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Integration of Knowledge and Ideas
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

CONTENT STANDARD	NV.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Range of Reading and Level of Text Complexity
INDICATOR / GRADE LEVEL EXPECTATION	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

CONTENT STANDARD	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Text Types and Purposes
INDICATOR / GRADE LEVEL EXPECTATION	-8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

GRADE LEVEL WHST EXPECTATION 8.2(d)

WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic. 8.2(d)

	NV.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
STRAND / INDICATOR		Production and Distribution of Writing
INDICATOR / GRADE LEVEL EXPECTATION	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

INDICATOR / WHS GRADE LEVEL 8.6. EXPECTATION

WHST.6- Use technology, including the Internet, to produce and publish writing and present the relationships between8.6. information and ideas clearly and efficiently.

Nevada Academic Content Standards

Technology Education

Grade 7 - Adopted: 2019

CONTENT STANDARD	NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR	Practices
INDICATOR / GRADE LEVEL EXPECTATION	Fostering an Inclusive Computing Culture

GRADE LEVEL EXPECTATION P1.3.

Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions
GRADE LEVEL EXPECTATION	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
GRADE LEVEL EXPECTATION	P4.4.	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts

GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXPECTATION	P5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND /		Practices

STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts

GRADE LEVEL EXPECTATION

P6.1. Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Algorithms and Programming
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.V.2.	Create clearly named variables that represent different data types and perform operations on their values.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.C.1.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

INDICATOR / 6-Design meaningful solutions for others, incorporating data from collaborative team members and the end user, to GRADE LEVEL 8.AP.PD. meet the end user's needs. EXPECTATION 1.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Data and Analysis
INDICATOR / GRADE LEVEL	6- 8.DA.IM.1.	Refine computational models based on the reliability and validity of the data they generate.

EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Knowledge Constructor
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.KC.D.1.	Explore real-world issues and problems through inquiry and analysis, develop ideas, actively create solutions for them, and evaluate and revise through the use of digital tools.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
---------------------	--	---

STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.A.1.	Engage in a design process and employ it to inquire and analyze, generate ideas, create innovative products or solve authentic problems, and evaluate the process to revise if needed.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Global Collaborator
INDICATOR / GRADE LEVEL	6- 8.GC.D.1.	Select collaborative technologies and use them to work with others to investigate and develop solutions related to local and global issues.

Nevada Academic Content Standards Technology Education Grade 8 - Adopted: 2019

EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P1.	Fostering an Inclusive Computing Culture

GRADE LEVELP1.3.Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P3.	Recognizing and Defining Computational Problems
GRADE LEVEL EXPECTATION	P3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
GRADE LEVEL EXPECTATION	P3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P4.	Developing and Using Abstractions

GRADE LEVEL	P4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
EXPECTATION		

GRADE LEVEL EXPECTATION P4.4.

Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P5.	Creating Computational Artifacts
GRADE LEVEL EXPECTATION	P5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.

GRADE LEVELP5.2.Create a computational artifact for practical intent, personal expression, or to address a societal issue.EXPECTATION

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Practices
INDICATOR / GRADE LEVEL EXPECTATION	P6.	Testing and Refining Computational Artifacts
GRADE LEVEL EXPECTATION	P6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Algorithms and Programming
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.V.2.	Create clearly named variables that represent different data types and perform operations on their values.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.C.1.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.AP.PD. 1.	Design meaningful solutions for others, incorporating data from collaborative team members and the end user, to meet the end user's needs.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for COMPUTER SCIENCE
STRAND / INDICATOR		Data and Analysis

INDICATOR /	6-
GRADE LEVEL	8.E
EXPECTATION	

Refine computational models based on the reliability and validity of the data they generate. DA.IM.1.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Knowledge Constructor
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.KC.D.1.	Explore real-world issues and problems through inquiry and analysis, develop ideas, actively create solutions for them, and evaluate and revise through the use of digital tools.

CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Innovative Designer
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.A.1.	Engage in a design process and employ it to inquire and analyze, generate ideas, create innovative products or solve authentic problems, and evaluate the process to revise if needed.
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.ID.C.1.	Engage in a design process to inquire and analyze, develop ideas, test and revise prototypes, embracing the cyclical process of trial and error, and understanding problems or setbacks as potential opportunities for improvement.
CONTENT STANDARD		NEVADA ACADEMIC CONTENT STANDARDS for INTEGRATED TECHNOLOGY
STRAND / INDICATOR		Global Collaborator
INDICATOR / GRADE LEVEL EXPECTATION	6- 8.GC.D.1.	Select collaborative technologies and use them to work with others to investigate and develop solutions related to local and global issues.

New Hampshire College and Career Ready Standards

Mathematics

Grade 7 - Adopted: 2010	
-------------------------	--

STRAND / STANDARD	NH.CC.M P.7.	Mathematical Practices
STANDARD / GLE	MP.7.1.	Make sense of problems and persevere in solving them.
STANDARD / GLE	MP.7.2.	Reason abstractly and quantitatively.
STANDARD / GLE	MP.7.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / GLE	MP.7.4.	Model with mathematics.

STANDARD / MP.7.6. GLE	Attend to precision.
STANDARD / MP.7.7. GLE	Look for and make use of structure.

STANDARD /

MP.7.8. Look for and express regularity in repeated reasoning.

GLE

STRAND / STANDARD	NH.CC.EE .7.	Expressions and Equations
STANDARD / GLE		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
GRADE LEVEL EXPECTATION	EE.7.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
EXPECTATION	EE.7.4(a)	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

New Hampshire College and Career Ready Standards

Mathematics

	Grade 8 - Adopted: 2010		
STRAND / STANDARD	NH.CC.M P.8.	Mathematical Practices	
STANDARD / GLE	MP.8.1.	Make sense of problems and persevere in solving them.	
STANDARD / GLE	MP.8.2.	Reason abstractly and quantitatively.	
STANDARD / GLE	MP.8.3.	Construct viable arguments and critique the reasoning of others.	
STANDARD / GLE	MP.8.4.	Model with mathematics.	
STANDARD / GLE	MP.8.6.	Attend to precision.	
STANDARD / GLE	MP.8.7.	Look for and make use of structure.	
STANDARD / GLE	MP.8.8.	Look for and express regularity in repeated reasoning.	
STRAND /	NH.CC.E	Expressions and Equations	

ST AND ARD	E.8.	
STANDARD / GLE		Understand the connections between proportional relationships, lines, and linear equations.

GRADE LEVEL EE.8.5. EXPECTATION

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

New Hampshire College and Career Ready Standards

Science

Grade 7 - Adopted: 2016

	NGSS.MS -PS.	PHYSICAL SCIENCE
ST ANDARD / GLE	MS-PS3.	Energy
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION

MS-PS3- Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy 3. transfer.

STRAND / STANDARD	NGSS.MS -LS.	LIFE SCIENCE
ST ANDARD / GLE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

EXPECTATION	MS-LS2-	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
	5.	

	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / GLE	MS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

EXPECTATION MS- Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at ESS2-2. varying time and spatial scales.

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
ST ANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
EXPECTATION	MS- FSS3-3	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

EXPECTATION

MS-Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past ESS3-5. century.

STRAND / STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
STANDARD / GLE	MS- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Hampshire College and Career Ready Standards

Science

Grade 8 - Adopted: 2016

	NGSS.MS -PS.	PHYSICAL SCIENCE
ST ANDARD / GLE	MS-PS3.	Energy
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

MS-PS3- Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy EXPECTATION 3. transfer.

STRAND / STANDARD	NGSS.MS -LS.	LIFE SCIENCE
STANDARD / GLE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

5.

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

STRAND / NGSS.MS EARTH AND SPACE SCIENCE STANDARD -ESS. STANDARD / MS-Earth's Systems GLE ESS2. **GRADE LEVEL** Students who demonstrate understanding can: **EXPECTATION**

EXPECTATION

EXPECTATION MS-

Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at ESS2-2. varying time and spatial scales.

STRAND / STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STANDARD / GLE	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

STRAND / STANDARD	NGSS.MS -ETS.	
STANDARD / GLE	MS- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Hampshire College and Career Ready Standards

Technology Education Grade 7 - Adopted: 2018

STRAND / STANDARD		Computer Science
STANDARD / GLE		Data & Analysis
GRADE LEVEL	2-DA-09.	Refine computational models based on the data they have generated.

EXPECTATION

ıр эy g

STRAND / STANDARD Computer Science STANDARD / GLE Algorithms & Programming GRADE LEVEL 2-AP-11. Create clearly named variables that represent different data types and perform operations on their values. EXPECTATION

GRADE LEVEL2-AP-12.Design and iteratively develop programs that combine control structures, including nested loops and compoundEXPECTATIONconditionals.

New Hampshire College and Career Ready Standards

Technology Education

Grade 8 - Adopted: 2018

STRAND / STANDARD	Computer Science
ST ANDARD / GLE	Data & Analysis

GRADE LEVEL 2-DA-09. Refine computational models based on the data they have generated. EXPECTATION

STRAND / STANDARD		Computer Science
STANDARD / GLE		Algorithms & Programming
GRADE LEVEL EXPECTATION	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values.
GRADE LEVEL EXPECTATION	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

New Jersey Student Learning Standards

Mathematics

Grade 7 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.
STRAND	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT AREA / STANDARD	NJ.7.EE.	Expressions and Equations

STRAND	7.EE.B.	Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
CONTENT STATEMENT	7.EE.B. 4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
CUMULATIVE PROGRESS INDICATOR	7.EE.B.4. a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p , q , and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

New Jersey Student Learning Standards

Mathematics

Grade 8 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.6.	Attend to precision.
STRAND	MP.7.	Look for and make use of structure.
STRAND	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT AREA / STANDARD	NJ.8.EE.	Expressions and Equations
STRAND	8.EE.B.	Understand the connections between proportional relationships, lines, and linear equations.
CONTENT STATEMENT	8.EE.B.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

New Jersey Student Learning Standards

Science

Grade 7 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-PS.	Physical Science
STRAND	MS-PS3:	Energy
CONTENT	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

	MCLC	Life Science		
CONTENT AREA /	IVIS-LS.	Life Science		
STANDARD				
STANDARD				

STRAND	MS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STATEMENT	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
CONTENT STATEMENT	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS2:	Earth's Systems
CONTENT STATEMENT	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STATEMENT	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused climate change over the past century.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ET S1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Jersey Student Learning Standards

Science Grade 8 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	MS-PS.	Physical Science
STRAND	MS-PS3:	Energy

CONTENT STATEMENT	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
CONTENT AREA / STANDARD	MS-LS.	Life Science
STRAND	MS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STATEMENT	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
CONTENT STATEMENT	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS2:	Earth's Systems
CONTENT STATEMENT	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
CONTENT AREA / STANDARD	MS-ESS.	Earth and Space Science
STRAND	MS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
CONTENT STATEMENT	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STATEMENT	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused climate change over the past century.
CONTENT AREA / STANDARD	MS-ETS.	Engineering, Technology and Applications of Science
STRAND	MS5- ETS1:	Engineering Design
CONTENT STATEMENT	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STATEMENT	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STATEMENT	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Technology Education

Grade 7 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

CUMULATIVE PROGRESS INDICATOR

CONTENT AREA / ST ANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Identify complex, interdisciplinary, real-world problems that can be solved computationally.

CUMULATIVE	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or
PROGRESS	procedures.
INDICATOR	

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CUMULATIVE PROGRESS INDICATOR	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts

CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts
CONTENT STATEMENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:

CUMULATIVE
PROGRESS
INDICATOR

CONTENT
AREA /
STANDARD8.1.Computer Science and Design Thinking - Computer ScienceSTRANDData & AnalysisCONTENT
STATEMENTComputer models can be used to simulate events, examine theories and inferences, or make
predictions.CUMULATIVE8.1.8.D.A.Test, analyze, and refine computational models.

Systematically test computational artifacts by considering all scenarios and using test cases.

CUMULATIVE	8.1.8.DA.	Test, analyze, and refine computational models.
PROGRESS	5:	
INDICATOR		

CUMULATIVE	8.1.8.DA.	Analyze climate change computational models and propose refinements.
PROGRESS	6:	
INDICATOR		

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Programmers create variables to store data values of different types and perform appropriate operations on their values.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 2:	Create clearly named variables that represent different data types and perform operations on their values.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science

STRAND		Algorithms & Programming
CONTENT STATEMENT		Control structures are selected and combined in programs to solve more complex problems.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 3:	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 7:	Design programs, incorporating existing code, media, and libraries, and give attribution.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 8:	Systematically test and refine programs using a range of test cases and users.
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 3:	Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype, graphical/technical sketch).
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
CONTENT AREA /	8.2.	Computer Science and Design Thinking – Design Thinking Engineering Design
CONTENT AREA / ST ANDARD	8.2.	
CONTENT AREA / STANDARD STRAND	8.2. 8.2.8.ED. 5:	Engineering Design Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ET W.4:	Compare the environmental effects of two alternative technologies devised to address climate change issues and use data to justify which choice is best.

New Jersey Student Learning Standards

Technology Education

	Grade 8 - Adopted: 2020
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE PROGRESS I

Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

PROGRESS	
NDICATOR	

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR		Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CUMULATIVE PROGRESS INDICATOR		Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		5 Creating Computational Artifacts
CONTENT STATEMENT		The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR		Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		6 Testing and Refining Computational Artifacts
CONTENT STATEMENT		Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:
CUMULATIVE PROGRESS		Systematically test computational artifacts by considering all scenarios and using test cases.
INDICATOR		
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
CONTENT AREA /	8.1.	
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
CONTENT AREA / STANDARD STRAND CONTENT		Computer Science and Design Thinking – Computer Science Data & Analysis Computer models can be used to simulate events, examine theories and inferences, or make

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Programmers create variables to store data values of different types and perform appropriate operations on their values.

CUMULATIVE8.1.8.AP.Create clearly named variables that represent different data types and perform operations on their values.PROGRESS2:INDICATOR

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Control structures are selected and combined in programs to solve more complex problems.
CUMULATIVE PROGRESS	8.1.8.AP. 3:	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

INDICATOR

STANDARD

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals design and test solutions to identify problems taking into consideration the diverse needs of the users and the community.
CUMULATIVE PROGRESS INDICATOR	8.1.8.AP. 7:	Design programs, incorporating existing code, media, and libraries, and give attribution.

CUMULATIVE	8.1.8.AP.	Systematically test and refine programs using a range of test cases and users.
PROGRESS	8:	
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a systematic, creative, and iterative process used to address local and global problems. The process includes generating ideas, choosing the best solution, and making, testing, and redesigning models or prototypes.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 3:	Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype, graphical/technical sketch).
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 4:	Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.
CONTENT	8.2.	Computer Science and Design Thinking – Design Thinking

STRAND		Engineering Design
CONTENT STATEMENT		Engineering design requirements and specifications involve making trade-offs between competing requirements and desired design features.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 5:	Explain the need for optimization in a design process.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ED. 7:	Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Effects of Technology on the Natural World
CONTENT STATEMENT		Resources need to be utilized wisely to have positive effects on the environment and society. Some technological decisions involve tradeoffs between environmental and economic needs, while others have positive effects for both the economy and environment.
CUMULATIVE PROGRESS INDICATOR	8.2.8.ET W.4:	Compare the environmental effects of two alternative technologies devised to address climate change issues and use data to justify which choice is best.

New Mexico Content Standards Mathematics

Grade 7 - Adopted: 2012

STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.

STRAND / CONTENT STANDARD	NM.7.EE.	Expressions and Equations
BENCHMARK / STANDARD		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
PERFORMANCE STANDARD / INDICATOR	7.EE.4(a)	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
		New Mexico Content Standards Mathematics
		Grade 8 - Adopted: 2012
STRAND / CONTENT STANDARD	NM.MP.	Mathematical Practices
BENCHMARK / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
BENCHMARK / STANDARD	MP.2.	Reason abstractly and quantitatively.
BENCHMARK / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
BENCHMARK / STANDARD	MP.4.	Model with mathematics.
BENCHMARK / STANDARD	MP.6.	Attend to precision.
BENCHMARK / STANDARD	MP.7.	Look for and make use of structure.
BENCHMARK / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
STRAND / CONTENT STANDARD	NM.8.EE.	Expressions and Equations
BENCHMARK / STANDARD		Understand the connections between proportional relationships, lines, and linear equations.
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

Grade 7 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -PS.	PHYSICAL SCIENCE
BENCHMARK / STANDARD	MS-PS3.	Energy
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 MS-PS3 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy

 STANDARD /
 3.
 transfer.

 INDICATOR
 INDICATOR
 INDICATOR

STRAND / CONTENT STANDARD	NGSS.MS -LS.	LIFE SCIENCE
BENCHMARK / ST ANDARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCEMS-LS2-Construct an argument supported by empirical evidence that changes to physical or biological components of anSTANDARD /4.ecosystem affect populations.INDICATOR--

 PERFORMANCE
 MS-LS2 Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

 STANDARD /
 5.

 INDICATOR
 5.

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS2.	Earth's Systems
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 MS Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at

 STANDARD /
 ESS2-2.
 varying time and spatial scales.

 INDICATOR

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE STANDARD / INDICATOR	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMARK / ST ANDARD	MS- ET S1.	Engineering Design
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD /	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Mexico Content Standards

Science

Grade 8 - Adopted: 2013

STRAND / CONTENT STANDARD	NGSS.MS -PS.	PHYSICAL SCIENCE
BENCHMARK / STANDARD	MS-PS3.	Energy
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

PERFORMANCE	MS-PS3-	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy
STANDARD /	3.	transfer.
INDICATOR		

STRAND / CONTENT STANDARD	NGSS.MS -LS.	LIFE SCIENCE
BENCHMARK / ST ANDARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics

PERFORMANC Students who demonstrate understanding can: E STANDARD / BENCHMARK / PROFICIENCY Students who demonstrate understanding can:

 PERFORMANCE
 MS-LS2 Construct an argument supported by empirical evidence that changes to physical or biological components of an

 STANDARD /
 4.
 ecosystem affect populations.

 INDICATOR

 PERFORMANCE
 MS-LS2 Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

 STANDARD /
 5.

 INDICATOR
 5.

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS2.	Earth's Systems
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:

 PERFORMANCE
 MS Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at

 STANDARD /
 ESS2-2.
 varying time and spatial scales.

 INDICATOR

STRAND / CONTENT STANDARD	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
BENCHMARK / STANDARD	MS- ESS3.	Earth and Human Activity
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY		Students who demonstrate understanding can:
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
PERFORMANCE STANDARD / INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
PERFORMANCE STANDARD /	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

STRAND / CONTENT STANDARD	NGSS.MS -ETS.	ENGINEERING DESIGN
BENCHMAR ST ANDARD		Engineering Design
PERFORMA E STANDAR BENCHMAR PROFICIENC	Ю/ К/	Students who demonstrate understanding can:

INDICATOR

PERFORMANCE STANDARD / INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
PERFORMANCE STANDARD / INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

New Mexico Content Standards Technology Education Grade 7 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-DA.	Data & Analysis
PERFORMANC E STANDARD / INDICATOR		Inference & Models

INDICATOR 2-DA-09. Refine computational models based on the data they have generated. (P5.3, P4.4)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Variables

INDICATOR

2-AP-11. Create clearly named variables that represent different data types and perform operations on their values. (P5.1, P5.2)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E ST ANDARD / INDICAT OR		Control

INDICATOR

2-AP-12. Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P5.1, P5.2)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK /	CSTA.2.	Level 2 (Ages 11-14)

STANDARD		
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions

INDICATOR

2-IC-22. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing

INDICATOR

2-IC-23. Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2)

New Mexico Content Standards Technology Education Grade 8 - Adopted: 2019

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-DA.	Data & Analysis
PERFORMANC E STANDARD / INDICATOR		Inference & Models

INDICATOR 2-DA-09. Refine computational models based on the data they have generated. (P5.3, P4.4)

STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / ST ANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Variables
INDICATOR	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values. (P5.1, P5.2)
STRAND / CONTENT STANDARD		CST A K-12 Computer Science Standards
BENCHMARK / ST ANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E STANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Control
INDICATOR	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P5.1, P5.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards

BENCHMARK /	CST A.2.	Level 2 (Ages 11-14)
ST ANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Modularity
INDICATOR	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-AP.	Algorithms & Programming
PERFORMANC E STANDARD / INDICATOR		Program Development
INDICATOR	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Social Interactions
INDICATOR	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
STRAND / CONTENT STANDARD		CSTA K-12 Computer Science Standards
BENCHMARK / STANDARD	CSTA.2.	Level 2 (Ages 11-14)
PERFORMANC E ST ANDARD / BENCHMARK / PROFICIENCY	2-IC.	Impacts of Computing
PERFORMANC E STANDARD / INDICATOR		Safety, Law, & Ethics
INDICATOR	2-IC-23.	Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2)

Mathematics

Grade 7 - Adopted: 2017/Updated 2019

		Grade 7 - Adopted: 2017/Updated 2019
STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
CATEGORY / CLUSTER / KEY IDEA	MP.8	Look for and express regularity in repeated reasoning.
STRAND / DOMAIN / UNIFYING THEME		Grade 7
CATEGORY / CLUSTER / KEY IDEA	NY-7.EE.	Expressions, Equations, and Inequalities
ST ANDARD / CONCEPT UAL UNDERST AND ING		Solve real-life and mathematical problems using numerical and algebraic expressions, equations, and inequalities.
EXPECT AT ION / CONTENT SPECIFICAT IO N	NY- 7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
GRADE EXPECTATION	NY- 7.EE.4.a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

New York State Learning Standards and Core Curriculum Mathematics Grade 8 - Adopted: 2017/Updated 2019

STRAND / DOMAIN / UNIFYING THEME		Mathematical Practices
CATEGORY / CLUSTER / KEY IDEA	MP.1	Make sense of problems and persevere in solving them.
CATEGORY / CLUSTER / KEY IDEA	MP.2	Reason abstractly and quantitatively.
CATEGORY / CLUSTER / KEY IDEA	MP.3	Construct viable arguments and critique the reasoning of others.
CATEGORY / CLUSTER / KEY IDEA	MP.4	Model with mathematics.
CATEGORY / CLUSTER / KEY IDEA	MP.6	Attend to precision.
CATEGORY / CLUSTER / KEY IDEA	MP.7	Look for and make use of structure.
CATEGORY / CLUSTER / KEY IDEA	MP.8	Look for and express regularity in repeated reasoning.
STRAND / DOMAIN / UNIFYING THEME		Grade 8
CATEGORY / CLUSTER / KEY IDEA	NY-8.EE.	Expressions, Equations, and Inequalities
STANDARD / CONCEPTUAL UNDERSTAND ING		Understand the connections between proportional relationships, lines, and linear equations.
EXPECTATION / CONTENT SPECIFICATION	NY- 8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

New York State Learning Standards and Core Curriculum

Science

Grade 7 - Adopted: 2016

STRAND /	NY.MS.4.	Energy
DOMAIN /		Ŭ
UNIFYING		
THEME		

CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.7.	Matter and Energy in Organisms and Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.8.	Interdependent Relationships in Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and protecting ecosystem stability.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.12	History of Earth
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying temporal and spatial scales.
STRAND /	NY.MS.14	Weather and Climate

STRAND / DOMAIN / UNIFYING THEME	NY.MS.14	Weather and Climate
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.E D.	Engineering Design
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPTUAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

EXPECTATION /6-Use precise language and domain-specific vocabulary to inform about or explain the topic.CONTENT8.WHST.2.SPECIFICATIONd.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

New York State Learning Standards and Core Curriculum

Science

Grade 8 - Adopted: 2016

		Giaue 6 - Aubhieu. 2010
STRAND / DOMAIN / UNIFYING THEME	NY.MS.4.	Energy
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.7.	Matter and Energy in Organisms and Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.8.	Interdependent Relationships in Ecosystems
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and protecting ecosystem stability.

STRAND / DOMAIN / UNIFYING THEME	NY.MS.12	History of Earth
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying temporal and spatial scales.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.14	Weather and Climate
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STRAND / DOMAIN / UNIFYING THEME	NY.MS.15	Human Impacts
CATEGORY / CLUSTER / KEY IDEA		Students who demonstrate understanding can:
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONCEPTUAL UNDERSTANDI	ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONCEPTUAL UNDERSTANDI NG STRAND / DOMAIN / UNIFYING	ESS3-3.	

STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
STANDARD / CONCEPTUAL UNDERSTANDI NG	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2011
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Key Ideas and Details
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Craft and Structure
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Integration of Knowledge and Ideas
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

ST RAND / DOMAIN / UNIFYING THEME	NY.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Range of Reading and Level of Text Complexity
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STRAND /	NY.6-	Writing Standards for Literacy in Science and Technical Subjects

DOMAIN / UNIFYING THEME	8.WHST.	
CATEGORY / CLUSTER / KEY IDEA		Text Types and Purposes
ST ANDARD / CONCEPT UAL UNDERST AND ING	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

EXPECTATION / 6-CONTENT 8.WHST.2. SPECIFICATION d.

Use precise language and domain-specific vocabulary to inform about or explain the topic.

STRAND / DOMAIN / UNIFYING THEME	NY.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
CATEGORY / CLUSTER / KEY IDEA		Production and Distribution of Writing
STANDARD / CONCEPTUAL UNDERSTANDI NG	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD / CONCEPTUAL UNDERSTANDI	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

NG

New York State Learning Standards and Core Curriculum Technology Education

Grade 7 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME		Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.1.	Information Systems: Information technology is used to retrieve, process, and communicate information and as a tool to enhance learning.

STANDARD / CONCEPTUAL UNDERSTANDI NG	2.1.5.	Students use simple modeling programs to make predictions.
STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.
STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.1.	Connections: The knowledge and skills of mathematics, science, and technology are used together to make informed decisions and solve problems, especially those relating to issues of science/technology/society, consumer decision making, design, and inquiry into phenomena.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.3.	Students design solutions to problems involving a familiar and real context, investigate related science concepts to inform the solution, and use mathematics to model, quantify, measure, and compute.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.4.	Students observe phenomena and evaluate them scientifically and mathematically by conducting a fair test of the effect of variables and using mathematical knowledge and technological tools to collect, analyze, and present data and conclusions.
STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.2.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.1.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to work effectively (Contributing to the work of a brainstorming group, laboratory partnership, cooperative learning group, or project team; planning procedures; identify and managing responsibilities of team members; and staying on task, whether working alone or as part of a group.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.2.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to gather and process information (Accessing information from printed media, electronic data bases, and community resources and using the information to develop a definition of the problem and to research possible solutions.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.3.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to generate and analyze ideas (Developing ideas for proposed solutions, investigating ideas, collecting data, and showing relationships and patterns in the data.)

STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.4.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to observe common themes (Observing examples of common unifying themes, applying them to the problem, and using them to better understand the dimensions of the problem.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.5.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to realize ideas (Constructing components or models, arriving at a solution, and evaluating the result.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.6.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to present results (Using a variety of media to present the solution and to communicate the results.)

New York State Learning Standards and Core Curriculum Technology Education

Grade 8 - Adopted: 1996

STRAND / DOMAIN / UNIFYING THEME	NY.2.	Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
CATEGORY / CLUSTER / KEY IDEA	2.1.	Information Systems: Information technology is used to retrieve, process, and communicate information and as a tool to enhance learning.
STANDARD / CONCEPTUAL UNDERSTANDI NG	2.1.5.	Students use simple modeling programs to make predictions.

	STRAND / DOMAIN / JNIFYING HEME		Information Systems: Students will access, generate, process, and transfer information using appropriate technologies.
	CATEGORY / CLUSTER / KEY IDEA	2.3.	Information Systems: Information technology can have positive and negative impacts on society, depending upon how it is used.
1	STANDARD / CONCEPTUAL UNDERSTANDI NG	2.3.2.	Students describe applications of information technology in mathematics, science, and other technologies that address needs and solve problems in the community.

STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.1.	Connections: The knowledge and skills of mathematics, science, and technology are used together to make informed decisions and solve problems, especially those relating to issues of science/technology/society, consumer decision making, design, and inquiry into phenomena.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.3.	Students design solutions to problems involving a familiar and real context, investigate related science concepts to inform the solution, and use mathematics to model, quantify, measure, and compute.

STANDARD / CONCEPTUAL UNDERSTANDI NG	7.1.4.	Students observe phenomena and evaluate them scientifically and mathematically by conducting a fair test of the effect of variables and using mathematical knowledge and technological tools to collect, analyze, and present data and conclusions.
STRAND / DOMAIN / UNIFYING THEME	NY.7.	Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
CATEGORY / CLUSTER / KEY IDEA	7.2.	Strategies: Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results.
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.1.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to work effectively (Contributing to the work of a brainstorming group, laboratory partnership, cooperative learning group, or project team; planning procedures; identify and managing responsibilities of team members; and staying on task, whether working alone or as part of a group.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.2.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to gather and process information (Accessing information from printed media, electronic data bases, and community resources and using the information to develop a definition of the problem and to research possible solutions.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.3.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to generate and analyze ideas (Developing ideas for proposed solutions, investigating ideas, collecting data, and showing relationships and patterns in the data.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.4.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to observe common themes (Observing examples of common unifying themes, applying them to the problem, and using them to better understand the dimensions of the problem.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.5.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to realize ideas (Constructing components or models, arriving at a solution, and evaluating the result.)
STANDARD / CONCEPTUAL UNDERSTANDI NG	7.2.6.	Students participate in an extended, culminating mathematics, science, and technology project. The project would require students to present results (Using a variety of media to present the solution and to communicate the results.)
		North Carolina Standard Course of Study Mathematics Grade 7 - Adopted: 2017/IMPL 2018
CONTENT AREA / STRAND		Standards for Mathematical Practice
STRAND / ESSENTIAL	MP.1.	Make sense of problems and persevere in solving them.

STRAND / MP.2. Reason abstractly and quantitatively. ESSENTIAL STANDARD

ESSENTIAL STANDARD

STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.6.	Attend to precision.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
STRAND / ESSENTIAL STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
CONTENT AREA / STRAND		Ratio and Proportional Relationships
STRAND / ESSENTIAL STANDARD		Analyze proportional relationships and use them to solve real-world and mathematical problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.7.RP .2.	Recognize and represent proportional relationships between quantities.
CLARIFYING OBJECTIVE	NC.7.RP. 2.c.	Create equations and graphs to represent proportional relationships.
CONTENT AREA / STRAND		Expressions and Equations
STRAND / ESSENTIAL STANDARD		Solve real-world and mathematical problems using numerical and algebraic expressions, equations, and inequalities.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.7.EE .4.	Use variables to represent quantities to solve real-world or mathematical problems.
CLARIFYING OBJECTIVE	NC.7.EE. 4.b.	Construct inequalities to solve problems by reasoning about the quantities.
INDICATOR	NC.7.EE. 4.b.2.	Compare an algebraic solution process for equations and an algebraic solution process for inequalities.
		North Carolina Standard Course of Study

Mathematics

Grade 8 - Adopted: 2017/IMPL 2018

Standards for Mathematical Practice

STRAND / ESSENTIAL STANDARD	MP.1.	Make sense of problems and persevere in solving them.
STRAND / ESSENTIAL STANDARD	MP.2.	Reason abstractly and quantitatively.
STRAND / ESSENTIAL STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND / ESSENTIAL STANDARD	MP.4.	Model with mathematics.
STRAND / ESSENTIAL STANDARD	MP.6.	Attend to precision.
STRAND / ESSENTIAL STANDARD	MP.7.	Look for and make use of structure.
STRAND / ESSENTIAL STANDARD	MP.8.	Look for and express regularity in repeated reasoning.

CONTENT AREA / STRAND		Functions
STRAND / ESSENTIAL STANDARD		Use functions to model relationships between quantities.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	NC.8.F. 4.	Analyze functions that model linear relationships.

CLARIFYING NC.8.F.4. Construct a graph of a linear relationship given an equation in slope-intercept form. OBJECTIVE c.

North Carolina Standard Course of Study

Science

Grade 7 - Adopted: 2010

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

ESSENTIAL	6-	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical
STANDARD /	8.RST.3.	tasks.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Text Types and Purposes
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

CLARIFYING	6-	Use precise language and domain-specific vocabulary to inform about or explain the topic.
OBJECTIVE	8.WHST.2.	
	d.	

CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		North Carolina Standard Course of Study Science

Grade 8 - Adopted: 2010

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Key Ideas and Details
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT AREA / STRAND	NC.CC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Craft and Structure
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Integration of Knowledge and Ideas

ESSENTIAL	6-	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
STANDARD /	8.RST.9.	gained from reading a text on the same topic.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND		Reading Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Range of Reading and Level of Text Complexity
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

NC.CC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
	Text Types and Purposes
6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
	6- 8.WHST. 2. 6- 8.WHST.2.

CONTENT AREA / STRAND		Writing Standards for Literacy in Science and Technical Subjects
STRAND / ESSENTIAL STANDARD		Production and Distribution of Writing
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

North Carolina Standard Course of Study

Technology Education

Grade 7 - Adopted: 2020 (ISTE-S)

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

ESSENTIAL	ISTE-	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and
STANDARD /	S.3.d.	pursuing answers and solutions.
CLARIFYING		
OBJECTIVE		

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.
		Grade 7 - Adopted: 2020

NC K-12 Computer Science Standards

STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Data & Analysis
CLARIFYING OBJECTIVE		Inference & Models
INDICATOR	68-DA- 04.	Refine computational models based on the data they have generated and/or data collected.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Variables
INDICATOR	68-AP- 02.	Create clearly named variables that represent different data types.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Control
INDICATOR	68-AP- 03.	Design and iteratively develop programs that combine control structures including nested loops and compound conditionals.
INDICATOR	68-AP- 04.	Construct programs that include events.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development

INDICATOR	68-AP- 10.	Systematically test and refine programs using a range of test cases.

INDICATOR

68-AP-11. Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

CONTENT
AREA / STRANDNC K-12 Computer Science StandardsSTRAND /
ESSENTIAL
STANDARDGrades 6-8 (Ages 11-14)ESSENTIAL
STANDARD /
CLARIFYING
OBJECTIVEImpacts of ComputingCLARIFYING
OBJECTIVESocial Interactions

INDICATOR 68-IC-05. Collaborate with many contributors to create a computational artifact.

North Carolina Standard Course of Study Technology Education

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL STANDARD / CLARIFYING	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

OBJECTIVE

CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.
CONTENT AREA / STRAND		Digital Learning Standards

STRAND / ESSENTIAL STANDARD	ISTE- S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.
CONTENT AREA / STRAND		Digital Learning Standards
STRAND / ESSENTIAL STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

Grade 8 - Adopted: 2020		
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Data & Analysis
CLARIFYING OBJECTIVE		Inference & Models
	00 D 4	

INDICATOR 04.

68-DA- Refine computational models based on the data they have generated and/or data collected.

CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Variables
INDICATOR	68-AP- 02.	Create clearly named variables that represent different data types.

CONTENT AREA / STRAND	NC K-12 Computer Science Standards
--------------------------	------------------------------------

CTDAND /		
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Control
INDICATOR	68-AP- 03.	Design and iteratively develop programs that combine control structures including nested loops and compound conditionals.
INDICATOR	68-AP- 04.	Construct programs that include events.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Algorithms & Programming
CLARIFYING OBJECTIVE		Program Development
INDICATOR	68-AP- 10.	Systematically test and refine programs using a range of test cases.
INDICATOR	68-AP- 11.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
CONTENT AREA / STRAND		NC K-12 Computer Science Standards
STRAND / ESSENTIAL STANDARD		Grades 6-8 (Ages 11-14)
ESSENTIAL STANDARD / CLARIFYING OBJECTIVE		Impacts of Computing
CLARIFYING OBJECTIVE		Social Interactions
INDICATOR	68-IC-05.	Collaborate with many contributors to create a computational artifact.
		North Dakota Content Standards Mathematics
		Grade 7 - Adopted: 2017
CONTENT STANDARD		Standards for Mathematical Practice

BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
DENCHWARK		wake sense of problems and persevere in solving mem.

BENCHMARK MP.2 Reason abstractly and quantitatively.

BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.6	Attend to precision.
BENCHMARK	MP.7	Look for and make use of structure.
BENCHMARK	MP.8	Look for and express regularity in repeated reasoning.

CONTENT STANDARD		Expressions and Equations
BENCHMARK		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
GRADE LEVEL EXPECTATION	7.EE.4	Use variables to represent quantities in a real world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
INDICATOR	7.EE.4.a.	Solve word problems leading to equations of the form $px+q=r$ and $p(x + q) = r$, where p, q, and r are specific rational

DICATOR 7.EE.4.a. Solve word problems leading to equations of the form px+q=r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare the algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

North Dakota Content Standards Mathematics Grade 8 - Adopted: 2017

CONTENT ST ANDARD		Standards for Mathematical Practice
BENCHMARK	MP.1	Make sense of problems and persevere in solving them.
BENCHMARK	MP.2	Reason abstractly and quantitatively.
BENCHMARK	MP.3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	MP.4	Model with mathematics.
BENCHMARK	MP.6	Attend to precision.
BENCHMARK	MP.7	Look for and make use of structure.
BENCHMARK	MP.8	Look for and express regularity in repeated reasoning.
CONTENT STANDARD		Expressions and Equations
BENCHMARK		Understand the connections between proportional relationships, lines, and linear equations.
GRADE LEVEL EXPECTATION	8.EE.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying times and spatial scales.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events that necessitate the development of technologies to mitigate their effects.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-5.	Investigate factors that have caused changes in global temperatures over time.
CONTENT STANDARD		Life Science (LS)
BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
GRADE LEVEL EXPECTATION	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

CONTENT STANDARD		Physical Science (PS)
BENCHMARK	MS-PS3.	ENERGY

GRADE LEVELMS-PS3-Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energyEXPECTATION3.transfer.

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

Science

Grade 8 - Adopted: 2019

CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	2	Developing and using models
GRADE LEVEL EXPECTATION		Modeling in K-12 builds on prior experiences and progresses to include using and developing models (i.e., diagrams, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
CONTENT STANDARD		Science and Engineering Practices
BENCHMARK	6	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION		Constructing explanations and designing solutions in K-12 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying times and spatial scales.
CONTENT STANDARD		Earth and Space Science (ESS)
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events that necessitate the development of technologies to mitigate their effects.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

GRADE LEVEL MS- Investigate factors that have caused changes in global temperatures over time.

EXPECTATION ESS3-5.

CONTENT ST ANDARD		Life Science (LS)
BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services. GRADE LEVEL EXPECTATION 5.

CONTENT STANDARD		Physical Science (PS)
BENCHMARK	MS-PS3.	ENERGY

GRADE LEVEL	MS-PS3-	Apply so
EXPECTATION	3.	transfer.

cientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy

CONTENT STANDARD		Engineering & Technology (ET)
BENCHMARK	MS-ET1.	Engineering & Technology
GRADE LEVEL EXPECTATION	MS-ET1- 1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS-ET1- 2.	Evaluate competing design solutions using systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS-ET1- 4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

North Dakota Content Standards

Technology Education

Grade 7 - Adopted: 2012

CONTENT STANDARD		Library and Technology
BENCHMARK		Media and Technology Literacy
GRADE LEVEL EXPECTATION		Creative and Innovative Processes and Products
INDICATOR	6-	Use models and simulations to investigate and explain systems and issues.

8.MTL.8.

Grade 7 - Adopted: 2019

CONTENT STANDARD	Computer Science and Cybersecurity Standards
BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Development & Design

INDICATOR		Design processes to create new, useful, and imaginative solutions to solve problems.
INDICATOR	7.DD.1.	Modify programs that utilize combinations of loops, conditionals, and the manipulation of variables representing different data types.
CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Information Literacy
GRADE LEVEL EXPECTATION		Create
INDICATOR		It is important to both consume and produce information to be digitally literate.

INDICATOR 7.C.1. Continued growth in digital literacy used to consume and produce information.

8.MTL.8.

CONTENT STANDARD

North Dakota Content Standards Technology Education Grade 8 - Adopted: 2012

CONTENT STANDARD		Library and Technology
BENCHMARK		Media and Technology Literacy
GRADE LEVEL EXPECTATION		Creative and Innovative Processes and Products
INDICATOR	6-	Use models and simulations to investigate and explain systems and issues.

Grade 8 - Adopted: 2019	
Computer Science and Cybersecurity Standards	

BENCHMARK	Computational Thinking
GRADE LEVEL EXPECTATION	Development & Design
INDICATOR	Design processes to create new, useful, and imaginative solutions to solve problems.

INDICATOR 8.DD.1. Create programs that utilize combinations of loops, conditionals, and the manipulation of variables representing different data types.

CONTENT STANDARD		Computer Science and Cybersecurity Standards
BENCHMARK		Information Literacy
GRADE LEVEL EXPECTATION		Create
INDICATOR		It is important to both consume and produce information to be digitally literate.
INDICATOR	8.C.1.	Continued growth in digital literacy used to consume and produce information.

Ohio Learning Standards Mathematics Grade 7 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD	он.мр.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.
STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.6.	Attend to precision.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
STANDARD / BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.

DOMAIN / ACADEMIC CONTENT STANDARD	OH.7.EE.	EXPRESSIONS AND EQUATIONS
ST ANDARD / BENCHMARK		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
BENCHMARK / GRADE LEVEL INDICATOR	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
PROFICIENCY LEVEL	7.EE.4.a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54

Ohio Learning Standards

Mathematics

cm. Its length is 6 cm. What is its width?

Grade 8 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT ST ANDARD	ОН.МР.	Standards for Mathematical Practice
STANDARD / BENCHMARK	MP.1.	Make sense of problems and persevere in solving them.
STANDARD / BENCHMARK	MP.2.	Reason abstractly and quantitatively.

STANDARD / BENCHMARK	MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / BENCHMARK	MP.4.	Model with mathematics.
STANDARD / BENCHMARK	MP.6.	Attend to precision.
STANDARD / BENCHMARK	MP.7.	Look for and make use of structure.
STANDARD / BENCHMARK	MP.8.	Look for and express regularity in repeated reasoning.
DOMAIN / ACADEMIC CONTENT STANDARD	OH.8.EE.	EXPRESSIONS AND EQUATIONS
STANDARD / BENCHMARK		Understand the connections between proportional relationships, lines, and linear equations.
BENCHMARK / GRADE LEVEL	8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-

Ohio Learning Standards Science

time equation to determine which of two moving objects has greater speed.

Grade 7 - Adopted: 2018

DOMAIN / ACADEMIC CONTENT STANDARD		LIFE SCIENCE (LS)
STANDARD / BENCHMARK		Topic: Cycles of Matter and Flow of Energy - This topic focuses on the impact of matter and energy transfer within the biotic component of ecosystems.
BENCHMARK / GRADE LEVEL INDICATOR	7.LS.2:	In any particular biome, the number, growth and survival of organisms and populations depend on biotic and abiotic factors.
PROFICIENCY LEVEL		Ecosystems are dynamic in nature; the number and types of species fluctuate over time. Disruptions, deliberate or inadvertent, to the physical (abiotic) or biological (biotic) components of an ecosystem impact the composition of an ecosystem.
DOMAIN / ACADEMIC CONTENT STANDARD		PHYSICAL SCIENCE (PS)
ST ANDARD / BENCHMARK		Topic: Cycles of Mass and Energy - This topic focuses on the empirical evidence for the arrangements of atoms on the Periodic Table of Elements, conservation of mass and energy, transformation and transfer of energy.
BENCHMARK / GRADE LEVEL INDICATOR	7.PS.4:	Energy can be transferred through a variety of ways.

INDICATOR

Thermal energy can be transferred through radiation, convection and conduction.

Ohio Learning Standards

Technology Education Grade 7 - Adopted: 2017

Grade 7 - Adopted: 2017			
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology	
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.	
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.	
PROFICIENCY LEVEL	6- 8.ST.1.b.	Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in your world.	
PROFICIENCY LEVEL	6- 8.ST.1.d.	Analyze an environmental concern and investigate technology solutions to that problem.	
DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology	
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.	
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.	
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.	
		Grade 7 - Adopted: 2022	
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 7	
ST ANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING	
BENCHMARK / GRADE LEVEL INDICATOR		Variables and Data Representation	
PROFICIENCY LEVEL	ATP.VDR .7.a.	Use test cases to trace variable values to determine the result.	
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 7	
STANDARD / BENCHMARK		ALGORITHMIC THINKING AND PROGRAMMING	
BENCHMARK / GRADE LEVEL INDICATOR		Control Structures	

PROFICIENCY ATP.CS.7 Use and apply decisions and loops in a program to solve a problem. .a.

LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.7Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Machine Learning

PROFICIENCY AI.ML.7.a. Model how unsupervised learning finds patterns in unlabeled data to identify how machine learning takes place. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 7
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions

PROFICIENCY AI.NI.7.a. Curate a dataset to train a language-processing algorithm to create a program that incorporates voice commands. LEVEL

Ohio Learning Standards Technology Education

Grade 8 - Adopted: 2017

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
ST ANDARD / BENCHMARK		Society and Technology: The interconnectedness of technology, self, society and the natural world, specifically addressing the ethical, legal, political and global impact of technology.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 1:	Demonstrate an understanding of technology's impact on the advancement of humanity – economically, environmentally and ethically.
PROFICIENCY LEVEL	6- 8.ST.1.b.	Explore the advantages and disadvantages of widespread use, accessibility, and reliance on technology in your world.
PROFICIENCY LEVEL	6- 8.ST.1.d.	Analyze an environmental concern and investigate technology solutions to that problem.

DOMAIN / ACADEMIC CONTENT STANDARD		Ohio Learning Standards in Technology
STANDARD / BENCHMARK		Design and Technology: Addresses the nature of technology to develop and improve products and systems over time to meet human/societal needs and wants through design processes.
BENCHMARK / GRADE LEVEL INDICATOR	Topic 2:	Identify a problem and use an engineering design process to solve the problem.
PROFICIENCY LEVEL	6- 8.DT.2.a.	Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution.

Grade 8 - Adopted: 2022			
DOMAIN / ACADEMIC CONTENT STANDARD		Computer Science, Grade 8	
STANDARD / BENCHMARK		NETWORKS AND THE INTERNET	
BENCHMARK / GRADE LEVEL INDICATOR		Internet of Things (IoT)	

PROFICIENCYNI.IOT.8.bModel the lifecycle of information in the IoT including data gathering, transmission, reception and analysis to recreateLEVEL.a real-world scenario.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
ST ANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Control Structures

PROFICIENCY ATP.CS.8 Use and apply decisions and loops in a program to solve a problem. LEVEL .a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ALGORITHMIC THINKING AND PROGRAMMING
BENCHMARK / GRADE LEVEL INDICATOR	Program Development

PROFICIENCYATP.PD.8Write code that utilizes algorithms, variables and control structures to solve problems or as a creative expression.LEVEL.a.

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE

PROFICIENCY AI.ML.8.a. Explain the difference between training and using a reasoning model to identify how a machine learns. LEVEL

DOMAIN / ACADEMIC CONTENT STANDARD	Computer Science, Grade 8
STANDARD / BENCHMARK	ARTIFICIAL INTELLIGENCE
BENCHMARK / GRADE LEVEL INDICATOR	Natural Interactions

PROFICIENCY LEVEL

OBJECTIVE

7.A.1.

Al.NI.8.a. Create a program, individually and collaboratively, that implements a language processing algorithm to create a functional chatbot.

Oklahoma Academic Standards

Mathematics

Grade 7 - Adopted: 2022

CONTENT STANDARD / COURSE		Mathematical Actions and Processes
STRAND / STANDARD		Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD		Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD		Develop Strategies for Problem Solving
STRAND / STANDARD		Develop Mathematical Reasoning
STRAND / STANDARD		Develop a Productive Mathematical Disposition
STRAND / STANDARD		Develop the Ability to Make Conjectures, Model, and Generalize
STRAND / STANDARD		Develop the Ability to Communicate Mathematically
CONTENT STANDARD / COURSE	7	Seventh Grade (7)
STRAND / STANDARD	7.A.	Algebraic Reasoning & Algebra (A)

Explain the concept of proportionality in mathematical models and situations and distinguish

between proportional and non-proportional relationships.

SKILL /	7.A.1.2.	Recognize that the graph of a proportional relationship is a line through the origin and the coordinate (1, r), where r is
CONCEPT		the slope and the unit rate (constant of proportionality, k).

Oklahoma Academic Standards Mathematics

CONTENT STANDARD / COURSE	Mathematical Actions and Processes
STRAND / STANDARD	Develop a Deep and Flexible Conceptual Understanding
STRAND / STANDARD	Develop Accurate and Appropriate Procedural Fluency
STRAND / STANDARD	Develop Strategies for Problem Solving
STRAND / STANDARD	Develop Mathematical Reasoning
STRAND / STANDARD	Develop a Productive Mathematical Disposition
STRAND / STANDARD	Develop the Ability to Make Conjectures, Model, and Generalize
STRAND /	Develop the Ability to Communicate Mathematically

STANDARD

CONTENT STANDARD / COURSE	PA.	Pre-Algebra (PA)
STRAND / STANDARD	PA.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	PA.A.1.	Explain the concept of function in mathematical situations and distinguish between the concepts of linear and nonlinear functions.
SKILL /	PA.A.1.2.	Use linear functions to represent and model mathematical situations.

PA.A.1.2. Use linear functions to represent and model mathematical situations.

CONCEPT

CONTENT STANDARD / COURSE PA. Pre-Algebra (PA) STRAND / PA.A. Algebraic Reasoning & Algebra (A) STANDARD OBJECTIVE PA.A.2. Identify and justify linear functions using mathematical models and situations; solve problems involving linear functions and interpret results in the original context. SKILL / PA.A.2.2. Identify, describe, and analyze linear relationships between two variables.

SKILL / CONCEPT PA.A.2.5. Solve problems involving linear functions and interpret results in the original context.

CONTENT STANDARD / COURSE	A1.	Algebra 1 (A1)
STRAND / STANDARD	A1.A.	Algebraic Reasoning & Algebra (A)
OBJECTIVE	A1.A.4.	Analyze real-world and mathematical problems involving linear equations.
SKILL / CONCEPT	A1.A.4.3.	Write the equation of the line given its slope and y-intercept, slope and one point, two points, x- and y-intercepts, or a set of data points.
SKILL / CONCEPT	A1.A.4.4.	Express linear equations in slope-intercept, point-slope, and standard forms. Convert between these forms.
SKILL / CONCEPT	A1.A.4.5.	Analyze and interpret associations between graphical representations and written scenarios.

Oklahoma Academic Standards Science Grade 7 - Adopted: 2020

CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Ecosystems: Interactions, Energy, and Dynamics (LS2)
OBJECTIVE	7.LS2.4	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
OBJECTIVE	7.LS2.5	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT STANDARD / COURSE		Oklahoma Academic Standards for Science
STRAND / STANDARD		Earth and Human Activity (ESS3)
OBJECTIVE	7.ESS3.3	Apply scientific principles to design a method for monitoring and minimizing human impact on the environment.
OBJECTIVE	7.ESS3.5	Obtain, evaluate, and communicate evidence of the factors that have caused changes in global temperatures over the past century.

Oklahoma Academic Standards Technology Education

Grade 7 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts

SKILL / CONCEPT Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions

SKILL / CONCEPT Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment
SKILL /	Understand the contexts in which people operate and consider the needs of different users during the design

CONCEPT

Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.DA.	Data Analysis (DA)
SKILL / CONCEPT	7.DA.S.	Storage (S)

SKILL

1.

7.DA.S.0 Create and compare multiple representations of the same data.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.DA.	Data Analysis (DA)
SKILL / CONCEPT	7.DA.IM.	Inference & Models (IM)
SKILL	7.DA.IM.0 1.	Discuss the accuracy of a model representing a system by comparing the model's generated results with observed data from the modeled system.

CONTENT	Oklahoma Academic Standards - Computer Science
STANDARD /	
COURSE	

STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.C.	Control (C)

SKILL

7.AP.C.0 Develop programs that utilize combinations of repetition, compound conditionals, and the manipulation of variables1. representing different data types.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	7	Seventh Grade (7)
OBJECTIVE	7.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	7.AP.PD.	Program Development (PD)
SKILL	7.AP.PD. 02.	Incorporate existing code, media, and libraries into original programs of increasing complexity and give attribution.

SKILL	7.AP.PD.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
	04.	

ST RAND / ST ANDARD 7 Seventh Grade (7) OBJECT IVE 7.IC. Impacts of Computing (IC) SKILL / CONCEPT 7.IC.CU. Culture (CU)	CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
SKILL / 7.IC.CU. Culture (CU)		7	Seventh Grade (7)
	OBJECTIVE	7.IC.	Impacts of Computing (IC)
		7.IC.CU.	Culture (CU)

SKILL

2.

7.IC.CU.0 Identify real-world problems in relation to the distribution of computing resources in society.

 Grade 7 - Adopted: 2019

 CONTENT STANDARD / COURSE
 ISTE for Students 2016 (ISTE-S)

 STRAND / STANDARD
 ISTE-S.3.
 Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

 OBJECTIVE
 ISTE-S.3.d.
 Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
OBJECTIVE	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.

CONTENT STANDARD / COURSE	ISTE for Students 2016 (ISTE-S)
STRAND / ISTE STANDARD S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.

OBJECTIVE ISTE-S.6.c. Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.

CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

Oklahoma Academic Standards

Technology Education Grade 8 - Adopted: 2023

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Creating Computational Artifacts
SKILL / CONCEPT	Develop computational artifacts to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to the community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.
CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing and Using Abstractions
SKILL / CONCEPT	Identify patterns and extract common features from specific examples to create generalizations. Students will manage complexity by using generalized solutions and parts of solutions designed for broad reuse to simplify the development process.

CONTENT STANDARD / COURSE	Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	Computer Science Practices
OBJECTIVE	Developing a Productive Computing Environment

SKILL / CONCEPT Understand the contexts in which people operate and consider the needs of different users during the design process. Students will address the needs of different end users to produce artifacts with broad accessibility and usability and to meet the needs of all potential end users (including themselves).

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.DA.	Data Analysis (DA)
SKILL / CONCEPT	8.DA.IM.	Inference & Models (IM)

 $8.\ensuremath{\mathsf{DA}}\xspace.\ensuremath{\mathsf{IM}}\xspace.\ensuremath{\mathsf{0}}\xspace$ Refine computational models based on the data generated by the models.

1.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.C.	Control (C)

SKILL8.AP.C.0Develop programs that utilize combinations of nested loops, compound conditionals, procedures without1.parameters, and the manipulation of variables representing different data types.

CONTENT STANDARD / COURSE		Oklahoma Academic Standards - Computer Science
STRAND / STANDARD	8	Eighth Grade (8)
OBJECTIVE	8.AP.	Algorithms & Programming (AP)
SKILL / CONCEPT	8.AP.PD.	Program Development (PD)
SKILL	8.AP.PD. 02.	Incorporate existing code, media, and libraries into original programs of increasing complexity and give attribution.
SKILL	8.AP.PD. 04.	Model effective communication between participants and demonstrate successful collaboration when developing computational artifacts.

Grade 8 - Adopted: 2019

STRAND / STANDARD	ISTE- S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
OBJECTIVE	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
OBJECTIVE	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
OBJECTIVE	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
OBJECTIVE	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
OBJECTIVE	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.
CONTENT STANDARD / COURSE		ISTE for Students 2016 (ISTE-S)
STRAND / STANDARD	ISTE- S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
OBJECTIVE	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
OBJECTIVE	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.
		Oregon Academic Content Standards Mathematics Grade 7 - Adopted: 2021
ST ANDARD / CONTENT AREA		Mathematical Practice Standards
	1	Make sense of problems and persevere in solving them.

STANDARD / PROFICIENCY

CONTENT STANDARD / PROFICIENCY	2	Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY	3	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / PROFICIENCY	4	Model with mathematics.
CONTENT STANDARD / PROFICIENCY	6	Attend to precision.
CONTENT STANDARD / PROFICIENCY	7	Look for and make use of structure.
CONTENT STANDARD / PROFICIENCY	8	Look for and express regularity in repeated reasoning
		Oregon Academic Content Standards Mathematics Grade 8 - Adopted: 2021
ST ANDARD / CONTENT AREA		Mathematical Practice Standards
CONTENT	1	
CONTENT AREA CONTENT STANDARD /	1	Mathematical Practice Standards
CONTENT STANDARD / PROFICIENCY CONTENT STANDARD /		Mathematical Practice Standards Make sense of problems and persevere in solving them.
CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD /	2	Mathematical Practice Standards Make sense of problems and persevere in solving them. Reason abstractly and quantitatively.
CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD / PROFICIENCY CONTENT STANDARD /	2 3	Mathematical Practice Standards Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others.

CONTENT 8 STANDARD / PROFICIENCY

STANDARD /
CONTENT
AREAGrade 8 StandardsCONTENT
STANDARD /
PROFICIENCY8.AEE.Algebraic Reasoning: Expressions and Equations (8.AEE)BENCHMARK /
STRAND8.AEE.BUnderstand the connections between proportional relationships, lines, and linear equations.

Look for and express regularity in repeated reasoning

EXPECTATION /8.AEE.B.Graph proportional relationships in authentic contexts. Interpret the unit rate as the slope of the graph, and compareBENCHMARK5.two different proportional relationships represented in different ways.

Oregon Academic Content Standards

Science

Grade 7 - Adopted: 2022

STANDARD / CONTENT AREA	OR.MS- LS2.	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
BENCHMARK / STRAND	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
ST ANDARD / CONTENT AREA	OR.MS- ESS2.	Earth's Systems
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
ST ANDARD / CONTENT AREA	OR.MS- ESS3.	Earth and Human Activity
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:
BENCHMARK / STRAND	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
STANDARD / CONTENT AREA	OR.MS- ET S1.	Engineering Design
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:

BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK /	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STRAND	0.4.	
STRAND BENCHMARK / STRAND	8.4. RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
BENCHMARK /	RST.6- 8.5.	
BENCHMARK / STRAND ST ANDARD / CONT ENT	RST.6- 8.5. OR.RST.	to an understanding of the topic.
BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD /	RST.6- 8.5. OR.RST.	to an understanding of the topic. Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK /	RST.6- 8.5. OR.RST. 6-8. RST.6-	to an understanding of the topic. Reading Standards for Literacy in Science and Technical Subjects Integration of Knowledge and Ideas Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that
BENCHMARK / STRAND STANDARD / CONTENT AREA CONTENT STANDARD / PROFICIENCY BENCHMARK / STRAND	RST.6- 8.5. OR.RST. 6-8. RST.6- 8.9. OR.RST.	to an understanding of the topic. Reading Standards for Literacy in Science and Technical Subjects Integration of Knowledge and Ideas Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

STANDARD / CONTENT AREA	OR.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Oregon Academic Content Standards

Science

		Grade 8 - Adopted: 2022	
ST ANDARD / CONTENT AREA	OR.MS- PS4.	Vaves and their Applications in Technologies for Information Transfer	
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:	
BENCHMARK / STRAND	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.	
ST ANDARD / CONTENT AREA	OR.MS- ETS1.	Engineering Design	
CONTENT STANDARD / PROFICIENCY		Students who demonstrate understanding can:	
BENCHMARK / STRAND	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	
BENCHMARK / STRAND	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	
BENCHMARK / STRAND	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	

STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Key Ideas and Details
BENCHMARK / STRAND	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
BENCHMARK / STRAND	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Craft and Structure
BENCHMARK / STRAND	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
BENCHMARK / STRAND	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Integration of Knowledge and Ideas
BENCHMARK / STRAND	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / CONTENT AREA	OR.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Range of Reading and Level of Text Complexity
BENCHMARK / STRAND	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / CONTENT AREA	OR.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Text Types and Purposes
BENCHMARK / STRAND	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
EXPECTATION / BENCHMARK	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.

ST ANDARD / CONTENT AREA	OR.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
CONTENT STANDARD / PROFICIENCY		Production and Distribution of Writing
BENCHMARK / STRAND	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
BENCHMARK / STRAND	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Mathematics

		Grade 7 - Adopted: 2014
SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.6	Attend to precision.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
STANDARD AREA / STATEMENT	CC.MP.8	Look for and express regularity in repeated reasoning.

Pennsylvania Core and Academic Standards

Mathematics

Grade 8 - Adopted: 2014

SUBJECT /	PA.CC.M	Standards for Mathematical Practice	
STANDARD	Ρ.		
AREA			

STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.6	Attend to precision.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
STANDARD AREA / STATEMENT	CC.MP.8	Look for and express regularity in repeated reasoning.
SUBJECT / ST ANDARD AREA	PA.CC.2. 2.8.	Algebraic Concepts
ST ANDARD AREA / ST AT EMENT	CC.2.2.8 .B.	Expressions and Equations
STANDARD	CC.2.2.8. B.2.	Understand the connections between proportional relationships, lines, and linear equations.
STANDARD	CC.2.2.8. B.3.	Analyze and solve linear equations and pairs of simultaneous linear equations.
		Pennsylvania Core and Academic Standards Science

Grade 7 - Adopted: 2010

SUBJECT / ST ANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.

SUBJECT / ST ANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.2.	Physical Sciences: Chemistry and Physics
STANDARD	3.2.B.	Physics
DESCRIPTOR / STANDARD	3.2.7.B3a.	Differentiate among convection, conduction, and radiation.
DESCRIPTOR / STANDARD	3.2.7.B6b.	(ENERGY) Demonstrate how the transfer of heat energy causes temperature changes.
SUBJECT / ST ANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.7.A2.	Explain how different technologies involve different sets of processes.

DESCRIPTOR /3.4.7.A3.Explain how knowledge gained from other fields of study has a direct effect on the development of technologicalSTANDARDproducts and systems.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society

DESCRIPTOR / 3.4.7.B1. Explain how the use of technology can have consequences that affect humans in many ways. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.7.C1.	Describe how design, as a creative planning process, leads to useful products and systems.
DESCRIPTOR / STANDARD	3.4.7.C2.	Explain how modeling, testing, evaluating, and modifying are used to transform ideas into practical solutions.
DESCRIPTOR / STANDARD	3.4.7.C3.	Describe how troubleshooting as a problem-solving method may identify the cause of a malfunction in a technological system.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.7.D1.	Identify and collect information about everyday problems that can be solved by technology and generate ideas and requirements for solving a problem.
DESCRIPTOR / STANDARD	3.4.7.D2.	Select and safely use appropriate tools, products and systems for specific tasks.
DESCRIPTOR / STANDARD	3.4.7.D3.	Use data collected to analyze and interpret trends in order to identify the positive or negative effects of a technology.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.1.	Ecology
STANDARD	4.1.7.E.	Identify factors that contribute to change in natural and human-made systems.

DESCRIPTOR / 4.1.7.E.1. Explain the processes of primary and secondary succession in a given ecosystem. STANDARD

JBJECT / F ANDARD REA	PA.4.	Environment and Ecology
T ANDARD REA / T AT EMENT	4.3.	Natural Resources
TANDARD	4.3.7.B.	Explain the distribution and management of natural resources.

DESCRIPTOR / 4.3.7.B.1. conservation, preservation, and exploitation. STANDARD

SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
ST ANDARD AREA / ST AT EMENT	4.5.	Humans and the Environment
STANDARD	4.5.7.A.	Describe how the development of civilization affects the use of natural resources.
DESCRIPTOR / STANDARD	4.5.7.A.1.	Compare and contrast how people use natural resources in sustainable and nonsustainable ways throughout the world.

Grade 7 - Adopted: 2014

		Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
--	--	---

STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

ST ANDARD AREA / ST AT EMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Science

Grade 8 - Adopted: 2010

SUBJECT / ST ANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.4.	Formulate and revise explanations and models using logic and evidence.
STANDARD AREA /	SI.5.	Recognize and analyze alternative explanations and models.

STATEMENT

SUBJECT / ST ANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.2.	Physical Sciences: Chemistry and Physics
STANDARD	3.2.B.	Physics

DESCRIPTOR / 3.2.8.B4. Compare and contrast atomic properties of conductors and insulators.

STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society

DESCRIPTOR / 3.4.8.B4. Explain how societal and cultural priorities and values are reflected in technological devices. STANDARD

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design

DESCRIPTOR / STANDARD	3.4.8.C1.	Evaluate the criteria and constraints of a design.
DESCRIPTOR / STANDARD	3.4.8.C3.	Analyze how a multidisciplinary (STEM) approach to problem solving will yield greater results.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
ST ANDARD AREA / ST AT EMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.8.D1.	Test and evaluate the solutions for a design problem.
DESCRIPTOR / STANDARD	3.4.8.D2.	Operate and maintain systems in order to achieve a given purpose.
DESCRIPTOR / STANDARD	3.4.8.D3.	Interpret and evaluate the accuracy of the information obtained and determine its usefulness.
		Grade 8 - Adopted: 2014
SUBJECT / STANDARD AREA		Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA		Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA		Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
ST ANDARD AREA / ST AT EMENT		Integration of Knowledge and Ideas

STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
ST ANDARD AREA / ST AT EMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards

Technology Education

Grade 7 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-DA.	Data & Analysis
STANDARD		Inference & Models

DESCRIPTOR / 2-DA-09. Refine computational models based on the data they have generated. (P5.3, P4.4) STANDARD

evel 2 (Ages 11-14)

ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Variables

DESCRIPTOR / 2-AP-11. Create clearly named variables that represent different data types and perform operations on their values. (P5.1, STANDARD P5.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Control

DESCRIPTOR /2-AP-12.Design and iteratively develop programs that combine control structures, including nested loops and compoundSTANDARDconditionals. (P5.1, P5.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity
	0 4 0 10	

DESCRIPTOR /2-AP-13.Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.STANDARD(P3.2)

SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development

DESCRIPTOR / 2-AP-18. Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2) STANDARD

SUBJECT / ST ANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions
DESCRIPTOR / STANDARD	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
SUBJECT / ST ANDARD AREA	CST A.2.	Level 2 (Ages 11-14)

ST ANDARD AREA / ST AT EMENT	2-IC.	Impacts of Computing
STANDARD		Safety, Law, & Ethics

DESCRIPTOR / 2-IC-23. Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2) STANDARD

Pennsylvania Core and Academic Standards Technology Education

Grade 8 - Adopted: 2017

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-DA.	Data & Analysis
STANDARD		Inference & Models

DESCRIPTOR / 2-DA-09. Refine computational models based on the data they have generated. (P5.3, P4.4) STANDARD

STANDARD 2-AP. Algorithms & Programming AREA / STATEMENT	SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
		2-AP.	Algorithms & Programming
ST AND ARD Variables	STANDARD		Variables

DESCRIPTOR /2-AP-11.Create clearly named variables that represent different data types and perform operations on their values. (P5.1,
STANDARDSTANDARDP5.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Control
DESCRIPTOR /	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound

conditionals. (P5.1, P5.2)

STANDARD

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity

DESCRIPTOR /2-AP-13.Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.STANDARD(P3.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development

DESCRIPTOR / 2-AP-18. Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2) STANDARD

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions
DESCRIPTOR / STANDARD	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
ST ANDARD AREA / ST AT EMENT	2-IC.	Impacts of Computing
STANDARD		Safety, Law, & Ethics

DESCRIPTOR / 2-IC-23. Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2) STANDARD