Main Criteria: Forward Education

Secondary Criteria: Pennsylvania Core and Academic Standards, Rhode Island World-Class Standards, South Carolina Standards & Learning, South Dakota Content Standards, Tennessee Academic Standards, Texas Essential Knowledge and Skills (TEKS), Utah Core Standards, Vermont Content Standards, Virginia Standards of Learning, Washington State K-12 Learning Standards and Guidelines, Washington DC Academic Standards, West Virginia College and Career Readiness Standards, Wisconsin Academic Standards, Wyoming Content and Performance Standards

Subjects: Mathematics, Science, Technology Education

Grades: 7, 8, Key Stage 3

Forward Education

Wildfire detection with Autonomous Vehicles

Pennsylvania Core and Academic Standards Mathematics

Grade 7 - Adopted: 2014

SUBJECT / STANDARD AREA	PA.CC.M P.	Standards for Mathematical Practice
STANDARD AREA / STATEMENT	CC.MP.1.	Make sense of problems and persevere in solving them.
STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.6	Attend to precision.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
STANDARD AREA / STATEMENT	CC.MP.8	Look for and express regularity in repeated reasoning.

Pennsylvania Core and Academic Standards Mathematics

Grade 8 - Adopted: 2014

	PA.CC.M P.	Standards for Mathematical Practice
STANDARD	CC.MP.1.	Make sense of problems and persevere in solving them.

AREA / STATEMENT

STANDARD AREA / STATEMENT	CC.MP.2.	Reason abstractly and quantitatively.
STANDARD AREA / STATEMENT	CC.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD AREA / STATEMENT	CC.MP.4	Model with mathematics.
STANDARD AREA / STATEMENT	CC.MP.6	Attend to precision.
STANDARD AREA / STATEMENT	CC.MP.7.	Look for and make use of structure.
STANDARD AREA / STATEMENT	CC.MP.8	Look for and express regularity in repeated reasoning.
SUBJECT / STANDARD AREA	PA.CC.2. 2.8.	Algebraic Concepts
STANDARD AREA / STATEMENT	CC.2.2.8 .B.	Expressions and Equations
STANDARD	CC.2.2.8. B.2.	Understand the connections between proportional relationships, lines, and linear equations.
STANDARD	CC.2.2.8. B.3.	Analyze and solve linear equations and pairs of simultaneous linear equations.

Pennsylvania Core and Academic Standards Science

SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.5.	Use appropriate tools and technologies to gather, analyze, and interpret data and understand that it enhances accuracy and allows scientists to analyze and quantify results of investigations.
STANDARD AREA / STATEMENT	SI.6.	Develop descriptions, explanations, and models using evidence and understand that these emphasize evidence, have logically consistent arguments, and are based on scientific principles, models, and theories.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education

STANDARD	3.2.	Physical Sciences: Chemistry and Physics
AREA / STATEMENT	3.2.	Figure 3 ciences. Chemistry and Figure 3
STANDARD	3.2.B.	Physics
DESCRIPTOR / STANDARD	3.2.7.B3a.	Differentiate among convection, conduction, and radiation.
DESCRIPTOR / STANDARD	3.2.7.B6b.	(ENERGY) Demonstrate how the transfer of heat energy causes temperature changes.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.A.	The Scope of Technology
DESCRIPTOR / STANDARD	3.4.7.A2.	Explain how different technologies involve different sets of processes.
DESCRIPTOR / STANDARD	3.4.7.A3.	Explain how knowledge gained from other fields of study has a direct effect on the development of technological products and systems.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.7.B1.	Explain how the use of technology can have consequences that affect humans in many ways.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.C.	Technology and Engineering Design
DESCRIPTOR / STANDARD	3.4.7.C1.	Describe how design, as a creative planning process, leads to useful products and systems.
DESCRIPTOR / STANDARD	3.4.7.C2.	Explain how modeling, testing, evaluating, and modifying are used to transform ideas into practical solutions.
DESCRIPTOR / STANDARD	3.4.7.C3.	Describe how troubleshooting as a problem-solving method may identify the cause of a malfunction in a technological system.

SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.7.D1.	Identify and collect information about everyday problems that can be solved by technology and generate ideas and requirements for solving a problem.
DESCRIPTOR / STANDARD	3.4.7.D2.	Select and safely use appropriate tools, products and systems for specific tasks.
DESCRIPTOR / STANDARD	3.4.7.D3.	Use data collected to analyze and interpret trends in order to identify the positive or negative effects of a technology.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.1.	Ecology
STANDARD	4.1.7.E.	Identify factors that contribute to change in natural and human-made systems.
DESCRIPTOR / STANDARD	4.1.7.E.1.	Explain the processes of primary and secondary succession in a given ecosystem.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.3.	Natural Resources
STANDARD	4.3.7.B.	Explain the distribution and management of natural resources.
DESCRIPTOR / STANDARD	4.3.7.B.1.	conservation, preservation, and exploitation.
SUBJECT / STANDARD AREA	PA.4.	Environment and Ecology
STANDARD AREA / STATEMENT	4.5.	Humans and the Environment
STANDARD	4.5.7.A.	Describe how the development of civilization affects the use of natural resources.
DESCRIPTOR / STANDARD	4.5.7.A.1.	Compare and contrast how people use natural resources in sustainable and nonsustainable ways throughout the world.
		Grade 7 - Adopted: 2014
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.

STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Integration of Knowledge and Ideas
STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

STANDARD AREA / STATEMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards Science

		Grade 8 - Adopted: 2010
SUBJECT / STANDARD AREA	PA.SI.	Science as Inquiry
STANDARD AREA / STATEMENT	SI.4.	Formulate and revise explanations and models using logic and evidence.
STANDARD AREA / STATEMENT	SI.5.	Recognize and analyze alternative explanations and models.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.2.	Physical Sciences: Chemistry and Physics
STANDARD	3.2.B.	Physics
DESCRIPTOR / STANDARD	3.2.8.B4.	Compare and contrast atomic properties of conductors and insulators.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.B.	Technology and Society
DESCRIPTOR / STANDARD	3.4.8.B4.	Explain how societal and cultural priorities and values are reflected in technological devices.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education

STANDARD

3.4.C.

Technology and Engineering Design

DESCRIPTOR / STANDARD	3.4.8.C1.	Evaluate the criteria and constraints of a design.
DESCRIPTOR / STANDARD	3.4.8.C3.	Analyze how a multidisciplinary (STEM) approach to problem solving will yield greater results.
SUBJECT / STANDARD AREA	PA.3.	Science and Technology and Engineering Education
STANDARD AREA / STATEMENT	3.4.	Technology and Engineering Education
STANDARD	3.4.D.	Abilities for a Technological World
DESCRIPTOR / STANDARD	3.4.8.D1.	Test and evaluate the solutions for a design problem.
DESCRIPTOR / STANDARD	3.4.8.D2.	Operate and maintain systems in order to achieve a given purpose.
DESCRIPTOR / STANDARD	3.4.8.D3.	Interpret and evaluate the accuracy of the information obtained and determine its usefulness.

SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Key Ideas and Details
STANDARD	CC.3.5.6 -8.B.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	CC.3.5.6 -8.C.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Craft and Structure
STANDARD	CC.3.5.6 -8.D.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.
STANDARD	CC.3.5.6 -8.E.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Integration of Knowledge and Ideas

STANDARD	CC.3.5.6 -8.l.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
SUBJECT / STANDARD AREA	PA.CC.3. 5.6-8.	Reading Informational Text: Students read, understand, and respond to informational text – with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.
STANDARD AREA / STATEMENT		Range and Level of Complex Texts
STANDARD	CC.3.5.6 -8.J.	By the end of grade 8, read and comprehend science/technical texts in the grades 6–8 text complexity band independently and proficiently.
SUBJECT / STANDARD AREA	PA.CC.3.6 .6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Text Types and Purposes
STANDARD	CC.3.6.6 -8.B.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
DESCRIPTOR / STANDARD	CC.3.6.6- 8.B.4.	Use precise language and domain-specific vocabulary to inform about or explain the topic.
SUBJECT / STANDARD AREA	PA.CC.3. 6.6-8.	Writing: Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.
STANDARD AREA / STATEMENT		Production and Distribution of Writing
STANDARD	CC.3.6.6 -8.C.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	CC.3.6.6 -8.E.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Pennsylvania Core and Academic Standards Technology Education

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-DA.	Data & Analysis
STANDARD		Inference & Models
DESCRIPTOR / STANDARD	2-DA-09.	Refine computational models based on the data they have generated. (P5.3, P4.4)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)

STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Variables
DESCRIPTOR / STANDARD	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values. (P5.1, P5.2)
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Control
DESCRIPTOR / STANDARD	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P5.1, P5.2)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity
DESCRIPTOR / STANDARD	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. (P3.2)
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions
DESCRIPTOR / STANDARD	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)

STANDARD AREA / STATEMENT	2-IC.	Impacts of Computing
STANDARD		Safety, Law, & Ethics
DESCRIPTOR / STANDARD	2-IC-23.	Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2)

Pennsylvania Core and Academic Standards

		Technology Education Grade 8 - Adopted: 2017
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-DA.	Data & Analysis
STANDARD		Inference & Models
DESCRIPTOR / STANDARD	2-DA-09.	Refine computational models based on the data they have generated. (P5.3, P4.4)
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Variables
DESCRIPTOR / STANDARD	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values. (P5.1, P5.2)
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Control
DESCRIPTOR / STANDARD	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P5.1, P5.2)
SUBJECT / STANDARD AREA	CST A.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Modularity
DESCRIPTOR /	2-AP-13.	Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.

STANDARD

(P3.2)

SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-AP.	Algorithms & Programming
STANDARD		Program Development
DESCRIPTOR / STANDARD	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P2.2)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-IC.	Impacts of Computing
STANDARD		Social Interactions
DESCRIPTOR / STANDARD	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P2.4, P5.2)
SUBJECT / STANDARD AREA	CSTA.2.	Level 2 (Ages 11-14)
STANDARD AREA / STATEMENT	2-IC.	Impacts of Computing
STANDARD		Safety, Law, & Ethics

DESCRIPTOR / STANDARD

2-IC-23. Describe tradeoffs between allowing information to be public and keeping information private and secure. (P7.2)

Rhode Island World-Class Standards Mathematics

DOMAIN		The Standards for Mathematical Practice
STATEMENT OF ENDURING KNOWLEDGE	MP1	Make sense of problems and persevere in solving them.
STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.

STATEMENT OF ENDURING KNOWLEDGE	MP6	Attend to precision.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.
STATEMENT OF ENDURING KNOWLEDGE	MP8	Look for and express regularity in repeated reasoning.

DOMAIN		Grade 7 Content Standards
STATEMENT OF ENDURING KNOWLEDGE	7.EE.	Expressions and Equations
GSE STEM	7.EE.B.	Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
SPECIFIC INDICATOR	7.EE.B.4	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
INDICATOR	7.EE.B.4. a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x \div q) = r$, where p , q , and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

Rhode Island World-Class Standards Mathematics

DOMAIN		The Standards for Mathematical Practice
STATEMENT OF ENDURING KNOWLEDGE	MP1	Make sense of problems and persevere in solving them.
STATEMENT OF ENDURING KNOWLEDGE	MP2	Reason abstractly and quantitatively.
STATEMENT OF ENDURING KNOWLEDGE	MP3	Construct viable arguments and critique the reasoning of others.
STATEMENT OF ENDURING KNOWLEDGE	MP4	Model with mathematics.
STATEMENT OF ENDURING KNOWLEDGE	MP6	Attend to precision.
STATEMENT OF ENDURING KNOWLEDGE	MP7	Look for and make use of structure.

STATEMENT OF MP8
ENDURING
KNOWLEDGE

Look for and express regularity in repeated reasoning.

DOMAIN		Grade 8 Content Standards
STATEMENT OF ENDURING KNOWLEDGE	8.EE.	Expressions and Equations
GSE STEM	8.EE.B.	Understand the connections between proportional relationships, lines, and linear equations.
SPECIFIC INDICATOR	8.EE.B.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

Rhode Island World-Class Standards Science

DOMAIN	NGSS.MS -PS.	PHYSICAL SCIENCE
STATEMENT OF ENDURING KNOWLEDGE	MS-PS3.	Energy
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
DOMAIN	NGSS.MS -LS.	LIFE SCIENCE
STATEMENT OF ENDURING KNOWLEDGE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
SPECIFIC INDICATOR	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STATEMENT OF ENDURING KNOWLEDGE	MS- ESS2.	Earth's Systems
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE

STATEMENT OF ENDURING KNOWLEDGE	MS- ESS3.	Earth and Human Activity
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
SPECIFIC INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
SPECIFIC INDICATOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
DOMAIN	NGSS.MS -ETS.	ENGINEERING DESIGN
STATEMENT OF ENDURING KNOWLEDGE	MS- ETS1.	Engineering Design
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
SPECIFIC INDICATOR	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
SPECIFIC INDICATOR	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Key Ideas and Details
GSE STEM	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GSE STEM	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Craft and Structure
GSE STEM	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GSE STEM	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Integration of Knowledge and Ideas
GSE STEM	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Range of Reading and Level of Text Complexity
GSE STEM	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Text Types and Purposes
GSE STEM	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
SPECIFIC INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Production and Distribution of Writing
GSE STEM	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GSE STEM	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Rho de Island World-Class Standards Science

DOMAIN	NGSS.MS -PS.	PHYSICAL SCIENCE
STATEMENT OF ENDURING KNOWLEDGE	MS-PS3.	Energy
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
DOMAIN	NGSS.MS -LS.	LIFE SCIENCE

STATEMENT OF ENDURING KNOWLEDGE	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
SPECIFIC INDICATOR	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STATEMENT OF ENDURING KNOWLEDGE	MS- ESS2.	Earth's Systems
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
DOMAIN	NGSS.MS -ESS.	EARTH AND SPACE SCIENCE
STATEMENT OF ENDURING KNOWLEDGE	MS- ESS3.	Earth and Human Activity
GSE STEM		Students who demonstrate understanding can:
SPECIFIC INDICATOR	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
SPECIFIC INDICATOR	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
SPECIFIC INDICATOR	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
DOMAIN	NGSS.MS -ETS.	ENGINEERING DESIGN
STATEMENT OF ENDURING KNOWLEDGE	MS- ETS1.	Engineering Design
OF ENDURING		Engineering Design Students who demonstrate understanding can:
OF ENDURING KNOWLEDGE		
GSE STEM SPECIFIC	ETS1.	Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit

DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Key Ideas and Details
GSE STEM	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GSE STEM	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Craft and Structure
GSE STEM	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GSE STEM	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Integration of Knowledge and Ideas
GSE STEM	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
DOMAIN	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Range of Reading and Level of Text Complexity
GSE STEM	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Text Types and Purposes
GSE STEM	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
SPECIFIC INDICATOR	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
DOMAIN	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
STATEMENT OF ENDURING KNOWLEDGE		Production and Distribution of Writing

GSE STEM	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GSE STEM	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Rhode Island World-Class Standards Technology Education

DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GSE STEM	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GSE STEM	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GSE STEM	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GSE STEM	ISTE- S.4.c.	Develop, test and refine prototypes as part of a cyclical design process.
DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.6.	Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
GSE STEM	ISTE- S.6.c.	Communication complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models, or simulations.
DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.7.	Global Collaborators: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
GSE STEM	ISTE- S.7.b.	Use collaborative technologies to work with others, including peers, experts, or community members to examine issues and problems from multiple viewpoints.
GSE STEM	ISTE-	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.

|--|

STATEMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT-V.	Variables
SPECIFIC INDICATOR	2-CT-V-1.	Create clearly named variables that represent different data. Perform operations on data stored in variables.
DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT-C.	Control Structures
SPECIFIC INDICATOR	2-CT-C- 1.	Design programs that combine control structures, including nested loops and compound conditionals.
DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT- CD.	Computational Design
SPECIFIC INDICATOR	2-CT- CD-3.	Describe choices made during development of computational artifacts.
DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-DA.	Data & Analysis
GSE STEM	2-DA-IM.	Inferences and Models
SPECIFIC INDICATOR	2-DA-IM- 1.	Create and refine computational models based on generated or gathered data.
DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-DL.	Digital Literacy
GSE STEM	2-DL- CU.	Creation and Use
SPECIFIC	2-DL-CU-	Use software tools to create artifacts that engage users over time

Rhode Island World-Class Standards
Technology Education
Grade 8 - Adopted: 2016

INDICATOR

1.

STATEMENT
OF ENDURING
KNOWLEDGE

STATEMENT
OF ENDURING
STATEMENT
O

GSE STEM	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GSE STEM	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GSE STEM	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
GSE STEM	ISTE- S.4.c.	Develop, test and refine prototypes as part of a cyclical design process.
DOMAIN		ISTE Standards for Students
STATEMENT OF ENDURING KNOWLEDGE	RI.ISTE- S.6.	ISTE Standards for Students Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
STATEMENT OF ENDURING		Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their
STATEMENT OF ENDURING KNOWLEDGE	S.6.	Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals. Communication complex ideas clearly and effectively by creating or using a variety of digital objects such as
STATEMENT OF ENDURING KNOWLEDGE GSE STEM	S.6.	Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals. Communication complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models, or simulations.
STATEMENT OF ENDURING KNOWLEDGE GSE STEM DOMAIN STATEMENT OF ENDURING	S.6. ISTE- S.6.c.	Creative Communicators: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals. Communication complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models, or simulations. ISTE Standards for Students Global Collaborators: Students use digital tools to broaden their perspectives and enrich their

Grade 8 - Adopted: 2018

DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT-V.	Variables

SPECIFIC INDICATOR

2-CT-V-1. Create clearly named variables that represent different data. Perform operations on data stored in variables.

DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT-C.	Control Structures

SPECIFIC INDICATOR	2-CT-C- 1.	Design programs that combine control structures, including nested loops and compound conditionals.
DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-CT.	Computational Thinking & Programming
GSE STEM	2-CT- CD.	Computational Design
SPECIFIC INDICATOR	2-CT- CD-3.	Describe choices made during development of computational artifacts.
DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-DA.	Data & Analysis

SPECIFIC 2-DA-IM- Create and refine computational models based on generated or gathered data. INDICATOR 1.

2-DA-IM. Inferences and Models

GSE STEM

DOMAIN		Computer Science
STATEMENT OF ENDURING KNOWLEDGE	2-DL.	Digital Literacy
GSE STEM	2-DL- CU.	Creation and Use

SPECIFIC 2-DL-CU- Use software tools to create artifacts that engage users over time INDICATOR 1.

South Carolina Standards & Learning Mathematics

		Grade 1 - Adopted. 2013
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1c.	Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1d.	Evaluate the success of an approach to solve a problem and refine it if necessary.

STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.2.	Reason both contextually and abstractly.
PERFORMANC E DESCRIPTOR / STANDARD	PS.2d.	Connect the meaning of mathematical operations to the context of a given situation.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3d.	Reflect on and provide thoughtful responses to the reasoning of others.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4d.	Evaluate the reasonableness of a model and refine if necessary.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION	PS.6.	Communicate mathematically and approach mathematical situations with precision.

PERFORMANC E DESCRIPTOR / STANDARD	PS.6a.	Express numerical answers with the degree of precision appropriate for the context of a situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.6b.	Represent numbers in an appropriate form according to the context of the situation.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.7.	Identify and utilize structure and patterns.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7a.	Recognize complex mathematical objects as being composed of more than one simple object.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7b.	Recognize mathematical repetition in order to make generalizations.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7c.	Look for structures to interpret meaning and develop solution strategies.
STANDARD / COURSE	SC.7.EEI.	Expressions, Equations, and Inequalities
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION	7.EEI.4.	Apply the concepts of linear equations and inequalities in one variable to real-world and mathematical situations.
PERFORMANC E DESCRIPTOR / STANDARD	7.EEI.4d.	Identify and justify the steps for solving multi-step linear equations and two-step linear inequalities.

South Carolina Standards & Learning Mathematics

STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.1.	Make sense of problems and persevere in solving them.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1b.	Recognize there may be multiple entry points to a problem and more than one path to a solution.
PERFORMANC E DESCRIPTOR / STANDARD	PS.1c.	Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.

PERFORMANC E DESCRIPTOR / STANDARD	PS.1d.	Evaluate the success of an approach to solve a problem and refine it if necessary.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.2.	Reason both contextually and abstractly.
PERFORMANC E DESCRIPTOR / STANDARD	PS.2d.	Connect the meaning of mathematical operations to the context of a given situation.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.3.	Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3a.	Construct and justify a solution to a problem.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3b.	Compare and discuss the validity of various reasoning strategies.
PERFORMANC E DESCRIPTOR / STANDARD	PS.3d.	Reflect on and provide thoughtful responses to the reasoning of others.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.4.	Connect mathematical ideas and real-world situations through modeling.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4a.	Identify relevant quantities and develop a model to describe their relationships.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4b.	Interpret mathematical models in the context of the situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.4d.	Evaluate the reasonableness of a model and refine if necessary.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.6.	Communicate mathematically and approach mathematical situations with precision.
PERFORMANC E DESCRIPTOR / STANDARD	PS.6a.	Express numerical answers with the degree of precision appropriate for the context of a situation.
PERFORMANC E DESCRIPTOR / STANDARD	PS.6b.	Represent numbers in an appropriate form according to the context of the situation.
STANDARD / COURSE	SC.PS.	South Carolina College- and Career-Ready Mathematical Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	PS.7.	Identify and utilize structure and patterns.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7a.	Recognize complex mathematical objects as being composed of more than one simple object.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7b.	Recognize mathematical repetition in order to make generalizations.
PERFORMANC E DESCRIPTOR / STANDARD	PS.7c.	Look for structures to interpret meaning and develop solution strategies.
STANDARD / COURSE	SC.8.EEI.	Expressions, Equations, and Inequalities
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	8.EEI.5.	Apply concepts of proportional relationships to real-world and mathematical situations.
PERFORMANC E DESCRIPTOR / STANDARD	8.EEI.5a.	Graph proportional relationships.
STANDARD / COURSE	SC.8.EEI.	Expressions, Equations, and Inequalities
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION	8.EEI.7.	Extend concepts of linear equations and inequalities in one variable to more complex multi-step equations and inequalities in real-world and mathematical situations.
PERFORMANC E DESCRIPTOR / STANDARD	8.EEI.7a.	Solve linear equations and inequalities with rational number coefficients that include the use of the distributive property, combining like terms, and variables on both sides.
PERFORMANC E DESCRIPTOR	8.EEI.7b.	Recognize the three types of solutions to linear equations: one solution (x=a), infinitely many solutions (a=a), or no solutions (a=b).

/ STANDARD

PERFORMANC E DESCRIPTOR / STANDARD

 $8.\mbox{EEI.7d.}$ Justify why linear equations have a specific type of solution.

South Carolina Standards & Learning Science

Grade 7 - Adopted: 2021

STANDARD / COURSE		Life Science (LS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Ecosystems: Interactions, Energy, and Dynamics (LS2)
PERFORMANC E DESCRIPTOR / STANDARD	7-LS2-4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
PERFORMANC E DESCRIPTOR / STANDARD	7-LS2-5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
STANDARD / COURSE		Earth and Space Science (ESS)
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		Earth and Human Activity (ESS3)
PERFORMANC E DESCRIPTOR / STANDARD	7-ESS3- 3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
PERFORMANC E DESCRIPTOR / STANDARD	7-ESS3- 5.	Ask questions to clarify evidence of the factors that have impacted global temperatures over the past century.

South Carolina Standards & Learning Technology Education Grade 7 - Adopted: 2017

STANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	1	Foster an inclusive computing culture.

GRADE LEVEL EXAMPLE / STAGE

1.b.

Consider others' perspectives as well as one's own perspective when developing computational solutions.

STANDARD /	Process Standards
COURSE	

KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.c.	Test computational artifacts systematically by considering multiple scenarios and using test cases.
STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3.	Decompose problems into subproblems and write code to solve the subproblems (i.e., break down a problem into smaller parts).
PERFORMANC E DESCRIPTOR / STANDARD	7.AP.3.2.	Identify the parts of a program (e.g., components of creating a video game include keeping score, determining winners/losers, moving characters, designing game art, and advancing level).
STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4.	Design and code programs to solve problems.
PERFORMANC E DESCRIPTOR / STANDARD	7.AP.4.1.	Use a beginner coding language (e.g., drag-and-drop, block-based) to design and code a moderately complex program that solves a problem.
STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION	Standar d 5.	Identify variables and compare the types of data stored as variables.
PERFORMANC E DESCRIPTOR / STANDARD	7.AP.5.1.	Identify variables as a representation for information.
STANDARD / COURSE		Impact of Computing
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION	Standar d 1.	Evaluate the tradeoffs of computing in everyday activities.
PERFORMANC E DESCRIPTOR	7.IC.1.2.	Compare positive and negative impacts of computing on society (e.g., personal, health, workforce, economy, education, culture, environment).

/ STANDARD

STANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS I ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	1	Foster an inclusive computing culture.
GRADE LEVEL EXAMPLE / STAGE	1.b.	Consider others' perspectives as well as one's own perspective when developing computational solutions.
STANDARD / COURSE		Process Standards
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION		A computer science literate student can:
PERFORMANC E DESCRIPTOR / STANDARD	4	Create, test, and refine computational artifacts.
GRADE LEVEL EXAMPLE / STAGE	4.c.	Test computational artifacts systematically by considering multiple scenarios and using test cases.
STANDARD / COURSE		Data and Analysis
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3.	Analyze various ways to visually represent data.
PERFORMANC E DESCRIPTOR / STANDARD	8.DA.3.3.	Explain how models are used to predict specific behaviors and/or outcomes (e.g., weather data presented in a model used to predict future weather conditions and activity).
STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 2.	Use and compare simple coding control structures (e.g., if-then, loops).
PERFORMANC E DESCRIPTOR / STANDARD	8.AP.2.1.	Modify an algorithm using conditionals and iteration.
STANDARD / COURSE		Algorithms and Programming
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 3.	Decompose problems into subproblems and write code to solve the subproblems (i.e., break down a problem into smaller parts).

PERFORMANC E DESCRIPTOR / STANDARD	8.AP.3.2.	Compose a program with multiple parts.	
STANDARD / COURSE		Algorithms and Programming	
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 4.	Design and code programs to solve problems.	
PERFORMANC E DESCRIPTOR / STANDARD	8.AP.4.1.	Use a beginner coding language (e.g., drag-and-drop, block-based) to design and code a complex program that solves a problem.	
STANDARD / COURSE		Algorithms and Programming	
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 5.	Identify variables and compare the types of data stored as variables.	
PERFORMANC E DESCRIPTOR / STANDARD	8.AP.5.1.	Compare and contrast variables that change or are constant.	
PERFORMANC E DESCRIPTOR / STANDARD	8.AP.5.2.	Identify the variables needed to solve a given problem (i.e., information that needs to be tracked).	
STANDARD / COURSE		Impact of Computing	
KNOWLEDGE AND SKILLS / ESSENTIAL QUESTION	Standar d 1.	Evaluate the tradeoffs of computing in everyday activities.	
PERFORMANC E DESCRIPTOR / STANDARD	8.IC.1.2.	Analyze positive and negative impacts of computing on society (e.g., personal, health, workforce, economy, education, culture, environment).	
South Dakota Content Standards Mathematics			

GOAL/STRAND		Standards for Mathematical Practice
INDICATOR/BE NCHMARK	1	Make sense of problems and persevere in solving them.
INDICATOR/BE NCHMARK	2	Reason abstractly and quantitatively.
INDICATOR/BE	3	Construct viable arguments and critique the reasoning of others.

INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	6	Attend to precision.
INDICATOR/BE NCHMARK	7	Look for and make use of structure.
INDICATOR/BE NCHMARK	8	Look for and express regularity in repeated reasoning.

GOAL/STRAND	7.EE.	Expressions and Equations
INDICATOR/BE NCHMARK	7.EE.A.	Use properties of operations to generate equivalent expressions.
STANDARD	7.EE.A.4	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

SUPPORTING SKILLS

INDICATOR/B

ENCHMARK

8.EE.B.

a.

7.EE.A.4. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

South Dakota Content Standards Mathematics

Grade 8 - Adopted: 2018

		Grade 6 - Adopted, 2010
GOAL/STRAND		Standards for Mathematical Practice
INDICATOR/BE NCHMARK	1	Make sense of problems and persevere in solving them.
INDICATOR/BE NCHMARK	2	Reason abstractly and quantitatively.
INDICATOR/BE NCHMARK	3	Construct viable arguments and critique the reasoning of others.
INDICATOR/BE NCHMARK	4	Model with mathematics.
INDICATOR/BE NCHMARK	6	Attend to precision.
INDICATOR/BE NCHMARK	7	Look for and make use of structure.
INDICATOR/BE NCHMARK	8	Look for and express regularity in repeated reasoning.
GOAL/STRAND	8.EE.	Expressions and Equations

Understand the connections between proportional relationships, lines and linear equations.

STANDARD

8.EE.B.5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distancetime equation to determine which of two moving objects has greater speed.

South Dakota Content Standards Science

		Grade 7 - Adopted: 2015
GOAL/STRAND	SD.6- 8.PSS.	Middle School Physical Science Standards
INDICATOR/BE NCHMARK	MS-PS3- 3.	Design, construct, and test a device that either minimizes or maximizes thermal energy transfer. (SEP: 6; DCI: PS3.A, PS3.B, ETS1.A, ETS1.B, ; CCC: Energy/Matter)
INDICATOR/BE NCHMARK	MS-PS4- 3.	Obtain, evaluate and communicate information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (SEP: 8; DCI: PS4.C; CCC: Structure, Technology)
GOAL/STRAND	SD.6- 8.LSS.	Middle School Life Science Standards
INDICATOR/BE NCHMARK	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. (SEP: 7; DCI: LS2.C; CCC: Stability/Change)
INDICATOR/BE NCHMARK	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services. (SEP: 7; DCI: LS2.C, LS4.D, ETS1.B; CCC: Stability/Change, Technology)
GOAL/STRAND	SD.6- 8.ESS.	Middle School Earth and Space Science Standards
INDICATOR/BE NCHMARK	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. (SEP: 6; DCI: ESS2.A, ESS2.C; CCC: Scale/Prop.)
INDICATOR/BE NCHMARK	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. (SEP: 4; DCI: ESS3.B; CCC: Patterns, Technology)
INDICATOR/BE NCHMARK	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. (SEP: 6; DCI: ESS3.C; CCC: Cause/Effect, Technology)
INDICATOR/BE NCHMARK	MS- ESS3-5.	Ask questions to clarify evidence of the factors that may have caused a change in global temperatures over the past century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change)
		Grade 7 - Adopted: 2010
GOAL/STRAND	SD RST 6	Reading Standards for Literacy in Science and Technical Subjects

GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Key Ideas and Details
STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STANDARD	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
GOAL/STRAND	SD.RST.6	Reading Standards for Literacy in Science and Technical Subjects

INDICATOR/B ENCHMARK		Craft and Structure
STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Integration of Knowledge and Ideas
STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Range of Reading and Level of Text Complexity
STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/BE NCHMARK		Text Types and Purposes
STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
SUPPORTING SKILLS	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Production and Distribution of Writing
STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

South Dakota Content Standards Science

GOAL/STRAND	SD.6- 8.PSS.	Middle School Physical Science Standards
INDICATOR/BE NCHMARK	MS-PS3-	Design, construct, and test a device that either minimizes or maximizes thermal energy transfer. (SEP: 6; DCI: PS3.A, PS3.B, ETS1.A, ETS1.B, ; CCC: Energy/Matter)

INDICATOR/BE NCHMARK	MS-PS4- 3.	Obtain, evaluate and communicate information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (SEP: 8; DCI: PS4.C; CCC: Structure, Technology)
GOAL/STRAND	SD.6- 8.LSS.	Middle School Life Science Standards
INDICATOR/BE NCHMARK	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. (SEP: 7; DCI: LS2.C; CCC: Stability/Change)
INDICATOR/BE NCHMARK	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services. (SEP: 7; DCI: LS2.C, LS4.D, ETS1.B; CCC: Stability/Change, Technology)
GOAL/STRAND	SD.6- 8.ESS.	Middle School Earth and Space Science Standards
INDICATOR/BE NCHMARK	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. (SEP: 6; DCI: ESS2.A, ESS2.C; CCC: Scale/Prop.)
INDICATOR/BE NCHMARK	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. (SEP: 4; DCI: ESS3.B; CCC: Patterns, Technology)
INDICATOR/BE NCHMARK	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. (SEP: 6; DCI: ESS3.C; CCC: Cause/Effect, Technology)
INDICATOR/BE NCHMARK	MS- ESS3-5.	Ask questions to clarify evidence of the factors that may have caused a change in global temperatures over the past century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change)
	ESS3-5.	century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change)
NCHMARK	ESS3-5.	century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change) Grade 8 - Adopted: 2010
NCHMARK GOAL/STRAND INDICATOR/B	ESS3-5.	century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change) Grade 8 - Adopted: 2010 Reading Standards for Literacy in Science and Technical Subjects
GOAL/STRAND INDICATOR/B ENCHMARK	SD.RST.6-8.	century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change) Grade 8 - Adopted: 2010 Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior
GOAL/STRAND INDICATOR/B ENCHMARK STANDARD	SD.RST.6-8.2. RST.6-8.3.	Century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change) Grade 8 - Adopted: 2010 Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical
GOAL/STRAND INDICATOR/B ENCHMARK STANDARD STANDARD	SD.RST.6-8.2. RST.6-8.3.	Century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change) Grade 8 - Adopted: 2010 Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
GOAL/STRAND INDICATOR/BENCHMARK STANDARD STANDARD GOAL/STRAND INDICATOR/B	SD.RST.6-8.2. RST.6-8.3.	Grade 8 - Adopted: 2010 Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Reading Standards for Literacy in Science and Technical Subjects
GOAL/STRAND INDICATOR/BENCHMARK STANDARD STANDARD GOAL/STRAND INDICATOR/BENCHMARK	RST.6-8.3. SD.RST.6-8.2. RST.6-8.3.	Century. (SEP: 1; DCI: ESS3.D; CCC: Stability/Change) Grade 8 - Adopted: 2010 Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Reading Standards for Literacy in Science and Technical Subjects Craft and Structure Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a
GOAL/STRAND INDICATOR/BENCHMARK STANDARD STANDARD INDICATOR/BENCHMARK STANDARD	RST.6-8.2. RST.6-8.3. RST.6-8.4. RST.6-8.5.	Grade 8 - Adopted: 2010 Reading Standards for Literacy in Science and Technical Subjects Key Ideas and Details Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Reading Standards for Literacy in Science and Technical Subjects Craft and Structure Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and

STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
GOAL/STRAND	SD.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Range of Reading and Level of Text Complexity
STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/BE NCHMARK		Text Types and Purposes
STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
SUPPORTING SKILLS	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
GOAL/STRAND	SD.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
INDICATOR/B ENCHMARK		Production and Distribution of Writing
STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Tennessee Academic Standards Mathematics

		Grade 7 - Adopted: 2021
STRAND / STANDARD / COURSE		Standards for Mathematical Practice
CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.

CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	6	Attend to precision.
CONCEPTUAL STRAND / GUIDING QUESTION	7	Look for and make use of structure.
CONCEPTUAL STRAND / GUIDING QUESTION	8	Look for and express regularity in repeated reasoning.

STRAND / STANDARD / COURSE		Mathematics Grade 7
CONCEPTUAL STRAND / GUIDING QUESTION	7.EE.	Expressions and Equations(EE)
GUIDING QUESTION / LEARNING EXPECT ATION	7.EE.B.	Solve real-world and mathematical problems using numerical and algebraic expressions and equations and inequalities.
LEARNING EXPECTATION		Use variables to represent quantities in a real-world and mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
INDICATOR	7.EE.B.4. a.	Solve real-world and mathematical problems leading to equations of the form $px + q = r$ and $p(x + q) = r$ where p , q , and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Tennessee Academic Standards Mathematics

STRAND / STANDARD / COURSE		Standards for Mathematical Practice
CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.

CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	6	Attend to precision.
CONCEPTUAL STRAND / GUIDING QUESTION	7	Look for and make use of structure.
CONCEPTUAL STRAND / GUIDING QUESTION	8	Look for and express regularity in repeated reasoning.
STRAND / STANDARD / COURSE		Mathematics Grade 8
CONCEPTUAL STRAND / GUIDING QUESTION	8.EE.	Expressions and Equations(EE)

STRAND / STANDARD / COURSE		Mathematics Grade 8
CONCEPTUAL STRAND / GUIDING QUESTION	8.EE.	Expressions and Equations(EE)
GUIDING QUESTION / LEARNING EXPECT ATION	8.EE.B.	Understand the connections between proportional relationships, lines, and linear equations.

LEARNING **EXPECTATION**

8.EE.B.5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distancetime equation to determine which of two moving objects has greater speed.

Tennessee Academic Standards Science

STRAND / STANDARD / COURSE	TN.7.ESS	Earth and Space Sciences (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	7.ESS3.	Earth and Human Activity
GUIDING QUESTION / LEARNING EXPECTATION	7.ESS3.1.	Graphically represent the composition of the atmosphere as a mixture of gases and discuss the potential for atmospheric change.

STRAND / STANDARD / COURSE	TN.8.ESS	Earth and Space Sciences (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	8.ESS2.	Earth's Systems
GUIDING QUESTION / LEARNING EXPECTATION	8.ESS2.1	Analyze and interpret data to support the assertion that rapid or gradual geographic changes lead to drastic population changes and extinction events.

Tennessee Academic Standards Technology Education Grade 7 - Adopted: 2022			
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards	
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards	
GUIDING QUESTION / LEARNING EXPECTATION	MS.AT.	Algorithmic Thinking	
LEARNING EXPECTATION	MS.AT.1.	Use clearly named variables of various data types to create generalized algorithms.	
LEARNING EXPECTATION	MS.AT.2.	Create algorithms which include methods of controlling the flow of computation using "ifthen else" type conditional statements to perform different operations depending on the values of inputs.	
LEARNING EXPECTATION	MS.AT.3.	Identify algorithms that make use of sequencing, selection, or iteration.	
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards	
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards	
GUIDING QUESTION / LEARNING EXPECTATION	MS.DA.	Data Analysis	
LEARNING EXPECTATION	MS.DA.2.	Refine computational models based on the data they have generated.	

LLAMING	IVIO.DA.Z.	Reline computational	moueis	Daseu	OH
EXPECTATION					

STRAND / STANDARD / COURSE	Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION	Middle School: Computer Science Standards

GUIDING QUESTION / LEARNING EXPECT ATION	MS.PC.	Programming Concepts
LEARNING EXPECTATION	MS.PC.2.	Create procedures with parameters that hide the complexity of a task and can be reused to solve similar tasks.
LEARNING EXPECTATION	MS.PC.7.	Design a function using a programming language.

Tennessee Academic Standards Technology Education

		Grade 8 - Adopted: 2022
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.AT.	Algorithmic Thinking
LEARNING EXPECTATION	MS.AT.1.	Use clearly named variables of various data types to create generalized algorithms.
LEARNING EXPECTATION	MS.AT.2.	Create algorithms which include methods of controlling the flow of computation using "ifthen else" type conditional statements to perform different operations depending on the values of inputs.
LEARNING EXPECTATION	MS.AT.3.	Identify algorithms that make use of sequencing, selection, or iteration.
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		Middle School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	MS.DA.	Data Analysis
LEARNING EXPECTATION	MS.DA.2.	Refine computational models based on the data they have generated.

STRAND / STANDARD / COURSE	Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION	Middle School: Computer Science Standards

GUIDING QUESTION / LEARNING EXPECTATION	MS.PC.	Programming Concepts
LEARNING EXPECTATION	MS.PC.2.	Create procedures with parameters that hide the complexity of a task and can be reused to solve similar tasks.
LEARNING EXPECTATION	MS.PC.7.	Design a function using a programming language.

Utah Core Standards Mathematics

		Grade 7 - Adopted: 2016
STANDARD / AREA OF LEARNING	UT.7.MP.	MATHEMATICAL PRACTICES (7.MP)
OBJECTIVE / STRAND	7.MP.1.	Make sense of problems and persevere in solving them. Explain the meaning of a problem and look for entry points to its solution. Analyze givens, constraints, relationships, and goals. Make conjectures about the form and meaning of the solution, plan a solution pathway, and continually monitor progress asking, "Does this make sense?" Consider analogous problems, make connections between multiple representations, identify the correspondence between different approaches, look for trends, and transform algebraic expressions to highlight meaningful mathematics. Check answers to problems using a different method.
OBJECTIVE / STRAND	7.MP.2.	Reason abstractly and quantitatively. Make sense of the quantities and their relationships in problem situations. Translate between context and algebraic representations by contextualizing and decontextualizing quantitative relationships. This includes the ability to decontextualize a given situation, representing it algebraically and manipulating symbols fluently as well as the ability to contextualize algebraic representations to make sense of the problem.
OBJECTIVE / STRAND	7.MP.3.	Construct viable arguments and critique the reasoning of others. Understand and use stated assumptions, definitions, and previously established results in constructing arguments. Make conjectures and build a logical progression of statements to explore the truth of their conjectures. Justify conclusions and communicate them to others. Respond to the arguments of others by listening, asking clarifying questions, and critiquing the reasoning of others.
OBJECTIVE / STRAND	7.MP.4.	Model with mathematics. Apply mathematics to solve problems arising in everyday life, society, and the workplace. Make assumptions and approximations, identifying important quantities to construct a mathematical model. Routinely interpret mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
OBJECTIVE / STRAND	7.MP.6.	Attend to precision. Communicate precisely to others. Use explicit definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose. Specify units of measure and label axes to clarify the correspondence with quantities in a problem. Calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context.
OBJECTIVE / STRAND	7.MP.7.	Look for and make use of structure. Look closely at mathematical relationships to identify the underlying structure by recognizing a simple structure within a more complicated structure. See complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.
OBJECTIVE / STRAND	7.MP.8.	Look for and express regularity in repeated reasoning. Notice if reasoning is repeated, and look for both generalizations and shortcuts. Evaluate the reasonableness of intermediate results by maintaining oversight of the process while attending to the details.

STANDARD / AREA OF LEARNING	UT.7.EE.	EXPRESSIONS AND EQUATIONS (7.EE)
OBJECTIVE / STRAND		Use properties of operations to generate equivalent expressions (Standards 7.EE.1–2). Solve real-life and mathematical problems using numerical and algebraic expressions and equations (Standards 7.EE.3–4).
INDICATOR / CLUSTER	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
EXPECTATION / STANDARD	7.EE.4.a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p , q , and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Utah Core Standards Mathematics

		and the second s
STANDARD / AREA OF LEARNING	UT.8.MP.	MATHEMATICAL PRACTICES (8.MP)
OBJECTIVE / STRAND		The Standards for Mathematical Practice in Eighth Grade describe mathematical habits of mind that teachers should seek to develop in their students. Students become mathematically proficient in engaging with mathematical content and concepts as they learn, experience, and apply these skills and attitudes (Standards 8.MP.1–8).
INDICATOR / CLUSTER	8.MP.1.	Make sense of problems and persevere in solving them. Explain the meaning of a problem and look for entry points to its solution. Analyze givens, constraints, relationships, and goals. Make conjectures about the form and meaning of the solution, plan a solution pathway, and continually monitor progress asking, "Does this make sense?" Consider analogous problems, make connections between multiple representations, identify the correspondence between different approaches, look for trends, and transform algebraic expressions to highlight meaningful mathematics. Check answers to problems using a different method.
INDICATOR / CLUSTER	8.MP.2.	Reason abstractly and quantitatively. Make sense of the quantities and their relationships in problem situations. Translate between context and algebraic representations by contextualizing and decontextualizing quantitative relationships. This includes the ability to decontextualize a given situation, representing it algebraically and manipulating symbols fluently as well as the ability to contextualize algebraic representations to make sense of the problem.
INDICATOR / CLUSTER	8.MP.3.	Construct viable arguments and critique the reasoning of others. Understand and use stated assumptions, definitions, and previously established results in constructing arguments. Make conjectures and build a logical progression of statements to explore the truth of their conjectures. Justify conclusions and communicate them to others. Respond to the arguments of others by listening, asking clarifying questions, and critiquing the reasoning of others.
INDICATOR / CLUSTER	8.MP.4.	Model with mathematics. Apply mathematics to solve problems arising in everyday life, society, and the workplace. Make assumptions and approximations, identifying important quantities to construct a mathematical model. Routinely interpret mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
INDICATOR / CLUSTER	8.MP.6.	Attend to precision. Communicate precisely to others. Use explicit definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose. Specify units of measure and label axes to clarify the correspondence with quantities in a problem. Calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context.
INDICATOR / CLUSTER	8.MP.7.	Look for and make use of structure. Look closely at mathematical relationships to identify the underlying structure by recognizing a simple structure within a more complicated structure. See complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

CLUSTER		generalizations and shortcuts. Evaluate the reasonableness of intermediate results by maintaining oversight of the process while attending to the details.
STANDARD / AREA OF LEARNING	UT.8.EE.	EXPRESSIONS AND EQUATIONS (8.EE)
OBJECTIVE / STRAND		Work with radical and integer exponents (Standards 8.EE.1–4). Understand the connections between proportional relationships, lines, and linear relationships (Standards 8.EE.5–6). Analyze and solve linear equations and inequalities and pairs of simultaneous linear equations (Standards 8.EE.7–8).
INDICATOR / CLUSTER	8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

8.MP.8. Look for and express regularity in repeated reasoning. Notice if reasoning is repeated, and look for both

Utah Core Standards Science

Grade 7 - Adopted: 2015

STANDARD / AREA OF LEARNING		SEEd - Grade 7 (2017)
OBJECTIVE / STRAND	Strand 7.2:	CHANGES TO EARTH OVER TIME
INDICATOR / CLUSTER		Earth's processes are dynamic and interactive, and are the result of energy flowing and matter cycling within and among Earth's systems. Energy from the sun and Earth's internal heat are the main sources driving these processes. Plate tectonics is a unifying theory that explains crustal movements of Earth's surface, how and where different rocks form, the occurrence of earthquakes and volcanoes, and the distribution of fossil plants and animals.

7.2.2 STANDARD

INDICATOR /

EXPECTATION / Standard Construct an explanation based on evidence for how processes have changed Earth's surface at varying time and spatial scales. Examples of processes that occur at varying time scales could include slow plate motions or rapid landslides. Examples of processes that occur at varying spatial scales could include uplift of a mountain range or deposition of fine sediments.

STANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Key Ideas and Details
INDICATOR / CLUSTER	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / CLUSTER	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Craft and Structure
INDICATOR / CLUSTER	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

INDICATOR / RS' CLUSTER 8.5.		Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / AREA OF LEARNING	R	Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE I STRAND	ı	Integration of Knowledge and Ideas
INDICATOR / RS' CLUSTER 8.9.		Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / AREA OF LEARNING	R	Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND	i	Range of Reading and Level of Text Complexity
INDICATOR / RS' CLUSTER 8.10		By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
ST ANDARD / AREA OF LEARNING	١	Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Text Types and Purposes
INDICATOR / CLUSTER -8.2		Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
EXPECTATION / WH STANDARD 8.2(Use precise language and domain-specific vocabulary to inform about or explain the topic.
ST ANDARD <i>I</i> AREA OF LEARNING	v	Vriting Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND	i	Production and Distribution of Writing
INDICATOR / WH CLUSTER 8.4.		Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
INDICATOR / WH CLUSTER 8.6.		Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.
		Utah Core Standards

Science

STANDARD / AREA OF LEARNING		SEEd - Grade 8 (2017)
OBJECTIVE / STRAND	Strand 8.3:	LIFE SYSTEMS STORE AND TRANSFER MATTER AND ENERGY

INDICATOR I CLUSTER		Living things use energy from their environment to rearrange matter to sustain life. Photosynthetic organisms are able to transfer light energy to chemical energy. Consumers can break down complex food molecules to utilize the stored energy and use the particles to form new, life-sustaining molecules. Ecosystems are examples of how energy can flow while matter cycles through the living and nonliving components of systems.
EXPECTATION / STANDARD	Standard 8.3.3	Ask questions to obtain, evaluate, and communicate information about how changes to an ecosystem affect the stability of cycling matter and the flow of energy among living and nonliving parts of an ecosystem. Emphasize describing the cycling of matter and flow of energy through the carbon cycle.
ST ANDARD / AREA OF LEARNING		SEEd - Grade 8 (2017)
OBJECTIVE / STRAND	Strand 8.4:	INTERACTIONS WITH NATURAL SYSTEMS AND RESOURCES
INDICATOR / CLUSTER		Interactions of matter and energy through geologic processes have led to the uneven distribution of natural resources. Many of these resources are nonrenewable, and per-capita use can cause positive or negative consequences. Global temperatures change due to various factors, and can cause a change in regional climates. As energy flows through the physical world, natural disasters can occur that affect human life. Humans can study patterns in natural systems to anticipate and forecast some future disasters and work to mitigate the outcomes.
EXPECTATION / STANDARD	Standard 8.4.3	Design a solution to monitor or mitigate the potential effects of the use of natural resources. Evaluate competing design solutions using a systematic process to determine how well each solution meets the criteria and constraints of the problem. Examples of uses of the natural environment could include agriculture, conservation efforts, recreation, solar energy, and water management.
EXPECTATION / STANDARD	Standard 8.4.4	Analyze and interpret data on the factors that change global temperatures and their effects on regional climates. Examples of factors could include agricultural activity, changes in solar radiation, fossil fuel use, and volcanic activity. Examples of data could include graphs of the atmospheric levels of gases, seawater levels, ice cap coverage, human activities, and maps of global and regional temperatures.
EXPECTATION / STANDARD	Standard 8.4.5	Analyze and interpret patterns of the occurrence of natural hazards to forecast future catastrophic events, and investigate how data are used to develop technologies to mitigate their effects. Emphasize how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow prediction, but

others, such as earthquakes, may occur without warning.

Craft and Structure

LEARNING

STRAND

OBJECTIVE /

INDICATOR /

8.4.

CLUSTER

	,	Grade 8 - Adopted: 2013
STANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Key Ideas and Details
INDICATOR / CLUSTER	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
INDICATOR / CLUSTER	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
ST ANDARD / AREA OF		Reading Standards for Literacy in Science and Technical Subjects

RST.6-Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

INDICATOR / CLUSTER	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Integration of Knowledge and Ideas
INDICATOR / CLUSTER	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
ST ANDARD / AREA OF LEARNING		Reading Standards for Literacy in Science and Technical Subjects
OBJECTIVE / STRAND		Range of Reading and Level of Text Complexity
INDICATOR / CLUSTER	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / AREA OF LEARNING		Writing Standards for Literacy in Science and Technical Subjects
OBJECTIVE /		
STRAND		Text Types and Purposes
	WHST.6 -8.2.	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
STRAND INDICATOR /		Write informative/explanatory texts, including the narration of historical events, scientific procedures/
INDICATOR / CLUSTER EXPECTATION /	-8.2. WHST.6-	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
INDICATOR / CLUSTER EXPECTATION / STANDARD STANDARD / AREA OF	-8.2. WHST.6-	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.
INDICATOR / CLUSTER EXPECTATION / STANDARD STANDARD / AREA OF LEARNING OBJECTIVE /	-8.2. WHST.6-	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic. Writing Standards for Literacy in Science and Technical Subjects

Utah Core Standards Technology Education Grade 7 - Adopted: 2019

information and ideas clearly and efficiently.

CLUSTER

8.6.

STANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Data and Analysis (DA):

EXPECTATION / STANDARD

Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be analyzed to better understand the world and make more accurate predictions.

STANDARD /		Utah 6-12 Computer Science Standards
AREA OF LEARNING		Stair 0-12 Sompater Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 2:	Collaborating Around Computing
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 4:	Developing and Using Abstractions

EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	3	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
INDICATOR	4	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
INDICATOR	2	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Systematically test computational artifacts by considering all scenarios and using test cases.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 7.AP.1.	Design and iteratively develop programs that combine control structures. (Practice 5: Creating Computational Artifacts; Practice 6: Testing and Refining Computational Artifacts)
EXPECTATION / STANDARD		Students will design, develop, test, and refine programs using control structures such as loops or conditional logic statements. For example, students will create a choose your own adventure story/presentation, a flowchart, or code a simple interactive game or animation.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 7.AP.3.	Systematically test and refine programs using a range of test cases. (Practice 6: Testing and Refining Computational Artifacts.)

EXPECTATION / STANDARD

Students will use a variety of problem-solving processes such as the engineering design process, decision matrix, pros and cons, or DMAIC (define, measure, analyze, improve and control) to test and refine a project or program. Students will test and refine a computer program, an engineering artifact, or solution. For example, students may test and refine a math program solving for surface area of different shapes (triangles, quadrilaterals, polygons, cubes).

STANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Algorithms and Programming (AP):
INDICATOR / CLUSTER	Select and assign tasks to maintain a project timeline when collaboratively developing computational artifacts. (Practice 2: Collaborating Around Computing. Practice 5: Creating Computational Artifacts.)

EXPECTATION / STANDARD

Students will select, assign, and manage tasks within a project timeline of milestones and due dates while collaboratively working on projects. For example, students will use tools such as storyboards, to-do lists, team roles, and other project management tools to organize their projects and share the work across team members and help them be more efficient in managing time and resources.

Utah Core Standards Technology Education Grade 8 - Adopted: 2019

STANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Core Concepts
INDICATOR / CLUSTER	Data and Analysis (DA):

EXPECTATION / STANDARD

STRAND

INDICATOR /

CLUSTER

Practic

Collaborating Around Computing

Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, and the need to process data effectively is increasingly important. Data is collected and stored so it can be analyzed to better understand the world and make more accurate predictions.

STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 1:	Fostering an Inclusive Computing Culture
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products.
INDICATOR	2	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE /		Core Practices

EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	2	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 3:	Recognizing and Defining Computational Problems
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
INDICATOR	2	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 4:	Developing and Using Abstractions
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	3	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
INDICATOR	4	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices
INDICATOR / CLUSTER	Practic e 5:	Creating Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
INDICATOR	2	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
ST ANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Core Practices

INDICATOR / CLUSTER	Practic e 6:	Testing and Refining Computational Artifacts
EXPECTATION / STANDARD		By the end of Grade 12, students should be able to:
INDICATOR	1	Systematically test computational artifacts by considering all scenarios and using test cases.
STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Data and Analysis (DA):
INDICATOR / CLUSTER	Standar d 8.DA.3.	Test and analyze the effects of changing variables in models/simulations. (Practice 3. Recognizing and Defining Computational Problems; Practice 4. Developing and Using Abstractions; Practice 5. Creating Computational Artifacts)

EXPECTATION / STANDARD

Students will demonstrate how changing variables will affect outcomes in a model/simulation. For example, students will understand the relationship between the mass and speed of objects and the relative amount of kinetic energy of the objects. Students can test and analyze a full cart vs. an empty cart or rolling spheres with different masses down a ramp to measure the effects on stationary masses.

STANDARD / AREA OF LEARNING		Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND		Algorithms and Programming (AP):
INDICATOR / CLUSTER	Standar d 8.AP.1.	Develop a program with iterative protocols that combine control structures and use compound conditions. (Practice 5. Creating Computational Artifacts; Practice 6. Testing and Refining Computational Artifacts)

EXPECTATION / STANDARD

Students will develop programs that use compound conditions (True/False, If/Then, etc.) and loops. The development process should include multiple phases and pseudocode. For example, students will understand the relationship of cause and effect relationships in particle motion, temperature, density, and the state of a pure substance when heat energy is added or removed. Students can create true/false and if/then statements in the development process showing the results of adding and removing heat energy and the cause and effect it has on different substance's states.

ST ANDARD / AREA OF LEARNING	Utah 6-12 Computer Science Standards
OBJECTIVE / STRAND	Algorithms and Programming (AP):
INDICATOR / CLUSTER	Create a new program incorporating existing code, media, and libraries; and give proper attribution. (Practice 2. Collaborating Around Computing; Practice 4. Developing and Using Abstractions; Practice 5. Creating Computational Artifacts; Practice 7. Communicating about computing)

EXPECTATION / STANDARD

Students will write original programs that incorporate someone else's code and/or media and give proper attribution to the source. Students can manipulate an existing file from a block code program (i.e. Scratch) to demonstrate the conflicts during the American expansion as American Indians were forced from their lands and the tensions over slavery.

Vermont Content Standards
Mathematics
Grade 7 - Adopted: 2010 (CCSS)

STANDARD / STRAND	VT.MP.	Mathematical Practices

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.6.	Attend to precision.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.

STANDARD / STRAND	VT.7.EE.	Expressions and Equations
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

GRADE LEVEL 7.EE EXPECTATION

7.EE.4(a) Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Vermont Content Standards
Mathematics
Grade 8 - Adopted: 2010 (CCSS)

STANDARD / STRAND	VT.MP.	Mathematical Practices

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.1.	Make sense of problems and persevere in solving them.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.2.	Reason abstractly and quantitatively.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.3.	Construct viable arguments and critique the reasoning of others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.4.	Model with mathematics.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.6.	Attend to precision.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.7.	Look for and make use of structure.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MP.8.	Look for and express regularity in repeated reasoning.
STANDARD / STRAND	VT.8.EE.	Expressions and Equations
ESSENTIAL KNOWLEDGE AND SKILL I STANDARD		Understand the connections between proportional relationships, lines, and linear equations.
GRADE LEVEL	8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different

Vermont Content Standards Science

time equation to determine which of two moving objects has greater speed.

EXPECTATION / KNOWLEDGE

AND SKILL

proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-

STANDARD / STRAND	VT.MS- PS.	PHYSICAL SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS-PS3.	Energy

GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
STANDARD / STRAND	VT.MS- LS.	LIFE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL I STANDARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
GRADE LEVEL EXPECTATION	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
STANDARD / STRAND	VT.MS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL I STANDARD	MS- ESS2.	Earth's Systems
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
STANDARD / STRAND	VT.MS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
GRADE LEVEL EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

STANDARD / STRAND	VT.MS- ETS.	ENGINEERING DESIGN
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS- ETS1.	Engineering Design
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Text Types and Purposes
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
GRADE LEVEL EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / KNOWLEDGE	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Vermont Content Standards Science

AND SKILL

	VT.MS-	PHYSICAL SCIENCE
STRAND	PS.	

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS-PS3.	Energy
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
STANDARD / STRAND	VT.MS- LS.	LIFE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
GRADE LEVEL EXPECTATION	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
STANDARD / STRAND	VT.MS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS- ESS2.	Earth's Systems
GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
STANDARD / STRAND	VT.MS- ESS.	EARTH AND SPACE SCIENCE
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
GRADE LEVEL EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

GRADE LEVEL EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
STANDARD / STRAND	VT.MS- ETS.	ENGINEERING DESIGN
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	MS- ETS1.	Engineering Design
GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL		Students who demonstrate understanding can:
GRADE LEVEL EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Key Ideas and Details
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Craft and Structure
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

GRADE LEVEL RST.6- Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and

to an understanding of the topic.

EXPECTATION / 8.5.

KNOWLEDGE AND SKILL

STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Integration of Knowledge and Ideas
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

STANDARD / STRAND	VT.RST.6 -8.	Reading Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Range of Reading and Level of Text Complexity
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL I STANDARD		Text Types and Purposes
GRADE LEVEL EXPECT ATION / KNOWLEDGE AND SKILL	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

GRADE LEVEL WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic. EXPECTATION 8.2(d)

AND SKILL

STANDARD / STRAND	VT.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD		Production and Distribution of Writing
GRADE LEVEL EXPECTATION / KNOWLEDGE AND SKILL	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXPECTATION / KNOWLEDGE	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Vermont Content Standards
Technology Education
Grade 7 - Adopted: 2017

STANDARD / STRAND	ISTE-S.3.	Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
STANDARD / STRAND	ISTE-S.4.	Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.
STANDARD / STRAND	ISTE-S.6.	Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.
STANDARD / STRAND	ISTE-S.7.	Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.
		Vermont Content Standards Technology Education Grade 8 - Adopted: 2017

STANDARD / STRAND ISTE-S.3. Knowledge Constructor: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.

ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.3.d.	Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
STANDARD / STRAND	ISTE-S.4	. Innovative Designer: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.4.c.	Students develop, test and refine prototypes as part of a cyclical design process.
STANDARD / STRAND	ISTE-S.6	. Creative Communicator: Students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.6.c.	Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.
STANDARD / STRAND	ISTE-S.7	. Global Collaborator: Students use digital tools to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.7.b.	Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.
ESSENTIAL KNOWLEDGE AND SKILL / STANDARD	ISTE- S.7.d.	Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

Virginia Standards of Learning Mathematics

STRAND / TOPIC	VA.PFA.7.	Patterns, Functions, and Algebra
STANDARD / STRAND	7.10.	The student will
INDICATOR / STANDARD	7.10.b.	Graph a line representing a proportional relationship between two quantities given the slope and an ordered pair, or given the equation in y = mx form where m represents the slope as rate of change.

INDICATOR / 7.10.d. Graph a line representing an additive relationship between two quantities given the y-intercept and an ordered pair, STANDARD or given the equation in the form y = x + b, where b represents the y-intercept.

Virginia Standards of Learning Mathematics

Grade 8 - Adopted: 2016

STRAND <i>I</i> TOPIC	VA.PFA.8.	Patterns, Functions, and Algebra
STANDARD / STRAND	8.16.	The student will
INDICATOR / STANDARD	8.16.d.	Graph a linear function given the equation in $y = mx + b$ form.

Virginia Standards of Learning Science

Grade 7 - Adopted: 2018

		State 1 Adopted: 2010
STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.8.	The student will investigate and understand that ecosystems, communities, populations, and organisms are dynamic and change over time. Key ideas include:
INDICATOR / STANDARD	LS.8.c.	large-scale changes such as eutrophication, climate changes, and catastrophic disturbances affect ecosystems.
STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.9.	The student will investigate and understand that relationships exist between ecosystem dynamics and human activity. Key ideas include:
INDICATOR / STANDARD	LS.9.a.	changes in habitat can disturb populations;
STRAND / TOPIC		Physical Science
STANDARD / STRAND	PS.5.	The student will investigate and understand that energy is conserved. Key ideas include:
INDICATOR / STANDARD	PS.5.a.	energy can be stored in different ways;
INDICATOR / STANDARD	PS.5.b.	energy is transferred and transformed;

Virginia Standards of Learning Science

ST F	RAND / PIC		Life Science
	ANDARD / RAND	LS.8.	The student will investigate and understand that ecosystems, communities, populations, and organisms are dynamic and change over time. Key ideas include:
	DICATOR / ANDARD	LS.8.c.	large-scale changes such as eutrophication, climate changes, and catastrophic disturbances affect ecosystems.

STRAND / TOPIC		Life Science
STANDARD / STRAND	LS.9.	The student will investigate and understand that relationships exist between ecosystem dynamics and human activity. Key ideas include:
INDICATOR / STANDARD	LS.9.a.	changes in habitat can disturb populations;
STRAND / TOPIC		Physical Science
STANDARD / STRAND	PS.5.	The student will investigate and understand that energy is conserved. Key ideas include:
INDICATOR / STANDARD	PS.5.a.	energy can be stored in different ways;
INDICATOR / STANDARD	PS.5.b.	energy is transferred and transformed;

Virginia Standards of Learning Technology Education

Grade 7 - Adopted: 2017

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.MCS E.	Middle School Computer Science Elective (MSCE) Standards
INDICATOR / STANDARD		6-week Core Module - Algorithms and Programming
INDICATOR	MSCSE.1	The student will design and iteratively develop programs that combine control structures, including loops and conditionals.
INDICATOR	MSCSE.2	The student will investigate variables and data types, including simple operations on strings.
STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.MCS E.	Middle School Computer Science Elective (MSCE) Standards
INDICATOR / STANDARD		Data and Analysis
INDICATOR	MSCSE.1	The student will refine computational models based on the data they have generated.

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND		Algorithms and Programming
INDICATOR / STANDARD	7.1.	The student will construct programs to accomplish a task as a means of creative expression or scientific exploration using a block based or text based programming language, both independently and collaboratively,

INDICATOR 7.1.a. Combining control structures such as if-statements and loops including compound conditionals.

INDICATOR	7.1.b.	Creating clearly named variables that represent different data types, including numeric and non-numeric data, and perform operations on their values. [Related SOL: Math 7.1, 7.2]
STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND		Data and Analysis
INDICATOR / STANDARD	7.8.	The student will discuss the correctness of a model representing a system by comparing the model's generated results with data that were observed in the system being modeled.
INDICATOR / STANDARD	7.9.	The student will refine computational models based on the data they have generated.
		Grade 7 - Adopted: 2020
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	KC.	Knowledge Constructor (KC)
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.
PROGRESS INDICATOR	KC.D.m.	Students use digital resources and tools to explore real-world issues and problems and actively pursue solutions.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		
OTANDAND		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	
	ID.A.m.	identify and solve problems by creating new, useful or imaginative solutions or iterations. Know and use appropriate technologies in a purposeful design process for generating ideas, testing
INDICAT OR PROGRESS		identify and solve problems by creating new, useful or imaginative solutions or iterations. Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems. In collaboration with an educator, students use appropriate technologies in a design process to generate ideas,
INDICATOR PROGRESS INDICATOR STRAND /		identify and solve problems by creating new, useful or imaginative solutions or iterations. Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems. In collaboration with an educator, students use appropriate technologies in a design process to generate ideas, create innovative products, or solve authentic problems.
INDICATOR PROGRESS INDICATOR STRAND / TOPIC STANDARD /	ID.A.m.	identify and solve problems by creating new, useful or imaginative solutions or iterations. Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems. In collaboration with an educator, students use appropriate technologies in a design process to generate ideas, create innovative products, or solve authentic problems. Digital Learning Integration Standards of Learning for Virginia Public Schools
INDICATOR PROGRESS INDICATOR STRAND / TOPIC STANDARD / STRAND INDICATOR /	ID.A.m.	identify and solve problems by creating new, useful or imaginative solutions or iterations. Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems. In collaboration with an educator, students use appropriate technologies in a design process to generate ideas, create innovative products, or solve authentic problems. Digital Learning Integration Standards of Learning for Virginia Public Schools Innovative Designer (ID) Students use a variety of technologies, including assistive technologies, within a design process to
INDICATOR PROGRESS INDICATOR STRAND / TOPIC STANDARD / STRAND INDICATOR / STANDARD	ID.A.m.	identify and solve problems by creating new, useful or imaginative solutions or iterations. Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems. In collaboration with an educator, students use appropriate technologies in a design process to generate ideas, create innovative products, or solve authentic problems. Digital Learning Integration Standards of Learning for Virginia Public Schools Innovative Designer (ID) Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations. Select and use appropriate technologies to plan and manage a design process that considers design

STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.
PROGRESS INDICATOR	ID.C.m.	In collaboration with an educator, students use appropriate technologies in a cyclical design process to develop prototypes and demonstrate the use of setbacks as potential opportunities for improvement.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESS INDICATOR	CT.A.m.	Students create, identify, explore, and solve problems using technology-assisted methods such as data analysis, modeling, or algorithmic thinking.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	CC.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.
PROGRESS INDICATOR	CC.B.m.	Students use appropriate technologies to create new digital works or responsibly repurpose or remix other digital works into new digital works.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.B.	Use collaborative technologies to work with others, including peers, experts, and community members to examine issues and problems from multiple viewpoints.
PROGRESS INDICATOR	GC.B.m.	Students use collaborative technologies to work with others, including peers, experts, and online community members to gain broader perspectives as they examine issues, problems, and opportunities.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.

INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
PROGRESS INDICATOR	GC.D.m.	Students use collaborative technologies to work with others to understand problems, investigate and develop solutions related to local and global issues.

Virginia Standards of Learning Technology Education

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.MCS E.	Middle School Computer Science Elective (MSCE) Standards
INDICATOR / STANDARD		6-week Core Module - Algorithms and Programming
INDICATOR	MSCSE.1	The student will design and iteratively develop programs that combine control structures, including loops and conditionals.
INDICATOR	MSCSE.2	The student will investigate variables and data types, including simple operations on strings.
STRAND <i>I</i> TOPIC	VA.CS.	Computer Science
STANDARD / STRAND	CS.MCS E.	Middle School Computer Science Elective (MSCE) Standards
INDICATOR / STANDARD		Data and Analysis

 ${\tt INDICATOR} \qquad \qquad {\tt MSCSE.1} \quad {\tt The \ student \ will \ refine \ computational \ models \ based \ on \ the \ data \ they \ have \ generated}.$

4.

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND		Algorithms and Programming
INDICATOR / STANDARD	8.1.	The student will construct programs to accomplish a task as a means of creative expression or scientific exploration using a block based or text based programming language, both independently and collaboratively,
INDICATOR	8.1.a.	Combining control structures such as if-statements and loops including nested conditionals and loops.
INDICATOR	8.1.b.	Using clearly named variables that represent different data types, including numeric and non-numeric data, and perform operations on their values. [Related SOL: Math 7.1, 7.2]

STRAND / TOPIC	VA.CS.	Computer Science
STANDARD / STRAND		Data and Analysis
INDICATOR / STANDARD	8.8.	The student will

INDICATOR 8.8.a. Explain the difference between a model and a simulation.

INDICATOR 8.8.b. Create computational models to conduct simulations.

Grade 8 - Adopted: 2020		
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	KC.	Knowledge Constructor (KC)
INDICATOR / STANDARD		Students critically curate a variety of digital resources using appropriate technologies, including assistive technologies, to construct knowledge, produce creative digital works, and make meaningful learning experiences for themselves and others.
INDICATOR	KC.D.	Actively explore real-world issues and problems, develop ideas and theories, and pursue answers and solutions.
PROGRESS INDICATOR	KC.D.m.	Students use digital resources and tools to explore real-world issues and problems and actively pursue solutions.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.A.	Know and use appropriate technologies in a purposeful design process for generating ideas, testing theories, creating innovative digital works, or solving authentic problems.
PROGRESS INDICATOR	ID.A.m.	In collaboration with an educator, students use appropriate technologies in a design process to generate ideas, create innovative products, or solve authentic problems.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.B.	Select and use appropriate technologies to plan and manage a design process that considers design constraints and calculated risks.
PROGRESS INDICATOR	ID.B.m.	In collaboration with an educator, students select and use appropriate technologies to plan and manage a design process that identifies design constraints and trade-offs and weighs risks.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	ID.	Innovative Designer (ID)
INDICATOR / STANDARD		Students use a variety of technologies, including assistive technologies, within a design process to identify and solve problems by creating new, useful or imaginative solutions or iterations.
INDICATOR	ID.C.	Use appropriate technologies to develop, test, and refine prototypes as part of a cyclical design process.
PROGRESS INDICATOR	ID.C.m.	In collaboration with an educator, students use appropriate technologies in a cyclical design process to develop prototypes and demonstrate the use of setbacks as potential opportunities for improvement.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools

STANDARD / STRAND	ст.	Computational Thinker (CT)
INDICATOR / STANDARD		Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods, including those that leverage assistive technologies, to develop and test solutions.
INDICATOR	CT.A.	Formulate problem definitions suited for technology-assisted methods such as data analysis, modeling and algorithmic thinking in exploring and finding solutions.
PROGRESS INDICATOR	CT.A.m.	Students create, identify, explore, and solve problems using technology-assisted methods such as data analysis, modeling, or algorithmic thinking.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	cc.	Creative Communicator (CC)
INDICATOR / STANDARD		Students communicate clearly and express themselves creatively for a variety of purposes using appropriate technologies (including assistive technologies), styles, formats, and digital media appropriate to their goals.
INDICATOR	CC.B.	Create original works or responsibly repurpose or remix digital resources into new creations.
PROGRESS INDICATOR	CC.B.m.	Students use appropriate technologies to create new digital works or responsibly repurpose or remix other digital works into new digital works.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.B.	Use collaborative technologies to work with others, including peers, experts, and community members to examine issues and problems from multiple viewpoints.
PROGRESS INDICATOR	GC.B.m.	Students use collaborative technologies to work with others, including peers, experts, and online community members to gain broader perspectives as they examine issues, problems, and opportunities.
STRAND / TOPIC		Digital Learning Integration Standards of Learning for Virginia Public Schools
STANDARD / STRAND	GC.	Global Collaborator (GC)
INDICATOR / STANDARD		Students use appropriate technologies, including assistive technologies, to broaden their perspectives and enrich their learning by collaborating with others and working effectively in teams locally and globally.
INDICATOR	GC.D.	Explore local and global issues and use collaborative technologies to work with others to investigate solutions.
PROGRESS INDICATOR	GC.D.m.	Students use collaborative technologies to work with others to understand problems, investigate and develop solutions related to local and global issues.

Washington DC Academic Standards Mathematics

CONTENT	DC.CC.7.	Mathematical Practices
STANDARD /	MP.	
STRAND/		
DISCIPLINE		

STANDARD / ESSENTIAL SKILL	7.MP.1.	Make sense of problems and persevere in solving them.
STANDARD / ESSENTIAL SKILL	7.MP.2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	7.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	7.MP.4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	7.MP.6.	Attend to precision.
STANDARD / ESSENTIAL SKILL	7.MP.7.	Look for and make use of structure.
STANDARD / ESSENTIAL SKILL	7.MP.8.	Look for and express regularity in repeated reasoning.
CONTENT	DC.CC.7.	. Expressions and Equations

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.7. EE.	Expressions and Equations
STANDARD / ESSENTIAL SKILL		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
STUDENT EXPECTATION / ESSENTIAL SKILL	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

EXPECTATION 7.EE

7.EE.4.a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Washington DC Academic Standards Mathematics

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.8. MP.	Mathematical Practices
STANDARD / ESSENTIAL SKILL	8.MP.1.	Make sense of problems and persevere in solving them.

STANDARD / ESSENTIAL SKILL	8.MP.2.	Reason abstractly and quantitatively.
STANDARD / ESSENTIAL SKILL	8.MP.3.	Construct viable arguments and critique the reasoning of others.
STANDARD / ESSENTIAL SKILL	8.MP.4.	Model with mathematics.
STANDARD / ESSENTIAL SKILL	8.MP.6.	Attend to precision.
STANDARD / ESSENTIAL SKILL	8.MP.7.	Look for and make use of structure.
STANDARD / ESSENTIAL SKILL	8.MP.8.	Look for and express regularity in repeated reasoning.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.CC.8. EE.	Expressions and Equations
STANDARD / ESSENTIAL SKILL		Understand the connections between proportional relationships, lines, and linear equations.
STUDENT	8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different

EXPECTATION / ESSENTIAL SKILL

proportional relationships represented in different ways. For example, compare a distance-time graph to a distancetime equation to determine which of two moving objects has greater speed.

Washington DC Academic Standards Science

Grade 7 - Adopted: 2013

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- PS.	PHYSICAL SCIENCE
STANDARD / ESSENTIAL SKILL	MS-PS3.	Energy
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:

EXPECTATION

MS-PS3- Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

3.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- LS.	LIFE SCIENCE
STANDARD / ESSENTIAL SKILL	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
EXPECTATION	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ESS.	EARTH AND SPACE SCIENCE
STANDARD I ESSENTIAL SKILL	MS- ESS2.	Earth's Systems
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ESS.	EARTH AND SPACE SCIENCE
STANDARD / ESSENTIAL SKILL	MS- ESS3.	Earth and Human Activity
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ETS.	ENGINEERING DESIGN

STANDARD / ESSENTIAL SKILL	MS- ETS1.	Engineering Design
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 7 - Adopted: 2010
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Key Ideas and Details
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Craft and Structure
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects

STANDARD I ESSENTIAL SKILL		Integration of Knowledge and Ideas
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Range of Reading and Level of Text Complexity
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Text Types and Purposes
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

EXPECTATION

Use precise language and domain-specific vocabulary to inform about or explain the topic.

8.WHST.2.

d.

6-

	u.	
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD I ESSENTIAL SKILL		Production and Distribution of Writing
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- PS.	PHYSICAL SCIENCE
STANDARD / ESSENTIAL SKILL	MS-PS3.	Energy
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- LS.	LIFE SCIENCE
STANDARD / ESSENTIAL SKILL	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
EXPECTATION	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ESS.	EARTH AND SPACE SCIENCE
STANDARD / ESSENTIAL SKILL	MS- ESS2.	Earth's Systems
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ESS.	EARTH AND SPACE SCIENCE
STANDARD / ESSENTIAL SKILL	MS- ESS3.	Earth and Human Activity
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:

EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.MS- ETS.	ENGINEERING DESIGN
STANDARD / ESSENTIAL SKILL	MS- ETS1.	Engineering Design
STUDENT EXPECTATION / ESSENTIAL SKILL		Students who demonstrate understanding can:
EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
		Grade 8 - Adopted: 2010
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Key Ideas and Details
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Craft and Structure

STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Integration of Knowledge and Ideas
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.RST.	Reading Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Range of Reading and Level of Text Complexity
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.RST.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD / STRAND / DISCIPLINE	DC.6- 8.WHST.	Writing Standards for Literacy in Science and Technical Subjects
STANDARD / ESSENTIAL SKILL		Text Types and Purposes
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST. 2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures experiments, or technical processes.
EXPECTATION	6- 8.WHST.2. d.	Use precise language and domain-specific vocabulary to inform about or explain the topic.

CONTENT
STANDARD /
STRAND /
DISCIPLINE

DC.68.WHST.

Writing Standards for Literacy in Science and Technical Subjects

Production and Distribution of Writing

ESSENTIAL
SKILL

STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
STUDENT EXPECTATION / ESSENTIAL SKILL	6- 8.WHST.6	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Washington State K-12 Learning Standards and Guidelines

		Grade 7 - Adopted: 2011
EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.
BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.
BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.6.	Attend to precision.
BIG IDEA / CORE CONTENT	MP.7.	Look for and make use of structure.
BIG IDEA / CORE CONTENT	MP.8.	Look for and express regularity in repeated reasoning.
EALR	WA.7.EE.	Expressions and Equations
BIG IDEA / CORE CONTENT		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
CORE CONTENT / CONTENT STANDARD	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

EALR	WA.7.EE.	Expressions and Equations
BIG IDEA / CORE CONTENT		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
CORE CONTENT / CONTENT STANDARD	7.EE.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

7.EE.4(a) Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Washington State K-12 Learning Standards and Guidelines Mathematics

Grade 8 - Adopted: 2011

		Grade 8 - Adopted: 2011
EALR	WA.MP.	Mathematical Practices
BIG IDEA / CORE CONTENT	MP.1.	Make sense of problems and persevere in solving them.
BIG IDEA / CORE CONTENT	MP.2.	Reason abstractly and quantitatively.
BIG IDEA / CORE CONTENT	MP.3.	Construct viable arguments and critique the reasoning of others.
BIG IDEA / CORE CONTENT	MP.4.	Model with mathematics.
BIG IDEA / CORE CONTENT	MP.6.	Attend to precision.
BIG IDEA / CORE CONTENT	MP.7.	Look for and make use of structure.
BIG IDEA / CORE CONTENT	MP.8.	Look for and express regularity in repeated reasoning.
EALR	WA.8.EE.	Expressions and Equations
BIG IDEA / CORE CONTENT		Understand the connections between proportional relationships, lines, and linear equations.
CORE CONTENT / CONTENT STANDARD	8.EE.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

Washington State K-12 Learning Standards and Guidelines Science

Grade 7 - Adopted: 2014

EALR	WA.MS- PS.	PHYSICAL SCIENCE
BIG IDEA / CORE CONTENT	MS-PS3.	Energy
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

MS-PS3- Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

EALR	WA.MS- LS.	LIFE SCIENCE
BIG IDEA / CORE CONTENT	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT STANDARD / 4. PERFORMANCE **EXPECTATION**

MS-LS2- Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

CONTENT STANDARD / 5. PERFORMANCE **EXPECTATION**

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

EALR	WA.MS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	MS- ESS2.	Earth's Systems
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

EALR	WA.MS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	MS- ESS3.	Earth and Human Activity
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
CONTENT STANDARD /	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

PERFORMANCE **EXPECTATION**

CONTENT STANDARD / ESS3-5. century. PERFORMANCE **EXPECTATION**

EXPECTATION

MS-

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past

EALR	WA.MS- ETS.	ENGINEERING DESIGN
BIG IDEA / CORE CONTENT	MS- ETS1.	Engineering Design
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STANDARD / PERFORMANCE	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Grade 7 - Adopted: 2010

EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Key Ideas and Details
CORE CONTENT / CONTENT STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
CORE CONTENT / CONTENT STANDARD	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Craft and Structure
CORE CONTENT / CONTENT STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

CORE CONTENT / CONTENT STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Integration of Knowledge and Ideas
CORE CONTENT / CONTENT STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Range of Reading and Level of Text Complexity
CORE CONTENT / CONTENT STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
EALR	WA.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Writing Standards for Literacy in Science and Technical Subjects Text Types and Purposes
BIG IDEA / CORE		
BIG IDEA / CORE CONTENT CORE CONTENT / CONTENT	WHST.6 -8.2. WHST.6-8.2(d)	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/
BIG IDEA / CORE CONTENT CORE CONTENT / CONTENT STANDARD CONTENT STANDARD / PERFORMANCE	WHST.6 -8.2. WHST.6-8.2(d)	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
BIG IDEA / CORE CONTENT CORE CONTENT / CONTENT STANDARD CONTENT STANDARD / PERFORMANCE EXPECTATION	WHST.6-8.2. WHST.6-8.2(d)	Text Types and Purposes Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Use precise language and domain-specific vocabulary to inform about or explain the topic.

information and ideas clearly and efficiently.	

WHST.6- Use technology, including the Internet, to produce and publish writing and present the relationships between

CORE

CONTENT /

CONTENT STANDARD 8.6.

Science

Grade 8 - Adopted: 2014

	WA.MS- PS.	PHYSICAL SCIENCE
BIG IDEA / CORE CONTENT	MS-PS3.	Energy
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT STANDARD / 3. PERFORMANCE **EXPECTATION**

MS-PS3- Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy

transfer.

EALR	WA.MS- LS.	LIFE SCIENCE
BIG IDEA / CORE CONTENT	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

MS-LS2- Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

EALR	WA.MS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	MS- ESS2.	Earth's Systems
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:

CONTENT STANDARD / PERFORMANCE EXPECTATION

MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

EALR	WA.MS- ESS.	EARTH AND SPACE SCIENCE
BIG IDEA / CORE CONTENT	MS- ESS3.	Earth and Human Activity

CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ESS3-3.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

EALR	WA.MS- ETS.	ENGINEERING DESIGN
BIG IDEA / CORE CONTENT	MS- ETS1.	Engineering Design
CORE CONTENT / CONTENT STANDARD		Students who demonstrate understanding can:
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
CONTENT STANDARD / PERFORMANCE EXPECTATION	MS- ETS1-4.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Grade 8 - Adopted: 2010

EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Key Ideas and Details
CORE CONTENT / CONTENT STANDARD	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

CORE CONTENT / CONTENT STANDARD	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Craft and Structure
CORE CONTENT / CONTENT STANDARD	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
CORE CONTENT / CONTENT STANDARD	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Integration of Knowledge and Ideas
CORE CONTENT / CONTENT STANDARD	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
EALR	WA.RST. 6-8.	Reading Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Range of Reading and Level of Text Complexity
CORE CONTENT / CONTENT STANDARD	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
EALR	WA.WHST .6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Text Types and Purposes
CORE CONTENT / CONTENT STANDARD	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

CONTENT STANDARD / PERFORMANCE EXPECTATION

8.2(d)

WHST.6- Use precise language and domain-specific vocabulary to inform about or explain the topic.

EALR	WA.WHS T.6-8.	Writing Standards for Literacy in Science and Technical Subjects
BIG IDEA / CORE CONTENT		Production and Distribution of Writing
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
CORE CONTENT / CONTENT STANDARD	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Washington State K-12 Learning Standards and Guidelines Technology Education

Grade 7 - Adopted: 2018

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
CORE CONTENT / CONTENT STANDARD	6-8.4.b.	Students select and use digital tools to support a design process and expand their understanding to identify constraints and trade-offs and to weigh risks.
CORE CONTENT / CONTENT	6-8.4.c.	Students engage in a design process to develop, test and revise prototypes, embracing the cyclical process of trial and error and understanding problems or setbacks as potential opportunities for improvement.

STANDARD

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-CS.	Computing Systems

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

2-CS-03. Systematically identify and fix problems with computing devices and their components. (P. 6.2)

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-DA.	Data and Analysis

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

2-DA-09. Refine computational models based on the data they have generated. (P. 5.3, P. 4.4)

EALR		Computer Science
BIG IDEA / Level 2: 6-8 CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-AP.	Algorithms and Programming
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-AP-11.	Create clearly named variables that represent different data types and perform operations on their values. (P. 5.1, P. 5.2)
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-AP-12.	Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals. (P. 5.1, P. 5.2)
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-AP-18.	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P. 2.2)

EALR		Computer Science
BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-IC.	Impacts of Computing

CONTENT STANDARD / PERFORMANCE **EXPECTATION**

2-IC-22. Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P. 2.4, P. 5.2)

Washington State K-12 Learning Standards and Guidelines Technology Education

Grade 8 - Adopted: 2018

EALR	WA.ET.6- 8.	Educational Technology Learning Standards
BIG IDEA / CORE CONTENT	6-8.4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
CORE CONTENT / CONTENT STANDARD	6-8.4.b.	Students select and use digital tools to support a design process and expand their understanding to identify constraints and trade-offs and to weigh risks.

CORE 6-8.4.c. Students engage in a design process to develop, test and revise prototypes, embracing the cyclical process of trial and error and understanding problems or setbacks as potential opportunities for improvement. CONTENT / CONTENT **STANDARD** EALR Computer Science **BIG IDEA** Level 2: 6-8 CORE CONTENT CORE 2-CS. **Computing Systems** CONTENT / CONTENT **STANDARD** CONTENT 2-CS-03. Systematically identify and fix problems with computing devices and their components. (P. 6.2) STANDARD / PERFORMANCE **EXPECTATION EALR** Computer Science **BIG IDEA** / Level 2: 6-8 CORE CONTENT 2-DA. CORE **Data and Analysis** CONTENT / CONTENT **STANDARD** CONTENT 2-DA-09. Refine computational models based on the data they have generated. (P. 5.3, P. 4.4) STANDARD / **PERFORMANCE EXPECTATION** EALR Computer Science **BIG IDEA** Level 2: 6-8 CORE CONTENT CORE 2-AP. **Algorithms and Programming** CONTENT / CONTENT **STANDARD** CONTENT 2-AP-11. Create clearly named variables that represent different data types and perform operations on their values. (P. 5.1, P. STANDARD / 5.2) PERFORMANCE **EXPECTATION** CONTENT 2-AP-12. Design and iteratively develop programs that combine control structures, including nested loops and compound STANDARD / conditionals. (P. 5.1, P. 5.2) **PERFORMANCE EXPECTATION**

EALR	Computer Science		
------	------------------	--	--

2-AP-18. Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. (P. 2.2)

CONTENT

STANDARD /
PERFORMANCE
EXPECTATION

BIG IDEA / CORE CONTENT		Level 2: 6-8
CORE CONTENT / CONTENT STANDARD	2-IC.	Impacts of Computing
CONTENT STANDARD / PERFORMANCE EXPECTATION	2-IC-22.	Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact. (P. 2.4, P. 5.2)

West Virginia College and Career Readiness Standards Mathematics

Grade 7 - Adopted: 2016		
CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	МНМЗ.	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / OBJECTIVE	MHM4.	Model with mathematics.
CONTENT STANDARD / OBJECTIVE	МНМ6.	Attend to precision.
CONTENT STANDARD / OBJECTIVE	МНМ7.	Look for and make use of structure.
CONTENT STANDARD / OBJECTIVE	МНМ8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / COURSE	WV.M.7.E E.	Expressions and Equations
CONTENT STANDARD / OBJECTIVE		Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

Use variables to represent quantities in a real-world or mathematical problem and construct simple equations and inequalities to solve problems by reasoning about the quantities.

OBJECTIVE / EXPECTATION

M.7.10.

GRADE LEVEL **EXPECTATION**

M.7.10.a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. (e.g., The perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? An arithmetic solution similar to "54 - 6 - 6 divided by 2" may be compared with the reasoning involved in solving the equation 2w - 12 = 54. An arithmetic solution similar to "54/2 - 6" may be compared with the reasoning involved in solving the equation 2(w-6) = 54.)

West Virginia College and Career Readiness Standards Mathematics

Grade 8 - Adopted: 2016		
CONTENT STANDARD / COURSE	WV.M.MH M.	Mathematical Habits of Mind
CONTENT STANDARD / OBJECTIVE	MHM1.	Make sense of problems and persevere in solving them.
CONTENT STANDARD / OBJECTIVE	MHM2.	Reason abstractly and quantitatively.
CONTENT STANDARD / OBJECTIVE	МНМЗ.	Construct viable arguments and critique the reasoning of others.
CONTENT STANDARD / OBJECTIVE	МНМ4.	Model with mathematics.
CONTENT STANDARD / OBJECTIVE	МНМ6.	Attend to precision.
CONTENT STANDARD / OBJECTIVE	МНМ7.	Look for and make use of structure.
CONTENT STANDARD / OBJECTIVE	МНМ8.	Look for and express regularity in repeated reasoning.
CONTENT STANDARD / COURSE	WV.M.8.E E.	Expressions and Equations
CONTENT STANDARD / OBJECTIVE		Understand the connections between proportional relationships, lines, and linear equations.
OBJECTIVE / EXPECTATION	M.8.7.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. (e.g., Compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.)
CONTENT STANDARD / COURSE	WV.M.1H S8.	8th Grade High School Mathematics I

CONTENT STANDARD / OBJECTIVE		Relationships between Quantities	
OBJECTIVE / EXPECT ATION		Create equations that describe numbers or relationships.	
GRADE LEVEL EXPECTATION	M.1HS8.6	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	
CONTENT STANDARD / COURSE	WV.M.1H S8.	3th Grade High School Mathematics I	
CONTENT STANDARD / OBJECTIVE		Linear and Exponential Relationships	
OBJECTIVE / EXPECTATION		Analyze functions using different representations.	
GRADE LEVEL EXPECTATION	M.1HS8. 23.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
INDICATOR	M.1HS8.2 3.a.	Graph linear and quadratic functions and show intercepts, maxima, and minima.	
CONTENT STANDARD / COURSE	WV.M.1H S8.	8th Grade High School Mathematics I	
CONTENT STANDARD / OBJECTIVE		Linear and Exponential Relationships	
OBJECTIVE / EXPECTATION		Construct and compare linear, quadratic, and exponential models and solve problems. Distinguish between situations that can be modeled with linear functions and with exponential functions.	
GRADE LEVEL EXPECTATION			
INDICATOR	M.1HS8.2 8.a.	Prove that linear functions grow by equal differences over equal intervals; exponential functions grow by equal factors over equal intervals.	
CONTENT STANDARD / COURSE	WV.M.1H S8.	8th Grade High School Mathematics I	
CONTENT STANDARD / OBJECTIVE		Reasoning with Equations	
OBJECTIVE / EXPECTATION		Understand solving equations as a process of reasoning and explain the reasoning.	
GRADE LEVEL EXPECTATION	M.1HS8.3 2.	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	
CONTENT STANDARD / COURSE	WV.M.1H S8.	8th Grade High School Mathematics I	
CONTENT STANDARD / OBJECTIVE		Connecting Algebra and Geometry through Coordinates	

OBJECTIVE / EXPECTATION		Use coordinates to prove simple geometric theorems algebraically.
GRADE LEVEL EXPECTATION	M.1HS8.6 3.	Prove the slope criteria for parallel and perpendicular lines; use them to solve geometric problems. (e.g., Find the equation of a line parallel or perpendicular to a given line that passes through a given point.)
CONTENT STANDARD / COURSE	WV.M.A18	High School Algebra I for 8th Grade
CONTENT STANDARD / OBJECTIVE		Relationships between Quantities and Reasoning with Equations
OBJECTIVE / EXPECTATION		Create equations that describe numbers or relationships.
GRADE LEVEL EXPECTATION	M.A18.6.	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
CONTENT STANDARD / COURSE	WV.M.A18	High School Algebra I for 8th Grade
CONTENT STANDARD / OBJECTIVE		Relationships between Quantities and Reasoning with Equations
OBJECTIVE / EXPECTATION		Understand solving equations as a process of reasoning and explain the reasoning.
GRADE LEVEL EXPECTATION	M.A18.9.	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
CONTENT STANDARD / COURSE	WV.M.A18	High School Algebra I for 8th Grade
CONTENT STANDARD / OBJECTIVE		Linear and Exponential Relationships
OBJECTIVE / EXPECTATION		Analyze functions using different representations.
GRADE LEVEL EXPECTATION	M.A18.3 0.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
INDICATOR	M.A18.30 .a.	Graph linear and quadratic functions and show intercepts, maxima, and minima.
CONTENT STANDARD / COURSE	WV.M.A18	High School Algebra I for 8th Grade
CONTENT STANDARD / OBJECTIVE		Linear and Exponential Relationships
OBJECTIVE / EXPECTATION		Construct and compare linear, quadratic, and exponential models and solve problems.
GRADE LEVEL EXPECTATION	M.A18.3 5.	Distinguish between situations that can be modeled with linear functions and with exponential functions.

	.a.	factors over equal intervals.
CONTENT STANDARD / COURSE	WV.M.A18	High School Algebra I for 8th Grade
CONTENT STANDARD / OBJECTIVE		Expressions and Equations
OBJECTIVE / EXPECTATION		Create equations that describe numbers or relationships.

M.A18.35 Prove that linear functions grow by equal differences over equal intervals; exponential functions grow by equal

GRADE LEVEL M.A18.56 Create equations in two or more variables to represent relationships between quantities; graph equations on EXPECTATION . coordinate axes with labels and scales.

CONTENT STANDARD / COURSE	WV.M.A18	High School Algebra I for 8th Grade
CONTENT STANDARD / OBJECTIVE		Quadratic Functions and Modeling
OBJECTIVE / EXPECTATION		Analyze functions using different representations.
GRADE LEVEL EXPECTATION	M.A18.6 7.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
INDICATOR	M A19 67	Graph linear and quadratic functions and show intercents, maxima, and minima

INDICATOR M.A18.67 Graph linear and quadratic functions and show intercepts, maxima, and minima.

.a.

INDICATOR

West Virginia College and Career Readiness Standards Science

Grade 7 - Adopted: 2021

Citado I Adoptod. 2021			
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8		
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science		
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers		
GRADE LEVEL EXPECTATION	Developing and using models		
GRADE LEVEL EXPECTATION	Constructing explanations and designing solutions		
GRADE LEVEL EXPECTATION	Obtaining, evaluating, and communicating information		
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8		
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science		

OBJECTIVE / EXPECTATION		Science Connecting Concepts
GRADE LEVEL EXPECTATION		Investigating and explaining cause and effect
GRADE LEVEL EXPECTATION		Tracking energy and matter flows, into, out of, and within systems to understand system behavior
CONTENT STANDARD / COURSE		Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE		College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION		Science Literacy
GRADE LEVEL EXPECTATION		Reading with understanding articles about science in the popular press and engaging in social conversation about the validity of the conclusions
CONTENT STANDARD / COURSE		Science – Grade 7
CONTENT STANDARD / OBJECTIVE		PHYSICAL Science
OBJECTIVE / EXPECTATION		Energy
GRADE LEVEL EXPECTATION	S.7.7.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
CONTENT STANDARD / COURSE		Science – Grade 7
CONTENT STANDARD / OBJECTIVE		Earth and Space Science
OBJECTIVE / EXPECTATION		History of Earth
GRADE LEVEL EXPECTATION	S.7.19.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
CONTENT STANDARD / COURSE		Science – Grade 7
CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.7.22.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, considering limitations to solutions including scientific principles and potential relevant possible impacts on people and the environment

and the environment.

GRADE LEVEL EXPECTATION

S.7.23.

Analyze data from tests to determine which characteristics of design can be combined into a new solution to better meet the criteria for success.

West Virginia College and Career Readiness Standards Science

Grade 8 - Adopted: 2021

	Grade 8 - Adopted: 2021
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Practices of Scientists and Engineers
GRADE LEVEL EXPECTATION	Developing and using models
GRADE LEVEL EXPECTATION	Constructing explanations and designing solutions
GRADE LEVEL EXPECTATION	Obtaining, evaluating, and communicating information
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Connecting Concepts
GRADE LEVEL EXPECTATION	Investigating and explaining cause and effect
GRADE LEVEL EXPECTATION	Tracking energy and matter flows, into, out of, and within systems to understand system behavior
CONTENT STANDARD / COURSE	Science Indicators Grades 6-8
CONTENT STANDARD / OBJECTIVE	College- and Career-Readiness Indicators for Science
OBJECTIVE / EXPECTATION	Science Literacy
GRADE LEVEL EXPECTATION	Reading with understanding articles about science in the popular press and engaging in social conversation about the validity of the conclusions
CONTENT STANDARD / COURSE	Science – Grade 8

CONTENT STANDARD / OBJECTIVE		Engineering, Technology, and Applications of Science
OBJECTIVE / EXPECTATION		Engineering Design
GRADE LEVEL EXPECTATION	S.8.18.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXPECTATION	S.8.19.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

	West Virginia College and Career Readiness Standards Technology Education Grade 7 - Adopted: 2019			
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		
CONTENT STANDARD / OBJECTIVE		Technology 6-8		
OBJECTIVE / EXPECTATION		Innovative Designer		
GRADE LEVEL EXPECTATION	T.6-8.15.	Explore real-world issues and problems and actively pursue an understanding of them and solutions for them.		
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		
CONTENT STANDARD / OBJECTIVE		Technology 6-8		
OBJECTIVE / EXPECTATION		Global Collaborator		
GRADE LEVEL EXPECTATION	T.6-8.20.	Select collaborative technologies and use them to work with others to investigate and develop solutions related to local and global issues.		
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		
CONTENT STANDARD / OBJECTIVE		Computer Science 6-8		
OBJECTIVE / EXPECTATION		Programming and Algorithms		
GRADE LEVEL EXPECTATION	CS.6- 8.12.	Write computer program(s) to solve simple problems and document the process for others to reference.		
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		

CONTENT STANDARD / OBJECTIVE

Discovering Computer Science

OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.DCS. 9.	Interact with content-specific models and simulations (e.g., ecosystems, epidemics, molecular dynamics) to support learning and research.
GRADE LEVEL EXPECTATION	CS.DCS.	Evaluate what kinds of problems can be solved using modeling and simulation.
GRADE LEVEL EXPECTATION	CS.DCS.	Analyze the degree to which a computer model accurately represents the real world.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.DCS. 24.	Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables, and functions.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Computers and Communications Devices
GRADE LEVEL EXPECTATION	CS.DCS. 36.	Describe ways in which computers use models of intelligent behavior (e.g., robot motion, speech and language understanding, and computer vision).

West Virginia College and Career Readiness Standards Technology Education

Grade 8 - Adopted: 2019

	Giade 6 - Adopted. 2019			
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		
CONTENT STANDARD / OBJECTIVE		Technology 6-8		
OBJECTIVE / EXPECTATION		Innovative Designer		
GRADE LEVEL EXPECTATION	T.6-8.15.	Explore real-world issues and problems and actively pursue an understanding of them and solutions for them.		
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science		
CONTENT STANDARD / OBJECTIVE		Technology 6-8		

OBJECTIVE / EXPECTATION		Global Collaborator
GRADE LEVEL EXPECTATION	T.6-8.20.	Select collaborative technologies and use them to work with others to investigate and develop solutions related to local and global issues.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Computer Science 6-8
OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.6- 8.12.	Write computer program(s) to solve simple problems and document the process for others to reference.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Computer Systems and Computational Thinking
GRADE LEVEL EXPECTATION	CS.DCS. 9.	Interact with content-specific models and simulations (e.g., ecosystems, epidemics, molecular dynamics) to support learning and research.
GRADE LEVEL EXPECTATION	CS.DCS.	Evaluate what kinds of problems can be solved using modeling and simulation.
GRADE LEVEL EXPECTATION	CS.DCS.	Analyze the degree to which a computer model accurately represents the real world.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Programming and Algorithms
GRADE LEVEL EXPECTATION	CS.DCS. 24.	Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables, and functions.
CONTENT STANDARD / COURSE	2520.14.	West Virginia College- and Career-Readiness Standards for Technology and Computer Science
CONTENT STANDARD / OBJECTIVE		Discovering Computer Science
OBJECTIVE / EXPECTATION		Computers and Communications Devices

GRADE LEVEL EXPECTATION 36.

CS.DCS. Describe ways in which computers use models of intelligent behavior (e.g., robot motion, speech and language understanding, and computer vision).

Wisconsin Academic Standards Mathematics

Grade 7 - Adopted: 2021

		Grade 7 - Adopted: 2021
DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT	Math Practice 2:	Reason abstractly and quantitatively.
CONTENT	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT	Math Practice 4:	Model with mathematics.
CONTENT	Math Practice 6:	Attend to precision.
CONTENT	Math Practice 7:	Look for and make use of structure.
CONTENT	Math Practice 8:	Look for and express regularity in repeated reasoning.
DOMAIN		Grade 7 Content Standards
CONTENT STANDARD	M.7.EE.	The Expressions and Equations (7.EE)
PERFORMANC E STANDARD / LEARNING PRIORITY	M.7.EE. B.	Solve real-life and mathematical problems using numerical and algebraic expressions and equations. (M)
DESCRIPT OR / FOCUS AREA	M.7.EE. B.4.	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
LEARNING CONTINUUM	M.7.EE.B. 4.a.	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p , q , and r are specific rational numbers. Flexibly and efficiently apply the properties of operations and equality to solve equations of these forms. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach

Wisconsin Academic Standards Mathematics Grade 8 - Adopted: 2021

each approach.

DOMAIN		Standards for Mathematical Practice
CONTENT STANDARD	Math Practice 1:	Make sense of problems and persevere in solving them.
CONTENT	Math Practice 2:	Reason abstractly and quantitatively.
CONTENT	Math Practice 3:	Construct viable arguments, and appreciate and critique the reasoning of others.
CONTENT	Math Practice 4:	Model with mathematics.
CONTENT	Math Practice 6:	Attend to precision.
CONTENT	Math Practice 7:	Look for and make use of structure.
CONTENT STANDARD	Math Practice 8:	Look for and express regularity in repeated reasoning.
DOMAIN		Grade 8 Content Standards
CONTENT STANDARD	M.8.EE.	The Expressions and Equations (8.EE)
PERFORMANC E ST AND ARD I LEARNING PRIORITY	M.8.EE. B.	Understand the connections between proportional relationships, lines, and linear equations.

DOMAIN		Grade 8 Content Standards
CONTENT STANDARD	M.8.EE.	The Expressions and Equations (8.EE)
PERFORMANC E STANDARD / LEARNING PRIORITY	M.8.EE. B.	Understand the connections between proportional relationships, lines, and linear equations.

FOCUS AREA

DESCRIPTOR / M.8.EE.B. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

Wisconsin Academic Standards Science

Grade 7 - Adopted: 2017

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.CC2	Students use science and engineering practices, disciplinary core ideas, and cause and effect relationships to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Cause and Effect

LEARNING		
CONTINUUM		

SCI.CC2. Students classify relationships as causal or correlational, and recognize correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be explained using probability.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.CC5	Students use science and engineering practices, disciplinary core ideas, and an understanding of energy and matter to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA		Energy and Matter
LEARNING CONTINUUM	SCI.CC5. m.	Students understand matter is conserved because atoms are conserved in physical and chemical processes. They also understand that within a natural or designed system the transfer of energy drives the motion and cycling of

matter. Energy may take different forms (e.g. energy in fields, thermal energy, and energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students develop, use, and revise models to describe, test, and predict more abstract phenomena and design systems. This includes the following:
LEARNING CONTINUUM	SCI.SEP2 .A.m.1.	Evaluate limitations of a model for a proposed object or tool.
LEARNING CONTINUUM	SCI.SEP2 .A.m.2.	Develop or modify a model – based on evidence – to match what happens if a variable or component of a system is changed.
LEARNING CONTINUUM	SCI.SEP2 .A.m.3.	Use and develop a model of simple systems with uncertain and less predictable factors.
LEARNING CONTINUUM	SCI.SEP2 .A.m.4.	Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.5.	Develop and use a model to predict and describe phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.6.	Develop a model to describe unobservable mechanisms.
LEARNING CONTINUUM	SCI.SEP2 .A.m.7.	Develop and use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.
DOMAIN	WI.SCI.	Science

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)

PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 5.	Students use mathematics and computational thinking, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 5.A.	Qualitative and Quantitative Data – Students identify patterns in large data sets and use mathematical concepts to support explanations and arguments. This includes the following:
LEARNING CONTINUUM	SCI.SEP 5.A.m.2.	Use digital tools (e.g., computers) to analyze very large data sets for patterns and trends.
LEARNING CONTINUUM	SCI.SEP 5.A.m.3.	Use mathematical representations to describe and support scientific conclusions and design solutions.
LEARNING CONTINUUM	SCI.SEP 5.A.m.4.	Create algorithms (a series of ordered steps) to solve a problem.
LEARNING CONTINUUM	SCI.SEP 5.A.m.6.	Use digital tools and mathematical concepts and arguments to test and compare proposed solutions to an engineering design problem.
DOMAIN	wi.sci.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students construct explanations supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.A.m.1.	Construct an explanation that includes qualitative or quantitative relationships between variables that predict and describe phenomena.
LEARNING CONTINUUM	SCI.SEP 6.A.m.2.	Construct an explanation using models or representations.
LEARNING CONTINUUM	SCI.SEP 6.A.m.3.	Construct a scientific explanation based on valid and reliable evidence obtained from sources, including the students' own experiments. Solutions should build on the following assumption: theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
LEARNING CONTINUUM	SCI.SEP 6.A.m.4.	Apply scientific ideas, principles, and evidence to construct, revise, or use an explanation for real world phenomena, examples, or events.
LEARNING CONTINUUM	SCI.SEP 6.A.m.5.	Apply scientific reasoning to show why the data or evidence is adequate for the explanation.
DOMAIN	wi.sci.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students design solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:

LEARNING CONTINUUM	SCI.SEP 6.B.m.1.	Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process, or system.
LEARNING CONTINUUM	SCI.SEP 6.B.m.2.	Undertake a design project, engaging in the design cycle, to construct and implement a solution that meets specific design criteria and constraints.
LEARNING CONTINUUM	SCI.SEP 6.B.m.3.	Optimize performance of a design by prioritizing criteria, making trade-offs, testing, revising, and retesting.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the merit and validity of ideas and methods. This includes the following:
LEARNING CONTINUUM	SCI.SEP 8.A.m.1.	Critically read scientific texts adapted for classroom use to determine the central ideas, to obtain scientific and technical information, and to describe patterns in and evidence about the natural and designed world(s).
LEARNING CONTINUUM	SCI.SEP 8.A.m.5.	Communicate scientific and technical information (e.g. about a proposed object, tool, process, or system) in writing and through oral presentations.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.LS2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the interactions, energy, and dynamics within ecosystems to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.LS2. C.	Ecosystem Dynamics, Functioning, and Resilience
LEARNING CONTINUUM	SCI.LS2. C.m.	Ecosystem characteristics vary over time. Disruptions to any part of an ecosystem can lead to shifts in all of its populations. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.PS.	Disciplinary Core Idea: Physical Science (PS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.PS3	Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.PS3. B.	Conservation of Energy and Energy Transfer
LEARNING CONTINUUM	SCI.PS3. B.m.	Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)

PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ESS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ESS 3.B.	Natural Hazards
LEARNING CONTINUUM	SCI.ESS3 .B.m.	Patterns can be seen through mapping the history of natural hazards in a region and understanding related geological forces.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ESS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ESS 3.D.	Global Climate Change
LEARNING CONTINUUM	SCI.ESS3 .D.m.	Evidence suggests human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.A.	Defining and Delimiting Engineering Problems
LEARNING CONTINUUM	SCI.ETS1 .A.m.	The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions
LEARNING CONTINUUM	SCI.ETS1 .B.m.1.	A solution needs to be tested and then modified on the basis of the test results in order to improve it.
LEARNING CONTINUUM	SCI.ETS1 .B.m.2.	There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
LEARNING CONTINUUM	SCI.ETS1 .B.m.3.	Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.

LEARNING CONTINUUM	SCI.ETS1 .B.m.4.	Models of all kinds are important for testing solutions.
DOMAIN	wi.sci.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 1.C.	Optimizing the Design Solution
LEARNING CONTINUUM	SCI.ETS1 .C.m.2.	The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology
LEARNING CONTINUUM	SCI.ETS2 .A.m.1.	Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.
LEARNING CONTINUUM	SCI.ETS2 .A.m.2.	Science and technology drive each other forward.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 2.B.	Influence of Engineering, Technology, and Science on Society and the Natural World
LEARNING CONTINUUM	SCI.ETS2 .B.m.2.	The uses of technologies are driven by people's needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.

DESCRIPTOR / SCI.ETS Science and Engineering Are Human Endeavors FOCUS AREA 3.A.

CONTINUUM	.A.m.2.		
DOMAIN	WI.SCI.	Science	
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)	
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.	

SCI.ETS3 Scientists and engineers are persistent, use creativity, reasoning, and skepticism, and remain open to new ideas.

DESCRIPTOR / SCI.ETS Science and Engineering Are Unique Ways of Thinking with Different Purposes **FOCUS AREA** 3.B.

LEARNING

PRIORITY

LEARNING SCI.ETS3 Science and engineering have direct impacts on the quality of life for all people. Therefore, scientists and engineers need to pursue their work in an ethical manner that requires honesty, fairness and dedication to public health, safety CONTINUUM .B.m.3. and welfare.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 3.C.	Science and Engineering Use Multiple Approaches to Create New Knowledge and Solve Problems
LEARNING CONTINUUM	SCI.ETS3 .C.m.3.	Engineers develop solutions using multiple approaches and evaluate their solutions against criteria such as cost, safety, time and performance. This evaluation often involves trade-offs between constraints to find the optimal solution.

Wisconsin Academic Standards Science Grade 8 - Adopted: 2017

DOMAIN	WI.SCI.	Science Science
CONTENT STANDARD	SCI.CC.	Crosscutting Concepts (CC)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.CC2	Students use science and engineering practices, disciplinary core ideas, and cause and effect relationships to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA		Cause and Effect
LEARNING CONTINUUM	SCI.CC2. m.	Students classify relationships as causal or correlational, and recognize correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be explained using probability.

DOMAIN WI.SCI. Science CONTENT SCI.CC. **Crosscutting Concepts (CC) STANDARD PERFORMANC** SCI.CC5 Students use science and engineering practices, disciplinary core ideas, and an understanding of E STANDARD / energy and matter to make sense of phenomena and solve problems. **LEARNING**

DESCRIPT OR / FOCUS AREA		Energy and Matter
LEARNING CONTINUUM	SCI.CC5. m.	Students understand matter is conserved because atoms are conserved in physical and chemical processes. They also understand that within a natural or designed system the transfer of energy drives the motion and cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, and energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.

		matter. Energy may take different forms (e.g. energy in fields, thermal energy, and energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 2.	Students develop and use models, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 2.A.	Developing Models – Students develop, use, and revise models to describe, test, and predict more abstract phenomena and design systems. This includes the following:
LEARNING CONTINUUM	SCI.SEP2 .A.m.1.	Evaluate limitations of a model for a proposed object or tool.
LEARNING CONTINUUM	SCI.SEP2 .A.m.2.	Develop or modify a model – based on evidence – to match what happens if a variable or component of a system is changed.
LEARNING CONTINUUM	SCI.SEP2 .A.m.3.	Use and develop a model of simple systems with uncertain and less predictable factors.
LEARNING CONTINUUM	SCI.SEP2 .A.m.4.	Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.5.	Develop and use a model to predict and describe phenomena.
LEARNING CONTINUUM	SCI.SEP2 .A.m.6.	Develop a model to describe unobservable mechanisms.
LEARNING CONTINUUM	SCI.SEP2 .A.m.7.	Develop and use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 5.	Students use mathematics and computational thinking, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 5.A.	Qualitative and Quantitative Data – Students identify patterns in large data sets and use mathematical concepts to support explanations and arguments. This includes the following:
LEARNING CONTINUUM	SCI.SEP 5.A.m.2.	Use digital tools (e.g., computers) to analyze very large data sets for patterns and trends.
LEARNING CONTINUUM	SCI.SEP 5.A.m.3.	Use mathematical representations to describe and support scientific conclusions and design solutions.

LEARNING CONTINUUM	SCI.SEP 5.A.m.4.	Create algorithms (a series of ordered steps) to solve a problem.
LEARNING CONTINUUM	SCI.SEP 5.A.m.6.	Use digital tools and mathematical concepts and arguments to test and compare proposed solutions to an engineering design problem.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.SEP 6.A.	Construct an Explanation – Students construct explanations supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.A.m.1.	Construct an explanation that includes qualitative or quantitative relationships between variables that predict and describe phenomena.
LEARNING CONTINUUM	SCI.SEP 6.A.m.2.	Construct an explanation using models or representations.
LEARNING CONTINUUM	SCI.SEP 6.A.m.3.	Construct a scientific explanation based on valid and reliable evidence obtained from sources, including the students' own experiments. Solutions should build on the following assumption: theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
LEARNING CONTINUUM	SCI.SEP 6.A.m.4.	Apply scientific ideas, principles, and evidence to construct, revise, or use an explanation for real world phenomena, examples, or events.
LEARNING CONTINUUM	SCI.SEP 6.A.m.5.	Apply scientific reasoning to show why the data or evidence is adequate for the explanation.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 6.	Students construct explanations and design solutions, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 6.B.	Design Solutions – Students design solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. This includes the following:
LEARNING CONTINUUM	SCI.SEP 6.B.m.1.	Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process, or system.
LEARNING CONTINUUM	SCI.SEP 6.B.m.2.	Undertake a design project, engaging in the design cycle, to construct and implement a solution that meets specific design criteria and constraints.
LEARNING CONTINUUM	SCI.SEP 6.B.m.3.	Optimize performance of a design by prioritizing criteria, making trade-offs, testing, revising, and retesting.
DOMAIN	WI.SCI.	Science

CONTENT STANDARD	SCI.SEP.	Science and Engineering Practices (SEP)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.SEP 8.	Students will obtain, evaluate and communicate information, in conjunction with using crosscutting concepts and disciplinary core ideas, to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.SEP 8.A.	Obtain, Evaluate, and Communicate Information – Students evaluate the merit and validity of ideas and methods. This includes the following:
LEARNING CONTINUUM	SCI.SEP 8.A.m.1.	Critically read scientific texts adapted for classroom use to determine the central ideas, to obtain scientific and technical information, and to describe patterns in and evidence about the natural and designed world(s).
LEARNING CONTINUUM	SCI.SEP 8.A.m.5.	Communicate scientific and technical information (e.g. about a proposed object, tool, process, or system) in writing and through oral presentations.
DOMAIN	WI.SCI.	Science
CONTENT ST ANDARD	SCI.LS.	Disciplinary Core Idea: Life Science (LS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.LS2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the interactions, energy, and dynamics within ecosystems to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.LS2. C.	Ecosystem Dynamics, Functioning, and Resilience
LEARNING CONTINUUM	SCI.LS2. C.m.	Ecosystem characteristics vary over time. Disruptions to any part of an ecosystem can lead to shifts in all of its populations. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	WI.SCI. SCI.PS.	Science Disciplinary Core Idea: Physical Science (PS)
CONTENT		Disciplinary Core Idea: Physical Science (PS)
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING	SCI.PS.	Disciplinary Core Idea: Physical Science (PS) Students use science and engineering practices, crosscutting concepts, and an understanding of
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPTOR /	SCI.PS3 . SCI.PS3.	Disciplinary Core Idea: Physical Science (PS) Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems.
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPTOR / FOCUS AREA	SCI.PS3 SCI.PS3.B. SCI.PS3.	Disciplinary Core Idea: Physical Science (PS) Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems. Conservation of Energy and Energy Transfer Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPTOR / FOCUS AREA LEARNING CONTINUUM	SCI.PS3 SCI.PS3.B. SCI.PS3.B.m.	Disciplinary Core Idea: Physical Science (PS) Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems. Conservation of Energy and Energy Transfer Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter. Science
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPT OR / FOCUS AREA LEARNING CONTINUUM DOMAIN CONTENT	SCI.PS3 . SCI.PS3.B. SCI.PS3.B. WI.SCI.	Disciplinary Core Idea: Physical Science (PS) Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems. Conservation of Energy and Energy Transfer Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter. Science
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPTOR / FOCUS AREA LEARNING CONTINUUM CONTENT STANDARD PERFORMANC E STANDARD / LEARNING	SCI.PS3. SCI.PS3. B. SCI.PS3. B.m. WI.SCI. SCI.ESS.	Disciplinary Core Idea: Physical Science (PS) Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems. Conservation of Energy and Energy Transfer Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter. Science Disciplinary Core Idea: Earth and Space Sciences (ESS) Students use science and engineering practices, crosscutting concepts, and an understanding of the
CONTENT STANDARD PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPTOR / FOCUS AREA LEARNING CONTINUUM CONTENT STANDARD / LEARNING PERFORMANC E STANDARD / LEARNING PRIORITY DESCRIPTOR /	SCI.PS3 SCI.PS3.B. SCI.PS3.B.m. WI.SCI. SCI.ESS. SCI.ESS 3.B.	Disciplinary Core Idea: Physical Science (PS) Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems. Conservation of Energy and Energy Transfer Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter. Science Disciplinary Core Idea: Earth and Space Sciences (ESS) Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.

CONTENT STANDARD	SCI.ESS.	Disciplinary Core Idea: Earth and Space Sciences (ESS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ESS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the Earth and human activity to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ESS 3.D.	Global Climate Change
LEARNING CONTINUUM	SCI.ESS3 .D.m.	Evidence suggests human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 1.A.	Defining and Delimiting Engineering Problems
LEARNING CONTINUUM	SCI.ETS1 .A.m.	The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 1.B.	Developing Possible Solutions
LEARNING CONTINUUM	SCI.ETS1 .B.m.1.	A solution needs to be tested and then modified on the basis of the test results in order to improve it.
LEARNING CONTINUUM	SCI.ETS1 .B.m.2.	There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
LEARNING CONTINUUM	SCI.ETS1 .B.m.3.	Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.
LEARNING CONTINUUM	SCI.ETS1 .B.m.4.	Models of all kinds are important for testing solutions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 1.	Students use science and engineering practices, crosscutting concepts, and an understanding of engineering design to make sense of phenomena and solve problems.

DESCRIPT OR / FOCUS AREA	SCI.ETS 1.C.	Optimizing the Design Solution
LEARNING CONTINUUM	SCI.ETS1 .C.m.2.	The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
DOMAIN	wi.sci.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY		Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 2.A.	Interdependence of Science, Engineering, and Technology
LEARNING CONTINUUM	SCI.ETS2 .A.m.1.	Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.
LEARNING CONTINUUM	SCI.ETS2 .A.m.2.	Science and technology drive each other forward.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 2.	Students use science and engineering practices, crosscutting concepts, and an understanding of the links among Engineering, Technology, Science, and Society to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 2.B.	Influence of Engineering, Technology, and Science on Society and the Natural World
LEARNING CONTINUUM	SCI.ETS2 .B.m.2.	The uses of technologies are driven by people's needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPTOR / FOCUS AREA	SCI.ETS 3.A.	Science and Engineering Are Human Endeavors
LEARNING CONTINUUM	SCI.ETS3 .A.m.2.	Scientists and engineers are persistent, use creativity, reasoning, and skepticism, and remain open to new ideas.
DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E STANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.

DESCRIPT OR / FOCUS AREA	SCI.ETS 3.B.	Science and Engineering Are Unique Ways of Thinking with Different Purposes
LEARNING CONTINUUM	SCI.ETS3 .B.m.3.	Science and engineering have direct impacts on the quality of life for all people. Therefore, scientists and engineers need to pursue their work in an ethical manner that requires honesty, fairness and dedication to public health, safety and welfare.

DOMAIN	WI.SCI.	Science
CONTENT STANDARD	SCI.ETS	Disciplinary Core Idea: Engineering, Technology, and the Application of Science (ETS)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	SCI.ETS 3.	Students use science and engineering practices, crosscutting concepts, and an understanding of the nature of science and engineering to make sense of phenomena and solve problems.
DESCRIPT OR / FOCUS AREA	SCI.ETS 3.C.	Science and Engineering Use Multiple Approaches to Create New Knowledge and Solve Problems
LEARNING CONTINUUM	SCI.ETS3 .C.m.3.	Engineers develop solutions using multiple approaches and evaluate their solutions against criteria such as cost, safety, time and performance. This evaluation often involves trade-offs between constraints to find the optimal solution.

Wisconsin Academic Standards Technology Education Grade 7 - Adopted: 2017

DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPT OR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.
LEARNING CONTINUUM	CS.AP2.a .6.m.	Develop programs, both independently and collaboratively, which include sequencing with nested loops and multiple branches [Clarification: At this level, students may use block-based and/or text-based languages].
LEARNING CONTINUUM	CS.AP2.a .9.m.	Create variables that represent different types of data and manipulate their values.
DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3.	Document code.
LEARNING CONTINUUM	CS.AP3.c .1.m.	Interpret the flow of execution of algorithms and predict their outcomes. [Clarification: Algorithms can be expressed using natural language, flow and control diagrams, comments within code, and pseudocode.]

DOMAIN

CONTENT STANDARD WI.IT L.

ITL.ID.

Information and Technology Literacy

Content Area: Innovative Designer (ID)

PERFORMANC E STANDARD / LEARNING PRIORITY	ITL.ID2.	Students use: Iai Ivariety: Iof: Itechnologies: Iwithin: Iai Idesign: Iprocess: Ito: Icreate: Inew, II useful, II land imaginative: Isolutions.
DESCRIPT OR / FOCUS AREA	ITL.ID2. a.	Know(
LEARNING CONTINUUM	ITL.ID2.a. 3.m.	Use a deliberate design process to generate ideas, createll linnovativell liproducts, and litestil litheories las possible li Isolutions.

Wisconsin Academic Standards Technology Education

		Grade 8 - Adopted: 2017
DOMAIN	WI.CS.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E ST ANDARD / LEARNING PRIORITY	CS.AP2.	Students will create computational artifacts using algorithms and programming.
DESCRIPT OR / FOCUS AREA	CS.AP2. a.	Develop and implement an artifact.
LEARNING CONTINUUM	CS.AP2.a .6.m.	Develop programs, both independently and collaboratively, which include sequencing with nested loops and multiple branches [Clarification: At this level, students may use block-based and/or text-based languages].
LEARNING CONTINUUM	CS.AP2.a .9.m.	Create variables that represent different types of data and manipulate their values.
DOMAIN	wi.cs.	Computer Science
CONTENT STANDARD	CS.AP.	Content Area: Algorithms and Programming (AP)
PERFORMANC E STANDARD / LEARNING PRIORITY	CS.AP3.	Students will communicate about computing ideas.
DESCRIPTOR / FOCUS AREA	CS.AP3.	Document code.
LEARNING CONTINUUM	CS.AP3.c .1.m.	Interpret the flow of execution of algorithms and predict their outcomes. [Clarification: Algorithms can be expressed using natural language, flow and control diagrams, comments within code, and pseudocode.]
DOMAIN	WI.IT L.	Information and Technology Literacy
CONTENT STANDARD	ITL.ID.	Content Area: Innovative Designer (ID)
PERFORMANC E STANDARD / LEARNING PRIORITY	IT L.ID2.	Students use: I all Ivariety: I of: Itechnologies: I within: I all Idesign: Iprocess: I to: Icreate: Inew, I I useful, I land imaginative: Isolutions.
DESCRIPTOR / FOCUS AREA	ITL.ID2. a.	Knowl landl lusel la deliberatel idesign iprocess ifor generating ideas, itesting theories, in land in creating innovative interesting interesting interesting interesting interesting interesting in interesting interest

ITL.ID2.a. Use a deliberate design process to generate ideas, createll linnovativell liproducts, and li litestil litheories li las

LEARNING

CONTINUUM

3.m.

possible I Isolutions.

$\label{thm:content} \mbox{Wyoming Content and Performance Standards} \\ \mbox{Mathematics}$

Grade 7 - Adopted: 2018

CONTENT		Standards for Mathematical Practices
STANDARD		
BENCHMARK	1	Make sense of problems and persevere in solving them.
BENCHMARK	2	Reason abstractly and quantitatively.
BENCHMARK	3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	4	Model with mathematics.
BENCHMARK	6	Attend to precision.
BENCHMARK	7	Look for and make use of structure.
BENCHMARK	8	Look for and express regularity in repeated reasoning.
CONTENT STANDARD		Expressions and Equations
BENCHMARK	7.EE.D.	Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
GRADE LEVEL EXAMPLE	7.EE.D. 4.	Apply the concepts of linear equations and inequalities in one variable to real-world and mathematical situations.
EXPECTATION	7.EE.D.4	Write and fluently solve linear equations of the form $ax +b = c$ and $a(x + b) = c$ where $a, b, and c$ are rational
LAF LOTATION	A.	numbers.

$\label{thm:content} \mbox{Wyoming Content and Performance Standards} \\ \mbox{Mathematics}$

Grade 8 - Adopted: 2018

CONTENT STANDARD		Standards for Mathematical Practices
BENCHMARK	1	Make sense of problems and persevere in solving them.
BENCHMARK	2	Reason abstractly and quantitatively.
BENCHMARK	3	Construct viable arguments and critique the reasoning of others.
BENCHMARK	4	Model with mathematics.
BENCHMARK	6	Attend to precision.
BENCHMARK	7	Look for and make use of structure.
BENCHMARK	8	Look for and express regularity in repeated reasoning.

CONTENT STANDARD		Expressions and Equations
BENCHMARK	8.EE.C.	Understand the connections between proportional relationships, lines, and linear equations.
GRADE LEVEL	8.EE.C.5.	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

Wyoming Content and Performance Standards Science

		Grade 7 - Adopted: 2016
CONTENT STANDARD		PHYSICAL SCIENCE
BENCHMARK	MS-PS3.	Energy
GRADE LEVEL EXAMPLE	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
CONTENT STANDARD		PHYSICAL SCIENCE
BENCHMARK	MS-PS4.	Waves and their Applications in Technologies for Information Transfer
GRADE LEVEL EXAMPLE	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
CONTENT STANDARD		LIFE SCIENCE
BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXAMPLE	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
GRADE LEVEL EXAMPLE	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT STANDARD		EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS2.	Earth's Systems
GRADE LEVEL EXAMPLE	MS- ESS2-2.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
CONTENT STANDARD		EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXAMPLE	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
GRADE LEVEL EXAMPLE	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused changes in global temperatures over time.

CONTENT STANDARD		ENGINEERING DESIGN
BENCHMARK	MS- ETS1.	Engineering, Technology, and Applications of Science
GRADE LEVEL EXAMPLE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXAMPLE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXAMPLE	MS- ETS1-4.	Develop a model for a proposed object, tool or process and then use an iterative process to test the model, collect data, and generate modification ideas trending toward an optimal design.
		Grade 7 - Adopted: 2012
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Key Ideas and Details
GRADE LEVEL EXAMPLE	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXAMPLE	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Craft and Structure
GRADE LEVEL EXAMPLE	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GRADE LEVEL EXAMPLE	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas
GRADE LEVEL EXAMPLE	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Range of Reading and Level of Text Complexity
GRADE LEVEL EXAMPLE	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects

DEITO I IIII II II I		
GRADE LEVEL EXAMPLE	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
EXPECTATION	WHST.6- 8.2(d)	Use precise language and domain-specific vocabulary to inform about or explain the topic.
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Production and Distribution of Writing
GRADE LEVEL EXAMPLE	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL	WHST.6-	Use technology, including the Internet, to produce and publish writing and present the relationships between

Text Types and Purposes

information and ideas clearly and efficiently.

BENCHMARK

EXAMPLE

GRADE LEVEL MS-

ESS2-2. varying time and spatial scales.

EXAMPLE

8.6.

Wyoming Content and Performance Standards Science

		Grade 8 - Adopted: 2016
CONTENT STANDARD		PHYSICAL SCIENCE
BENCHMARK	MS-PS3.	Energy
GRADE LEVEL EXAMPLE	MS-PS3- 3.	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
CONTENT STANDARD		PHYSICAL SCIENCE
BENCHMARK	MS-PS4.	Waves and their Applications in Technologies for Information Transfer
GRADE LEVEL EXAMPLE	MS-PS4- 3.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
CONTENT STANDARD		LIFE SCIENCE
BENCHMARK	MS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXAMPLE	MS-LS2- 4.	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
GRADE LEVEL EXAMPLE	MS-LS2- 5.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
CONTENT STANDARD		EARTH AND SPACE SCIENCE

 $Construct\ an\ explanation\ based\ on\ evidence\ for\ how\ geoscience\ processes\ have\ changed\ Earth's\ surface\ at$

CONTENT STANDARD		EARTH AND SPACE SCIENCE
BENCHMARK	MS- ESS3.	Earth and Human Activity
GRADE LEVEL EXAMPLE	MS- ESS3-2.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
GRADE LEVEL EXAMPLE	MS- ESS3-5.	Ask questions to clarify evidence of the factors that have caused changes in global temperatures over time.
CONTENT STANDARD		ENGINEERING DESIGN
BENCHMARK	MS- ETS1.	Engineering, Technology, and Applications of Science
GRADE LEVEL EXAMPLE	MS- ETS1-1.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
GRADE LEVEL EXAMPLE	MS- ETS1-2.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
GRADE LEVEL EXAMPLE	MS- ETS1-4.	Develop a model for a proposed object, tool or process and then use an iterative process to test the model, collect data, and generate modification ideas trending toward an optimal design.
		Grade 8 - Adopted: 2012
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Key Ideas and Details
GRADE LEVEL EXAMPLE	RST.6- 8.2.	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.
GRADE LEVEL EXAMPLE	RST.6- 8.3.	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Craft and Structure
GRADE LEVEL EXAMPLE	RST.6- 8.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.
GRADE LEVEL EXAMPLE	RST.6- 8.5.	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Integration of Knowledge and Ideas

GRADE LEVEL EXAMPLE	RST.6- 8.9.	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
CONTENT STANDARD	RST.6-8.	Reading Standards for Literacy in Science and Technical Subjects
BENCHMARK		Range of Reading and Level of Text Complexity
GRADE LEVEL EXAMPLE	RST.6- 8.10.	By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.
CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Text Types and Purposes
GRADE LEVEL EXAMPLE	WHST.6 -8.2.	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
EXPECTATION	WHST.6-	Use precise language and domain-specific vocabulary to inform about or explain the topic.

8.2(d)

CONTENT STANDARD	WHST.6- 8.	Writing Standards for Literacy in Science and Technical Subjects
BENCHMARK		Production and Distribution of Writing
GRADE LEVEL EXAMPLE	WHST.6- 8.4.	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
GRADE LEVEL EXAMPLE	WHST.6- 8.6.	Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

Wyoming Content and Performance Standards Technology Education

Grade 7 - Adopted: 2020

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	1	Fostering an Inclusive Computing Culture
EXPECTATION	1.1.	"Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products."
EXPECTATION	1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
EXPECTATION	1.3.	"Employ self- and peer-advocacy to address bias in interactions, product design, and development methods."
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	3	Recognizing and Defining Computational Problems

EXPECTATION	3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	4	Developing and Using Abstractions
EXPECTATION	4.2.	Evaluate existing technological functionalities and incorporate them into new designs.
EXPECTATION	4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
EXPECTATION	4.4.	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	5	Creating Computational Artifacts
EXPECTATION	5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
EXPECTATION	5.2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	6	Testing and Refining Computational Artifact
EXPECTATION	6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
EXPECTATION	6.3.	Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	CS.HS.	Hardware & Software
EXPECTATION	8.CS.HS. 01.	Design and refine a project that combines hardware and software components to collect and exchange data.
CONTENT STANDARD		Wyoming Computer Science Content Standards

BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	DA.IM.	Inference & Models

EXPECTATION 8.DA.IM.0 Refine computational models based on generated data.

1.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	AP.V.	Variables

EXPECTATION 8.AP.V.0 Using grade appropriate content and complexity, create clearly named variables that represent different data types 1. and perform operations on their values.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	AP.C.	Control

EXPECTATION 8.AP.C.0 Using grade appropriate content and complexity, design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	IC.SI.	Social Interactions

EXPECTATION 8.IC.SI.01 Using grade appropriate content and complexity, collaborate using tools to connect with peers when creating a computational artifact.

Wyoming Content and Performance Standards Technology Education

Grade 8 - Adopted: 2020

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	1	Fostering an Inclusive Computing Culture
EXPECTATION	1.1.	"Include the unique perspectives of others and reflect on one's own perspectives when designing and developing computational products."
EXPECTATION	1.2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.
EXPECTATION	1.3.	"Employ self- and peer-advocacy to address bias in interactions, product design, and development methods."

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	3	Recognizing and Defining Computational Problems
EXPECTATION	3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.
EXPECTATION	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
GRADE LEVEL EXAMPLE	4	Developing and Using Abstractions
EXPECTATION	4.2.	Evaluate existing technological functionalities and incorporate them into new designs.
EXPECTATION	4.3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
EXPECTATION	4.4.	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.
CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		Computer Science Practices
BENCHMARK GRADE LEVEL EXAMPLE	5	Creating Computational Artifacts
GRADE LEVEL	5	
GRADE LEVEL EXAMPLE		Creating Computational Artifacts Plan the development of a computational artifact using an iterative process that includes reflection on and
GRADE LEVEL EXAMPLE EXPECTATION	5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
GRADE LEVEL EXAMPLE EXPECTATION EXPECTATION CONTENT	5.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations. Create a computational artifact for practical intent, personal expression, or to address a societal issue.
GRADE LEVEL EXAMPLE EXPECTATION EXPECTATION CONTENT STANDARD	5.1.	Creating Computational Artifacts Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations. Create a computational artifact for practical intent, personal expression, or to address a societal issue. Wyoming Computer Science Content Standards
GRADE LEVEL EXAMPLE EXPECTATION EXPECTATION CONTENT STANDARD BENCHMARK GRADE LEVEL	5.1. 5.2.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations. Create a computational artifact for practical intent, personal expression, or to address a societal issue. Wyoming Computer Science Content Standards Computer Science Practices
GRADE LEVEL EXAMPLE EXPECTATION EXPECTATION CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE	5.1. 5.2.	Creating Computational Artifacts Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations. Create a computational artifact for practical intent, personal expression, or to address a societal issue. Wyoming Computer Science Content Standards Computer Science Practices Testing and Refining Computational Artifact
GRADE LEVEL EXAMPLE EXPECTATION CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE EXPECTATION	5.1. 5.2. 6 6.1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations. Create a computational artifact for practical intent, personal expression, or to address a societal issue. Wyoming Computer Science Content Standards Computer Science Practices Testing and Refining Computational Artifact Systematically test computational artifacts by considering all scenarios and using test cases. Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and
GRADE LEVEL EXAMPLE EXPECTATION CONTENT STANDARD BENCHMARK GRADE LEVEL EXAMPLE EXPECTATION EXPECTATION CONTENT	5.1. 5.2. 6 6.1.	Creating Computational Artifacts Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations. Create a computational artifact for practical intent, personal expression, or to address a societal issue. Wyoming Computer Science Content Standards Computer Science Practices Testing and Refining Computational Artifact Systematically test computational artifacts by considering all scenarios and using test cases. Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility.

EXPECTATION 8.CS.HS. Design and refine a project that combines hardware and software components to collect and exchange data.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	DA.IM.	Inference & Models

EXPECTATION 8.DA.IM.0 Refine computational models based on generated data.

1.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	AP.V.	Variables

EXPECTATION 8.AP.V.0 Using grade appropriate content and complexity, create clearly named variables that represent different data types 1. and perform operations on their values.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	AP.C.	Control

EXPECTATION 8.AP.C.0 Using grade appropriate content and complexity, design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

CONTENT STANDARD		Wyoming Computer Science Content Standards
BENCHMARK		MS Computer Science Standards
GRADE LEVEL EXAMPLE	IC.SI.	Social Interactions

EXPECTATION 8.IC.SI.01 Using grade appropriate content and complexity, collaborate using tools to connect with peers when creating a computational artifact.