Main Criteria: Forward Education

Secondary Criteria: Arizona's College and Career Ready Standards

Subjects: Mathematics, Science, Technology Education

Grades: 11, 12, Key Stage 4

Forward Education

Autonomous Electric Vehicles of the Future

Arizona's College and Career Ready Standards

Mathematics

Grade 11 - Adopted: 2018

STRAND		Standards for Mathematical Practice
CONCEPT / STANDARD	MP.1	Make sense of problems and persevere in solving them.
CONCEPT / STANDARD	MP.2	Reason abstractly and quantitatively.
CONCEPT / STANDARD	MP.3	Construct viable arguments and critique the reasoning of others.
CONCEPT / STANDARD	MP.4	Model with mathematics.

CONCEPT / MP.8 Look for and express regularity in repeated reasoning. STANDARD

STRAND		Algebra 1
CONCEPT / ST ANDARD	A1.A- CED	Algebra – Creating Equations (A-CED)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.A- CED.A	Create equations that describe numbers or relationships.

OBJECTIVE /	A1.A-	Create equations in two or more variables to represent relationships between quantities; graph equations on
GRADE LEVEL	CED.A.2	coordinate axes with labels and scales.
EXPECTATION		

STRAND		Algebra 1
CONCEPT / ST ANDARD	A1.A-REI	Algebra – Reasoning with Equations and Inequalities (A-REI)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.A- REI.A	Understand solving equations as a process of reasoning and explain the reasoning.

OBJECTIVE /A1.A-Explain each step in solving linear and quadratic equations as following from the equality of numbers asserted at the
GRADE LEVELGRADE LEVELREI.A.1previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to
justify a solution method.

STRAND		Algebra 1
CONCEPT / STANDARD	A1.F-IF	Functions – Interpreting Functions (F-IF)

PERFORMANC E OBJECTIVE / I PROFICIENCY LEVEL	A1.F- IF.C	Analyze functions using different representations.
---	---------------	--

OBJECTIVE /A1.F-Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and usingGRADE LEVELIF.C.7technology for more complicated cases. Functions include linear, exponential, quadratic, and piecewise-definedEXPECTATIONfunctions (limited to the aforementioned functions).

STRAND		Algebra 1
CONCEPT / STANDARD	A1.F-LE	Functions – Linear, Quadratic, and Exponential Models (F-LE)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.F- LE.A	Construct and compare linear, quadratic, and exponential models and solve problems.
OBJECTIVE / GRADE LEVEL EXPECTATION	A1.F- LE.A.1	Distinguish between situations that can be modeled with linear functions and with exponential functions.

GRADE LEVELA1.F-Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow byEXPECTATIONLE.A.1.a.equal factors over equal intervals.

STRAND		Algebra 2
CONCEPT / STANDARD	A2.A-REI	Algebra – Reasoning with Equations and Inequalities (A-REI)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A2.A- REI.A	Understand solving equations as a process of reasoning and explain the reasoning.

OBJECTIVE /	A2.A-	Explain each step in solving an equation as following from the equality of numbers asserted at the previous step,
GRADE LEVEL	REI.A.1	starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution
EXPECTATION		method. Extend from quadratic equations to rational and radical equations.

STRAND		Algebra 2
CONCEPT / STANDARD	A2.F-IF	Functions – Interpreting Functions (F-IF)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A2.F- IF.C	Analyze functions using different representations.
OBJECTIVE /	A2.F-	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using

OBJECTIVE /A2.F-Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and usingGRADE LEVELIF.C.7technology for more complicated cases. Extend from linear, quadratic and exponential functions to include squareEXPECTATIONroot, cube root, polynomial, exponential, logarithmic, sine, cosine, tangent and piecewise-defined functions.

STRAND		Geometry
CONCEPT / STANDARD	G.G- GPE	Geometry – Expressing Geometric Properties with Equations (G-GPE)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	G.G- GPE.B	Use coordinates to prove geometric theorems algebraically.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.1	Make sense of problems and persevere in solving them.

Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.2	Reason abstractly and quantitatively.
OBJECTIVE /		Mathematically proficient students make sense of quantities and their relationships in problem situations. Students

GRADE LEVEL EXPECTATION Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.3	Construct viable arguments and critique the reasoning of others.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.4	Model with mathematics.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.8	Look for and express regularity in repeated reasoning.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 1	Make sense of problems and persevere in solving them.

OBJECTIVE / GRADE LEVEL EXPECTATION

Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 2	Reason abstractly and quantitatively.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)

PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 3	Construct viable arguments and critique the reasoning of others.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

CONCEPT / STANDARD QR.MP Standards for Mathematical Practice (MP) PERFORMANC QR.MP. Model with mathematics.	STRAND		Quantitative Reasoning
PERFORMANC QR.MP. Model with mathematics.	CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PROFICIENCY LEVEL	PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 4	Model with mathematics.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 8	Look for and express regularity in repeated reasoning.

OBJECTIVE /Mathematically proficient students look for and describe regularities as they solve multiple related problems. TheyGRADE LEVELformulate conjectures about what they notice and communicate observations with precision. While solving problems,EXPECTATIONstudents maintain oversight of the process and continually evaluate the reasonableness of their results. This informs
and strengthens their understanding of the structure of mathematics which leads to fluency.

Arizona's College and Career Ready Standards

Mathematics

STRAND		Standards for Mathematical Practice
CONCEPT / STANDARD	MP.1	Make sense of problems and persevere in solving them.
CONCEPT / STANDARD	MP.2	Reason abstractly and quantitatively.
CONCEPT / STANDARD	MP.3	Construct viable arguments and critique the reasoning of others.

CONCEPT / STANDARD	MP.4	Model with mathematics.
CONCEPT /	MP.8	Look for and express regularity in repeated reasoning.

STANDARD

STRAND		Algebra 1
CONCEPT / STANDARD	A1.A- CED	Algebra – Creating Equations (A-CED)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.A- CED.A	Create equations that describe numbers or relationships.

OBJECTIVE /A1.A-Create equations in two or more variables to represent relationships between quantities; graph equations onGRADE LEVELCED.A.2coordinate axes with labels and scales.EXPECTATION

STRAND		Algebra 1
CONCEPT / STANDARD	A1.A-REI	Algebra – Reasoning with Equations and Inequalities (A-REI)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.A- REI.A	Understand solving equations as a process of reasoning and explain the reasoning.

OBJECTIVE /	A1.A-	Explain each step in solving linear and quadratic equations as following from the equality of numbers asserted at the
GRADE LEVEL	REI.A.1	previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to
EXPECTATION		justify a solution method.

STRAND		Algebra 1
CONCEPT / STANDARD	A1.F-IF	Functions – Interpreting Functions (F-IF)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.F- IF.C	Analyze functions using different representations.

OBJECTIVE /	A1.F-	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using
GRADE LEVEL	IF.C.7	technology for more complicated cases. Functions include linear, exponential, quadratic, and piecewise-defined
EXPECTATION		functions (limited to the aforementioned functions).

STRAND		Algebra 1
CONCEPT / STANDARD	A1.F-LE	Functions – Linear, Quadratic, and Exponential Models (F-LE)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A1.F- LE.A	Construct and compare linear, quadratic, and exponential models and solve problems.
OBJECTIVE / GRADE LEVEL EXPECTATION	A1.F- LE.A.1	Distinguish between situations that can be modeled with linear functions and with exponential functions.
GRADE LEVEL EXPECTATION	A1.F- LE.A.1.a.	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

STRAND		Algebra 2
CONCEPT / STANDARD	A2.A-REI	Algebra – Reasoning with Equations and Inequalities (A-REI)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A2.A- REI.A	Understand solving equations as a process of reasoning and explain the reasoning.

OBJECTIVE /A2.A-Explain each step in solving an equation as following from the equality of numbers asserted at the previous step,GRADE LEVELREI.A.1starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solutionEXPECTATIONmethod. Extend from quadratic equations to rational and radical equations.

STRAND		Algebra 2
CONCEPT / STANDARD	A2.F-IF	Functions – Interpreting Functions (F-IF)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	A2.F- IF.C	Analyze functions using different representations.

OBJECTIVE /	A2.F-	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using
GRADE LEVEL	IF.C.7	technology for more complicated cases. Extend from linear, quadratic and exponential functions to include square
EXPECTATION		root, cube root, polynomial, exponential, logarithmic, sine, cosine, tangent and piecewise-defined functions.

STRAND		Geometry
CONCEPT / STANDARD	G.G- GPE	Geometry – Expressing Geometric Properties with Equations (G-GPE)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	G.G- GPE.B	Use coordinates to prove geometric theorems algebraically.

OBJECTIVE /	G.G-	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems, including
GRADE LEVEL	GPE.B.5	finding the equation of a line parallel or perpendicular to a given line that passes through a given point.
EXPECTATION		

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.1	Make sense of problems and persevere in solving them.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice

|--|

Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Precalculus
CONCEPT / ST ANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.3	Construct viable arguments and critique the reasoning of others.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make

assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.4	Model with mathematics.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

STRAND		Precalculus
CONCEPT / STANDARD	PC.MP	Standards for Mathematical Practice
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	PC.MP.8	Look for and express regularity in repeated reasoning.
OBJECTIVE / GRADE LEVEL EXPECTATION		Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs

and strengthens their understanding of the structure of mathematics which leads to fluency.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 1	Make sense of problems and persevere in solving them.

Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 2	Reason abstractly and quantitatively.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 3	Construct viable arguments and critique the reasoning of others.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

STRAND		Quantitative Reasoning
CONCEPT / STANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 4	Model with mathematics.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

STRAND		Quantitative Reasoning
CONCEPT / ST ANDARD	QR.MP	Standards for Mathematical Practice (MP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	QR.MP. 8	Look for and express regularity in repeated reasoning.

OBJECTIVE / GRADE LEVEL EXPECTATION Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.

Arizona's College and Career Ready Standards

Science

Grade 11 - Adopted: 2018

STRAND		Core Ideas for Knowing Science
CONCEPT / STANDARD		Earth and Space Science
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	E1:	The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.

STRAND		Core Ideas for Using Science
CONCEPT / STANDARD	U2:	The knowledge produced by science is used in engineering and technologies to solve problems and/or create products.

STRAND	High School Physical Sciences
CONCEPT / STANDARD	Chemistry – P1: All matter in the Universe is made of very small particles.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Nuclear Processes and Applications of Chemistry

OBJECTIVE /HS.P1U3.Obtain, evaluate, and communicate information about how the use of chemistry related technologies have hadGRADE LEVEL4.positive and negative ethical, social, economic, and/or political implications.EXPECTATION

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Weather & Climate

OBJECTIVE /	HS+E.E1	Develop and use models to describe how variations in the flow of energy into and out of Earth's systems result in
GRADE LEVEL	U1.2.	changes in climate.
EXPECTATION		

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Roles of Water in Earth's Surface Processes

OBJECTIVE /	HS.E1U1.	Develop and use models of the Earth that explains the role of energy and matter in Earth's constantly changing
GRADE LEVEL	12.	internal and external systems (geosphere, hydrosphere, atmosphere, biosphere).
EXPECTATION		

STRAND		High School Earth and Space Sciences
CONCEPT / STANDARD		Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL		Earth and Human Activity
OBJECTIVE / GRADE LEVEL EXPECTATION	HS.E1U3. 14.	Engage in argument from evidence about the availability of natural resources, occurrence of natural hazards, changes in climate, and human activity and how they influence each other.
OBJECTIVE / GRADE LEVEL EXPECTATION	HS+E.E1 U3.9.	Construct an explanation, based on evidence, for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
OBJECTIVE / GRADE LEVEL EXPECTATION	HS+E.E1 U3.11.	Develop and use a quantitative model to illustrate the relationship among Earth systems and the degree to which those relationships are being modified due to human activity.

STRAND	High School Life Sciences
CONCEPT / STANDARD	Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms & L4: The unity and diversity of organisms, living and extinct, is the result of evolution.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Ecosystems

OBJECTIVE /	HS.L2U3.	Obtain, evaluate, and communicate about the positive and negative ethical, social, economic, and political
GRADE LEVEL	18.	implications of human activity on the biodiversity of an ecosystem.
EXPECTATION		

Arizona's College and Career Ready Standards

Science

Grade 12 - Adopted: 2018

STRAND	Core Ideas for Knowing Science
CONCEPT / STANDARD	Earth and Space Science

PERFORMANC E1: E OBJECTIVE / PROFICIENCY LEVEL

STRAND Core Ideas for Using Science CONCEPT / U2: The knowledge produced by science is used in engineering and technologies to solve problems and/or create STANDARD products.

the Earth's surface and its climate.

STRAND	High School Physical Sciences
CONCEPT / STANDARD	Chemistry – P1: All matter in the Universe is made of very small particles.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Nuclear Processes and Applications of Chemistry

OBJECTIVE / GRADE LEVEL 4.

HS.P1U3. Obtain, evaluate, and communicate information about how the use of chemistry related technologies have had positive and negative ethical, social, economic, and/or political implications.

The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape

EXPECTATION

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Weather & Climate

OBJECTIVE / HS+E.E1 Develop and use models to describe how variations in the flow of energy into and out of Earth's systems result in GRADE LEVEL U1.2. changes in climate. **EXPECTATION**

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Roles of Water in Earth's Surface Processes

OBJECTIVE / HS.E1U1. Develop and use models of the Earth that explains the role of energy and matter in Earth's constantly changing internal and external systems (geosphere, hydrosphere, atmosphere, biosphere). GRADE LEVEL 12. EXPECTATION

STRAND	High School Earth and Space Sciences
CONCEPT / STANDARD	Earth and Space – E1: The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth's surface and its climate.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Earth and Human Activity

OBJECTIVE / GRADE LEVEL EXPECTATION	HS.E1U3. 14.	Engage in argument from evidence about the availability of natural resources, occurrence of natural hazards, changes in climate, and human activity and how they influence each other.
OBJECTIVE / GRADE LEVEL EXPECTATION	HS+E.E1 U3.9.	Construct an explanation, based on evidence, for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
OBJECTIVE / GRADE LEVEL EXPECTATION	HS+E.E1 U3.11.	Develop and use a quantitative model to illustrate the relationship among Earth systems and the degree to which those relationships are being modified due to human activity.

STRAND	High School Life Sciences
CONCEPT / STANDARD	Life Science – L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms & L4: The unity and diversity of organisms, living and extinct, is the result of evolution.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Ecosystems

OBJECTIVE /HS.L2U3.Obtain, evaluate, and communicate about the positive and negative ethical, social, economic, and politicalGRADE LEVEL18.implications of human activity on the biodiversity of an ecosystem.EXPECTATION

Arizona's College and Career Ready Standards

Technology Education

Grade 11 - Adopted: 2022

STRAND		Arizona Educational Technology Standards 2022
CONCEPT / STANDARD	Standar d 4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
PERFORMANC E OBJECTIVE / PROFICIENCY	9-12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

LEVEL

STRAND		Arizona Educational Technology Standards 2022
CONCEPT / ST ANDARD	Standar d 5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.

PERFORMANC 9-12.5.c. Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.

Grade 11 - Adopted: 2018

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 3.	Recognizing and Defining Computational Problems: The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
OBJECTIVE / GRADE LEVEL EXPECTATION	3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.

OBJECTIVE /	3.2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or
GRADE LEVEL		procedures.
EXPECTATION		

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 5.	Creating Computational Artifacts: The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

OBJECTIVE / 5.2. Create a computational artifact for practical intent, personal expression, or to address a societal issue. GRADE LEVEL

EXPECTATION

STANDARD

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 6.	Testing and Refining Computational Artifacts: Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts.
OBJECTIVE / GRADE LEVEL EXPECTATION	6.1.	Systematically test computational artifacts by considering all scenarios and using test cases.
OBJECTIVE / GRADE LEVEL EXPECTATION	6.3.	Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility.
STRAND		Computer Science
CONCEPT /		Concept: Algorithms and Programming (AP)

PROFICIENCY LEVEL

GRADE LEVEL 1. EXPECTATION

OBJECTIVE / HS.AP.A. Create prototypes that use algorithms for practical intent, personal expression, or to address a societal issue. Practice(s): Creating Computational Artifacts: 5.2

STRAND	Computer Science
CONCEPT / STANDARD	Concept: Impacts of Computing (IC)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Subconcept: Culture (C)

OBJECTIVE / HS.IC.C.3 Demonstrate ways a given algorithm applies to problems across disciplines. Practice(s): Recognizing and Defining GRADE LEVEL . Computational Problems: 3.1 EXPECTATION

Arizona's College and Career Ready Standards

Technology Education

Grade 12 - Adopted: 2022

STRAND		Arizona Educational Technology Standards 2022
CONCEPT / STANDARD	Standar d 4.	Innovative Designer - Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.4.a.	Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.4.b.	Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
STRAND		Arizona Educational Technology Standards 2022
CONCEPT / ST ANDARD	Standar d 5.	Computational Thinker - Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.a.	Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.b.	Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	9-12.5.c.	Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.

STRAND		Computer Science
CONCEPT / STANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 3.	Recognizing and Defining Computational Problems: The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate.
OBJECTIVE / GRADE LEVEL EXPECTATION	3.1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.

OBJECTIVE / Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or 3.2. GRADE LEVEL procedures. EXPECTATION

STRAND		Computer Science
CONCEPT / ST ANDARD		Practices
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Practic e 5.	Creating Computational Artifacts: The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps.

OBJECTIVE / **GRADE LEVEL**

5.2. Create a computational artifact for practical intent, personal expression, or to address a societal issue.

EXPECTATION

STRAND **Computer Science CONCEPT** / **Practices STANDARD** Testing and Refining Computational Artifacts: Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and PERFORMANC Practic E OBJECTIVE / e 6. PROFICIENCY fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the LEVEL changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. OBJECTIVE / 6.1. Systematically test computational artifacts by considering all scenarios and using test cases. **GRADE LEVEL EXPECTATION** OBJECTIVE / 6.3. Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and GRADE LEVEL accessibility. EXPECTATION

STRAND	Computer Science
CONCEPT / STANDARD	Concept: Algorithms and Programming (AP)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Subconcept: Algorithms (A)

OBJECTIVE /	HS.AP.A.	Create prototypes that use algorithms for practical intent, personal expression, or to address a societal issue.
GRADE LEVEL	1.	Practice(s): Creating Computational Artifacts: 5.2
EXPECTATION		

STRAND	Computer Science
CONCEPT / STANDARD	Concept: Impacts of Computing (IC)
PERFORMANC E OBJECTIVE / PROFICIENCY LEVEL	Subconcept: Culture (C)

 OBJECTIVE /
 HS.IC.C.3
 Demonstrate ways a given algorithm applies to problems across disciplines. Practice(s): Recognizing and Defining

 GRADE LEVEL
 .
 Computational Problems: 3.1

 EXPECTATION