Main Criteria: Forward Education

Secondary Criteria: Connecticut State Standards

 ${\small \textbf{Subjects:}}\ {\small \textsf{Mathematics}}, {\small \textsf{Science}}, {\small \textsf{Technology}}\ {\small \textsf{Education}}$

Grades: 11, 12, Key Stage 4

Forward Education

Autonomous Electric Vehicles of the Future

Connecticut State Standards

Mathematics

Grade 11 - Adopted: 2010

DOMAIN / CONTENT STANDARD	CT.CC.M P.	Mathematical Practices
STATE FRAMEWORK	MP-1.	Make sense of problems and persevere in solving them.
STATE FRAMEWORK	MP-2.	Reason abstractly and quantitatively.
STATE FRAMEWORK	MP-3.	Construct viable arguments and critique the reasoning of others.
STATE FRAMEWORK	MP-4.	Model with mathematics.
STATE	MP-8.	Look for and express regularity in repeated reasoning.

FRAMEWORK

DOMAIN / CONTENT STANDARD	CT.CC.A.	Algebra
STATE FRAMEWORK	A-CED.	Creating Equations
GRADE LEVEL EXPECTATION		Create equations that describe numbers or relationships.

INDICATOR A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

DOMAIN / CONTENT STANDARD	CT.CC.A.	Algebra
STATE FRAMEWORK	A-REI.	Reasoning with Equations and Inequalities
GRADE LEVEL EXPECTATION		Understand solving equations as a process of reasoning and explain the reasoning.
INDICATOR	A-REI.1.	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
DOMAIN / CONTENT STANDARD	CT.CC.F.	Functions

STATE FRAMEWORK	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION		Analyze functions using different representations.
INDICATOR	F-IF.7.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

INDICATOR F-IF.7(a) Graph linear and quadratic functions and show intercepts, maxima, and minima.

DOMAIN / CONTENT STANDARD	CT.CC.F.	Functions
STATE FRAMEWORK	F-LE.	Linear, Quadratic, & Exponential Models
GRADE LEVEL EXPECTATION		Construct and compare linear and exponential models and solve problems.
INDICATOR	F-LE.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.
INDICATOR	F-LE.1(a)	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by

equal factors over equal intervals.

DOMAIN / CONTENT STANDARD	CT.CC.G.	Geometry
STATE FRAMEWORK	G-GPE.	Expressing Geometric Properties with Equations
GRADE LEVEL EXPECT AT ION		Use coordinates to prove simple geometric theorems algebraically

INDICATOR G-GPE.5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Connecticut State Standards Mathematics Grade 12 - Adopted: 2010

		· · · · · · · · · · · · · · · · · · ·
DOMAIN / CONTENT STANDARD	СТ.СС.М Р.	Mathematical Practices
STATE FRAMEWORK	MP-1.	Make sense of problems and persevere in solving them.
STATE FRAMEWORK	MP-2.	Reason abstractly and quantitatively.
STATE FRAMEWORK	MP-3.	Construct viable arguments and critique the reasoning of others.
STATE FRAMEWORK	MP-4.	Model with mathematics.
STATE FRAMEWORK	MP-8.	Look for and express regularity in repeated reasoning.

DOMAIN / CONTENT STANDARD	CT.CC.A.	Algebra
STATE FRAMEWORK	A-CED.	Creating Equations
GRADE LEVEL EXPECTATION		Create equations that describe numbers or relationships.

INDICATOR

A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

DOMAIN / CONTENT STANDARD	CT.CC.A.	Algebra
STATE FRAMEWORK	A-REI.	Reasoning with Equations and Inequalities
GRADE LEVEL EXPECTATION		Understand solving equations as a process of reasoning and explain the reasoning.

INDICATOR

A-REI.1.

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

DOMAIN / CONTENT STANDARD	CT.CC.F.	Functions
STATE FRAMEWORK	F-IF.	Interpreting Functions
GRADE LEVEL EXPECTATION		Analyze functions using different representations.
INDICATOR	F-IF.7.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

INDICATOR F-IF.7(a) Graph linear and quadratic functions and show intercepts, maxima, and minima.

DOMAIN / CONTENT STANDARD	CT.CC.F.	Functions
STATE FRAMEWORK	F-LE.	Linear, Quadratic, & Exponential Models
GRADE LEVEL EXPECTATION		Construct and compare linear and exponential models and solve problems.
INDICATOR	F-LE.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.
INDICATOR	F-LE.1(a)	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

DOMAIN / CONTENT STANDARD	CT.CC.G.	Geometry
STATE FRAMEWORK	G-GPE.	Expressing Geometric Properties with Equations
GRADE LEVEL EXPECTATION		Use coordinates to prove simple geometric theorems algebraically

INDICATOR

G-GPE.5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Connecticut State Standards Science

Grade 11 - Adopted: \textbf{2015}

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS1.	Matter and Its Interactions
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR

4.

3.

HS-PS1- Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS3.	Energy
GRADE LEVEL EXPECT AT ION		Students who demonstrate understanding can:

INDICATOR

HS-PS3- Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. 2.

ınd
ınd

DOMAIN / CONTENT ST ANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATE FRAMEWORK	HS- ESS2.	Earth's Systems

GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS-	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in

ESS2-4. climate.

DOMAIN / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATE FRAMEWORK	HS- ESS3.	Earth and Human Activity
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
INDICATOR	HS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
INDICATOR	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
DOMAIN / CONTENT STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
STATE FRAMEWORK	HS- ET S1.	Engineering Design
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS-	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that

HS- Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that ETS1-1. account for societal needs and wants.

INDICATOR	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
INDICATOR	HS- ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Connecticut State Standards

Science

Grade 12 - Adopted: 2015

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS1.	Matter and Its Interactions

GRADE LEVEL EXPECTATION	Students who demonstrate understanding can:

INDICATOR

4.

3.

HS-PS1- Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS3.	Energy
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR

HS-PS3- Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

DOMAIN / CONTENT STANDARD	NGSS.HS -PS.	PHYSICAL SCIENCE
STATE FRAMEWORK	HS-PS4.	Waves and Their Applications in Technologies for Information Transfer
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR

HS-PS4- Evaluate questions about the advantages of using a digital transmission and storage of information. 2.

DOMAIN / CONTENT STANDARD	NGSS.HS -LS.	LIFE SCIENCE
STATE FRAMEWORK	HS-LS2.	Ecosystems: Interactions, Energy, and Dynamics
GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR

7.

HS-LS2- Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

STATE FRAMEWORK HS- Ess2. Earth's Systems GRADE LEVEL EXPECTATION Students who demonstrate understanding can:	DOMAIN / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
GRADE LEVEL Students who demonstrate understanding can:	STATE FRAMEWORK	HS- ESS2.	Earth's Systems
	GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:

INDICATOR HS-Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in ESS2-4. climate.

DOMAIN / CONTENT STANDARD	NGSS.HS -ESS.	EARTH AND SPACE SCIENCE
STATE FRAMEWORK	HS- ESS3.	Earth and Human Activity

GRADE LEVEL EXPECTATION		Students who demonstrate understanding can:
INDICATOR	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
INDICATOR	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
INDICATOR	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
INDICATOR	HS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
INDICATOR	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
DOMAIN / CONTENT STANDARD	NGSS.HS -ETS.	ENGINEERING DESIGN
STATE FRAMEWORK	HS- ET S1.	Engineering Design
STATE FRAMEWORK GRADE LEVEL EXPECTATION	HS- ET S1.	Engineering Design Students who demonstrate understanding can:
STATE FRAMEWORK GRADE LEVEL EXPECTATION	HS- ETS1-1.	Engineering Design Students who demonstrate understanding can: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
STATE FRAMEWORK GRADE LEVEL EXPECTATION INDICATOR	HS- ETS1-1. HS- ETS1-2.	Engineering Design Students who demonstrate understanding can:

Connecticut State Standards Technology Education Grade 11 - Adopted: 2017

DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 B.	Level 3B (Ages 17-18)
GRADE LEVEL EXPECTATION	3B-AP.	Algorithms & Programming
INDICATOR		Algorithms
INDICATOR	3B-AP- 09.	Implement an artificial intelligence algorithm to play a game against a human opponent or solve a problem. (P5.3)
INDICATOR	3B-AP-	Use and adapt classic algorithms to solve computational problems. (P4.2)

DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 B.	Level 3B (Ages 17-18)
GRADE LEVEL EXPECTATION	3B-AP.	Algorithms & Programming
INDICATOR		Modularity
INDICATOR	3B-AP- 14.	Construct solutions to problems using student-created components, such as procedures, modules and/or objects. (P5.2)
DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 B.	Level 3B (Ages 17-18)
GRADE LEVEL EXPECTATION	3B-AP.	Algorithms & Programming
INDICATOR		Program Development
INDICATOR	3B-AP- 17.	Plan and develop programs for broad audiences using a software life cycle process. (P5.1)
		Grade 11 - Adopted: 2016
DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
DOMAIN / CONTENT ST ANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GRADE LEVEL EXPECTATION	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.

GRADE LEVEL	ISTE-	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to
EXPECTATION	S.5.b.	facilitate problem-solving and decision-making.
		Understand how automation works and use algorithmic thinking to develop a consumer of stand to at and to at

GRADE LEVELISTE-Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and testEXPECTATIONS.5.d.automated solutions.

Connecticut State Standards Technology Education

Grade 12 - Adopted: 2017

DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 B.	Level 3B (Ages 17-18)
GRADE LEVEL EXPECTATION	3B-AP.	Algorithms & Programming
INDICATOR		Algorithms
INDICATOR	3B-AP- 09.	Implement an artificial intelligence algorithm to play a game against a human opponent or solve a problem. (P5.3)
INDICATOR	3B-AP- 10.	Use and adapt classic algorithms to solve computational problems. (P4.2)
DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 B.	Level 3B (Ages 17-18)
GRADE LEVEL EXPECTATION	3B-AP.	Algorithms & Programming
INDICATOR		Modularity
INDICATOR	3B-AP- 14.	Construct solutions to problems using student-created components, such as procedures, modules and/or objects. (P5.2)
DOMAIN / CONTENT STANDARD		CSTA K-12 Computer Science Standards
STATE FRAMEWORK	CSTA.3 B.	Level 3B (Ages 17-18)
GRADE LEVEL EXPECTATION	3B-AP.	Algorithms & Programming
INDICATOR		Program Development
INDICATOR	3B-AP- 17.	Plan and develop programs for broad audiences using a software life cycle process. (P5.1)

Grade 12 - Adopted: 2016

DOMAIN /	ISTE for Students (ISTE-S)
CONTENT	
STANDARD	

STATE FRAMEWORK	CO.IST E-S.3.	Knowledge Constructors: Students critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others.
GRADE LEVEL EXPECTATION	ISTE- S.3.d.	Build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.
DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.4.	Innovative Designers: Students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions.
GRADE LEVEL EXPECTATION	ISTE- S.4.a.	Know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.
GRADE LEVEL EXPECTATION	ISTE- S.4.b.	Select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.
DOMAIN / CONTENT STANDARD		ISTE for Students (ISTE-S)
STATE FRAMEWORK	CO.IST E-S.5.	Computational Thinkers: Students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions.
GRADE LEVEL EXPECTATION	ISTE- S.5.a.	Formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models, and algorithmic thinking in exploring and finding solutions.
GRADE LEVEL EXPECTATION	ISTE- S.5.b.	Collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.
GRADE LEVEL EXPECTATION	ISTE- S.5.d.	Understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions.