Main Criteria: Forward Education

Secondary Criteria: New Jersey Student Learning Standards

Subjects: Mathematics, Science, Technology Education

Grades: 11, 12, Key Stage 4

Forward Education

Autonomous Electric Vehicles of the Future

New Jersey Student Learning Standards

Mathematics

Grade 11 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.8.	Look for and express regularity in repeated reasoning.

STRAND A-CED. Creating Equations CONTENT STATEMENT A- CED.A. Create equations that describe numbers or relationships	CONTENT AREA / STANDARD	NJ.A.	Algebra
	STRAND	A-CED.	Creating Equations
			Create equations that describe numbers or relationships

CUMULATIVE	A-	Create equations in two or more variables to represent relationships between quantities; graph equations on
PROGRESS	CED.A.2.	coordinate axes with labels and scales.
INDICATOR		

CONTENT AREA / STANDARD	NJ.A.	Algebra
STRAND	A-REI.	Reasoning with Equations and Inequalities
CONTENT STATEMENT	A-REI.A.	Understand solving equations as a process of reasoning and explain the reasoning

CUMULATIVE	A-	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous
PROGRESS	REI.A.1.	step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a
INDICATOR		solution method.

CONTENT AREA / STANDARD	NJ.F.	Functions
STRAND	F-IF.	Interpreting Functions
CONTENT STATEMENT	F-IF.C.	Analyze functions using different representations

CUMULATIVE PROGRESS INDICATOR	F-IF.C.7.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

```
INDICATOR
```

F-IF.C.7.a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

CONTENT AREA / STANDARD	NJ.F.	Functions
STRAND	F-LE.	Linear and Exponential Models
CONTENT STATEMENT	F-LE.A.	Construct and compare linear and exponential models and solve problems
CUMULATIVE PROGRESS INDICATOR	F- LE.A.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.
INDICATOR	F- LE.A.1.a.	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

New Jersey Student Learning Standards

Mathematics

Grade 12 - Adopted: 2016

CONTENT AREA / STANDARD	NJ.MP.	Mathematical Practices
STRAND	MP.1.	Make sense of problems and persevere in solving them.
STRAND	MP.2.	Reason abstractly and quantitatively.
STRAND	MP.3.	Construct viable arguments and critique the reasoning of others.
STRAND	MP.4.	Model with mathematics.
STRAND	MP.8.	Look for and express regularity in repeated reasoning.

CONTENT AREA / STANDARD	NJ.A.	Algebra
STRAND	A-CED.	Creating Equations
CONTENT STATEMENT	A- CED.A.	Create equations that describe numbers or relationships
CUMULATIVE	A-	Create equations in two or more variables to represent relationships between quantities; graph equations on

 CUMULATIVE
 A Create equations in two or more variables to represent relationships between quantities; graph equations on PROGRESS

 CED.A.2.
 coordinate axes with labels and scales.

 INDICATOR

CONTENT AREA / STANDARD	NJ.A.	Algebra
STRAND	A-REI.	Reasoning with Equations and Inequalities
CONTENT STATEMENT	A-REI.A.	Understand solving equations as a process of reasoning and explain the reasoning

CUMULATIVE	A-	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous
PROGRESS	REI.A.1.	step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a
INDICATOR		solution method.

CONTENT AREA / STANDARD	NJ.F.	Functions
STRAND	F-IF.	Interpreting Functions
CONTENT STATEMENT	F-IF.C.	Analyze functions using different representations
CUMULATIVE PROGRESS INDICATOR	F-IF.C.7.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

INDICATOR

F-IF.C.7.a. $\ensuremath{\mathsf{Graph}}$ linear and quadratic functions and show intercepts, maxima, and minima.

CONTENT AREA / STANDARD	NJ.F.	Functions
STRAND	F-LE.	Linear and Exponential Models
CONTENT STATEMENT	F-LE.A.	Construct and compare linear and exponential models and solve problems
CUMULATIVE PROGRESS INDICATOR	F- LE.A.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.
INDICATOR	F- LE.A.1.a.	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

New Jersey Student Learning Standards

Science

Grade 11 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	HS-PS.	Physical Science
STRAND	HS-PS1:	Matter and its Interactions
CONTENT STATEMENT	HS-PS1- 4.	Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
CONTENT	HS-PS.	Physical Science

AREA / STANDARD	113-1-3.	
STRAND	HS-PS3:	Energy
CONTENT STATEMENT	HS-PS3- 3.	Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

CONTENT AREA / STANDARD	HS-PS.	Physical Science
STRAND	HS-PS4:	Waves and Their Applications in Technologies for Information Transfer

CONTENT STATEMENT	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.
CONTENT AREA / STANDARD	HS-LS.	Life Science
STRAND	HS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STATEMENT	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT AREA / STANDARD	HS-ESS.	Earth and Space Science
STRAND	HS- ESS2:	Earth's Systems
CONTENT STATEMENT	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
CONTENT AREA / ST ANDARD	HS-ESS.	Earth and Space Science
STRAND	HS- ESS3:	Earth and Human Activity
CONTENT STATEMENT	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and climate change have influenced human activity.
CONTENT STATEMENT	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
CONTENT STATEMENT	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
CONTENT STATEMENT	HS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on climate change and other natural systems.
CONTENT STATEMENT	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity (i.e., climate change).
CONTENT AREA / STANDARD	HS-ETS.	Engineering, Technology and Applications of Science
STRAND	HS- ETS1:	Engineering Design
CONTENT STATEMENT	HS- ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
CONTENT STATEMENT	HS- ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

CONTENT	HS-
STATEMENT	ETS1-3.

Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

New Jersey Student Learning Standards

Science

Grade 12 - Adopted: 2020/Effective 2021

CONTENT AREA / STANDARD	HS-PS.	Physical Science
STRAND	HS-PS1:	Matter and its Interactions
CONTENT STATEMENT	HS-PS1- 4.	Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
CONTENT AREA / ST ANDARD	HS-PS.	Physical Science
STRAND	HS-PS3:	Energy
CONTENT STATEMENT	HS-PS3- 3.	Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
CONTENT AREA / STANDARD	HS-PS.	Physical Science
STRAND	HS-PS4:	Waves and Their Applications in Technologies for Information Transfer
CONTENT STATEMENT	HS-PS4- 2.	Evaluate questions about the advantages of using a digital transmission and storage of information.
CONTENT AREA / STANDARD	HS-LS.	Life Science
STRAND	HS-LS2:	Ecosystems: Interactions, Energy, and Dynamics
CONTENT STATEMENT	HS-LS2- 7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
CONTENT AREA / STANDARD	HS-ESS.	Earth and Space Science
STRAND	HS- ESS2:	Earth's Systems
CONTENT STATEMENT	HS- ESS2-4.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
CONTENT AREA / ST ANDARD	HS-ESS.	Earth and Space Science
STRAND	HS- ESS3:	Earth and Human Activity

CONTENT STATEMENT	HS- ESS3-1.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and climate change have influenced human activity.
CONTENT STATEMENT	HS- ESS3-2.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
CONTENT STATEMENT	HS- ESS3-3.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
CONTENT STATEMENT	HS- ESS3-4.	Evaluate or refine a technological solution that reduces impacts of human activities on climate change and other natural systems.
CONTENT STATEMENT	HS- ESS3-6.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity (i.e., climate change).
CONTENT AREA / STANDARD	HS-ET S.	Engineering, Technology and Applications of Science
AREA /	HS-ETS. HS- ETS1:	Engineering, Technology and Applications of Science Engineering Design
AREA / STANDARD	HS-	
AREA / STANDARD STRAND CONTENT	HS- ET S1: HS-	Engineering Design Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that

New Jersey Student Learning Standards

Technology Education

Grade 11 - Adopted: 2020		
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices	
STRAND	1 Fostering an Inclusive Computing and Design Culture	
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:	

CUMULATIVE PROGRESS

Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

INDICATOR

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems

CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.
CUMULATIVE PROGRESS INDICATOR	Evaluate whether it is appropriate and feasible to solve a problem computationally.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.
CUMULATIVE PROGRESS INDICATOR	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	5 Creating Computational Artifacts
CONTENT STATEMENT	The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR	Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	6 Testing and Refining Computational Artifacts
CONTENT STATEMENT	Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:

Systematically test computational artifacts by considering all scenarios and using test cases.

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Impacts of Computing
CONTENT STATEMENT		The design and use of computing technologies and artifacts can positively or negatively affect equitable access to information and opportunities.

CUMULATIVE 8.1.12.IC. Test and refine computational artifacts to reduce bias and equity deficits. PROGRESS 2: INDICATOR

CONTENT AREA / ST ANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation.

8.1.12.AP Design algorithms to solve computational problems using a combination of original and existing algorithms. CUMULATIVE PROGRESS .1: INDICATOR

STRAND Algorithms & Programming	CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
	STRAND		Algorithms & Programming
CONTENT Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse STATEMENT strengths using a variety of resources, libraries, and tools.	CONTENT STATEMENT		Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources, libraries, and tools.

8.1.12.AP Collaboratively document and present design decisions in the development of complex programs. CUMULATIVE PROGRESS .9: INDICATOR

CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a complex process in which creativity, content knowledge, research, and analysis are used to address local and global problems. Decisions on trade-offs involve systematic comparisons of all costs and benefits, and final steps that may involve redesigning for optimization.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .1:	Use research to design and create a product or system that addresses a problem and make modifications based on input from potential consumers.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .4:	Design a product or system that addresses a global problem and document decisions made based on research, constraints, trade-offs, and aesthetic and ethical considerations and share this information with an appropriate audience.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design evaluation, a process for determining how well a solution meets requirements, involves systematic comparisons between requirements, specifications, and constraints.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .5:	Evaluate the effectiveness of a product or system based on factors that are related to its requirements, specifications, and constraints (e.g., safety, reliability, economic considerations, quality control, environmental concerns, manufacturability, maintenance and repair, ergonomics).
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .6:	Analyze the effects of changing resources when designing a specific product or system (e.g., materials, energy, tools, capital, labor).
CONTENT AREA / ST ANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Interaction of Technology and Humans
CONTENT STATEMENT		Decisions to develop new technology are driven by societal and cultural opinions and demands that differ from culture to culture.
CUMULATIVE PROGRESS	8.2.12.ITH .1:	Analyze a product to determine the impact that economic, political, social, and/or cultural factors have had on its design, including its design constraints.

New Jersey Student Learning Standards Technology Education Grade 12 - Adopted: 2020

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	1 Fostering an Inclusive Computing and Design Culture
CONTENT STATEMENT	Building an inclusive and diverse computing culture requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of diverse users during the design process is essential to producing inclusive computational products. When engaging in this practice, students:

CUMULATIVE	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.
PROGRESS	
INDICATOR	

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	3 Recognizing and Defining Computational Problems
CONTENT STATEMENT	The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution is appropriate. When engaging in this practice, students:

CUMULATIVE PROGRESS INDICATOR

INDICATOR

Decompose complex real-world problems into manageable sub-problems that could integrate existing solutions or procedures.

Evaluate whether it is appropriate and feasible to solve a problem computationally.

CONTENT AREA / STANDARD	Computer Science and Design Thinking Practices
STRAND	4 Developing and Using Abstractions
CONTENT STATEMENT	Abstractions are formed by identifying patterns and extracting common features from specific examples in order to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the development process by managing complexity. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR	Evaluate existing technological functionalities and incorporate them into new designs.

CUMULATIVE	
PROGRESS	

Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

```
INDICATOR
```

CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		5 Creating Computational Artifacts
CONTENT STATEMENT		The process of developing computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations, robotic systems, and apps. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account key features, time and resource constraints, and user expectations.
CUMULATIVE PROGRESS INDICATOR		Create a computational artifact for practical intent, personal expression, or to address a societal issue.
CONTENT AREA / STANDARD		Computer Science and Design Thinking Practices
STRAND		6 Testing and Refining Computational Artifacts
CONTENT STATEMENT		Testing and refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of end users and improve the performance, reliability, usability, and accessibility of artifacts. When engaging in this practice, students:
CUMULATIVE PROGRESS INDICATOR		Systematically test computational artifacts by considering all scenarios and using test cases.
CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science

CONTENT STATEMENT	The design and use of computing technologies and artifacts can positively or negatively affect equitable access to information and opportunities.

 CUMULATIVE
 8.1.12.IC. Test and refine computational artifacts to reduce bias and equity deficits.

 PROGRESS
 2:

 INDICATOR
 2:

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation.

 CUMULATIVE
 8.1.12.AP
 Design algorithms to solve computational problems using a combination of original and existing algorithms.

 PROGRESS
 .1:

 INDICATOR

CONTENT AREA / STANDARD	8.1.	Computer Science and Design Thinking – Computer Science
STRAND		Algorithms & Programming
CONTENT STATEMENT		Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources, libraries, and tools.
CUMULATIVE PROGRESS INDICATOR	8.1.12.AP .9:	Collaboratively document and present design decisions in the development of complex programs.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design is a complex process in which creativity, content knowledge, research, and analysis are used to address local and global problems. Decisions on trade-offs involve systematic comparisons of all costs and benefits, and final steps that may involve redesigning for optimization.
CUMULATIVE PROGRESS INDICATOR	8.2.12.ED .1:	Use research to design and create a product or system that addresses a problem and make modifications based on input from potential consumers.

CUMULATIVE	8.2.12.ED	Design a product or system that addresses a global problem and document decisions made based on research,
PROGRESS	.4:	constraints, trade-offs, and aesthetic and ethical considerations and share this information with an appropriate
INDICATOR		audience.

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Engineering Design
CONTENT STATEMENT		Engineering design evaluation, a process for determining how well a solution meets requirements, involves systematic comparisons between requirements, specifications, and constraints.

CUMULATIVE8.2.12.EDEvaluate the effectiveness of a product or system based on factors that are related to its requirements,PROGRESS.5:specifications, and constraints (e.g., safety, reliability, economic considerations, quality control, environmentalINDICATORconcerns, manufacturability, maintenance and repair, ergonomics).

CUMULATIVE	8.2.12.ED	Analyze the effects of changing resources when designing a specific product or system (e.g., materials, energy,
PROGRESS	.6:	tools, capital, labor).
INDICATOR		

CONTENT AREA / STANDARD	8.2.	Computer Science and Design Thinking – Design Thinking
STRAND		Interaction of Technology and Humans
CONTENT STATEMENT		Decisions to develop new technology are driven by societal and cultural opinions and demands that differ from culture to culture.

CUMULATIVE8.2.12.ITHAnalyze a product to determine the impact that economic, political, social, and/or cultural factors have had on itsPROGRESS.1:design, including its design constraints.INDICATOR