Main Criteria: Forward Education

Secondary Criteria: Tennessee Academic Standards

Subjects: Mathematics, Science, Technology Education

Grades: 11, 12, Key Stage 4

Forward Education

Autonomous Electric Vehicles of the Future

Tennessee Academic Standards

Mathematics

Grade 11 - Adopted: 2021

		Grade 11 - Adopted: 2021
STRAND / STANDARD / COURSE		Standards for Mathematical Practice
CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	8	Look for and express regularity in repeated reasoning.
STRAND / STANDARD / COURSE		Algebra I A1
CONCEPTUAL STRAND / GUIDING QUESTION	A1.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	A1.A.CE D.A.	Create equations that describe numbers or relationships.
LEARNING EXPECTATION	A1.A.CE D.A.2.	Create equations in two variables to represent relationships between quantities and use them to solve problems in a real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.
STRAND / STANDARD / COURSE		Algebra I A1

CONCEPTUAL STRAND / GUIDING QUESTION	A1.F.LE.	Functions – Linear and Exponential Models (F.LE)
GUIDING QUESTION / LEARNING EXPECTATION	A1.F.LE. A.	Construct and compare linear and exponential models and solve problems.
LEARNING EXPECTATION	A1.F.LE. A.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.
INDICATOR	A1.F.LE.A .1.a.	Know that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.
STRAND / STANDARD / COURSE		Algebra II A2
STANDARD /	A2.A.CE D.	Algebra II A2 Algebra – Creating Equations (A.CED)
ST ANDARD / COURSE CONCEPTUAL STRAND / GUIDING	-	

LEARNING A2.A.C EXPECTATION D.A.2. Create equations in two variables to represent relationships between quantities and use them to solve problems in a real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.

STRAND / STANDARD / COURSE		Integrated Math I M1
CONCEPTUAL STRAND / GUIDING QUESTION	M1.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	D.A.	Create equations that describe numbers or relationships

LEARNINGM1.A.CECreate equations in two variables to represent relationships between quantities and use them to solve problems in aEXPECTATIOND.A.2.real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the
graphs to make predictions.

STRAND / STANDARD / COURSE		Integrated Math I M1
CONCEPTUAL STRAND / GUIDING QUESTION	M1.F.LE.	Functions – Linear and Exponential Models (F.LE)
GUIDING QUESTION / LEARNING EXPECTATION	M1.F.LE. A.	Construct and compare linear and exponential models and solve problems.
LEARNING EXPECTATION	M1.F.LE. A.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.

INDICATOR

M1.F.LE. Know that linear functions grow by equal differences over equal intervals and that exponential functions grow by A.1.a. equal factors over equal intervals.

STRAND / STANDARD / COURSE		Integrated Math II M2
CONCEPTUAL STRAND / GUIDING QUESTION	M2.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	D.A.	Create equations that describe numbers or relationships.

LEARNING M2.A. EXPECTATION D.A.2.

M2.A.CE Create equations in two variables to represent relationships between quantities and use them to solve problems in a D.A.2. real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.

CONCEPTUAL STRAND / GUIDING QUESTIONM3.A.CE Algebra - Creating Equations (A.CED)	
GUIDING QUESTION / LEARNING EXPECTATIONM3.A.CECreate equations that describe numbers or relationships.	

LEARNING	M3.A.CE	Create equations in two variables to represent relationships between quantities and use them to solve problems in a
EXPECTATION	D.A.2.	real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the
		graphs to make predictions.

Grade 11 - Adopted: 2022

ST RAND / ST ANDARD / COURSE		Calculus C
CONCEPTUAL STRAND / GUIDING QUESTION	C.D.AD.	Derivatives – Computing and Applying Derivatives (D.AD)
GUIDING QUESTION / LEARNING EXPECTATION	C.	Apply derivatives to solve problems.

LEARNING C.D.AD.C Solve optimization problems to find a desired maximum or minimum value. EXPECTATION .16.

Tennessee Academic Standards Mathematics

Grade 12 - Adopted: 2021

Standards for Mathematical Practice

CONCEPTUAL STRAND / GUIDING QUESTION	1	Make sense of problems and persevere in solving them.
CONCEPTUAL STRAND / GUIDING QUESTION	2	Reason abstractly and quantitatively.
CONCEPTUAL STRAND / GUIDING QUESTION	3	Construct viable arguments and critique the reasoning of others.
CONCEPTUAL STRAND / GUIDING QUESTION	4	Model with mathematics.
CONCEPTUAL STRAND / GUIDING QUESTION	8	Look for and express regularity in repeated reasoning.

STRAND / STANDARD / COURSE		Algebra I A1
CONCEPTUAL STRAND / GUIDING QUESTION	A1.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	A1.A.CE D.A.	Create equations that describe numbers or relationships.
LEARNING	A1.A.CE	Create equations in two variables to represent relationships between quantities and use them to solve problems in a

LEARNINGA1.A.CECreate equations in two variables to represent relationships between quantities and use them to solve problems in aEXPECTATIOND.A.2.real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the
graphs to make predictions.

STRAND / STANDARD / COURSE		Algebra I A1
CONCEPTUAL STRAND / GUIDING QUESTION	A1.F.LE.	Functions – Linear and Exponential Models (F.LE)
GUIDING QUESTION / LEARNING EXPECTATION	A1.F.LE. A.	Construct and compare linear and exponential models and solve problems.
LEARNING EXPECTATION	A1.F.LE. A.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.
INDICATOR	A1.F.LE.A .1.a.	Know that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

STRAND / STANDARD / COURSE		Algebra II A2
CONCEPTUAL STRAND / GUIDING QUESTION	A2.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	A2.A.CE D.A.	Create equations that describe numbers or relationships.

LEARNING A2.A.C EXPECTATION D.A.2.

A2.A.CE Create equations in two variables to represent relationships between quantities and use them to solve problems in a D.A.2. real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.

STRAND / STANDARD / COURSE		Integrated Math I M1
CONCEPTUAL STRAND / GUIDING QUESTION	M1.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	M1.A.CE D.A.	Create equations that describe numbers or relationships
LEARNING	M1.A.CE	Create equations in two variables to represent relationships between quantities and use them to solve problems in a

 LEARNING
 M1.A.CE
 Create equations in two variables to represent relationships between quantities and use them to solve problems in a

 EXPECTATION
 D.A.2.
 real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.

STRAND / STANDARD / COURSE		Integrated Math I M1
CONCEPTUAL STRAND / GUIDING QUESTION	M1.F.LE.	Functions – Linear and Exponential Models (F.LE)
GUIDING QUESTION / LEARNING EXPECTATION	M1.F.LE. A.	Construct and compare linear and exponential models and solve problems.
LEARNING EXPECTATION	M1.F.LE. A.1.	Distinguish between situations that can be modeled with linear functions and with exponential functions.
INDICATOR	M1.F.LE.	Know that linear functions grow by equal differences over equal intervals and that exponential functions grow by

A.1.a. equal factors over equal intervals.

STRAND / STANDARD / COURSE		Integrated Math II M2
CONCEPTUAL STRAND / GUIDING QUESTION	M2.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	D.A.	Create equations that describe numbers or relationships.

LEARNINGM2.A.CECreate equations in two variables to represent relationships between quantities and use them to solve problems in aEXPECTATIOND.A.2.real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the
graphs to make predictions.

STRAND / STANDARD / COURSE		Integrated Math III M3
CONCEPTUAL STRAND / GUIDING QUESTION	M3.A.CE D.	Algebra – Creating Equations (A.CED)
GUIDING QUESTION / LEARNING EXPECTATION	D.A.	Create equations that describe numbers or relationships.

LEARNING M3.A.C EXPECTATION D.A.2.

M3.A.CE Create equations in two variables to represent relationships between quantities and use them to solve problems in a D.A.2. real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.

Grade 12 - Adopted: 2022		
STRAND / STANDARD / COURSE		Calculus C
CONCEPTUAL STRAND / GUIDING QUESTION	C.D.AD.	Derivatives – Computing and Applying Derivatives (D.AD)
GUIDING QUESTION / LEARNING EXPECTATION	C.D.AD. C.	Apply derivatives to solve problems.

LEARNINGC.D.AD.CSolve optimization problems to find a desired maximum or minimum value.EXPECTATION.16.

Tennessee Academic Standards

Science

Grade 11 - Adopted: 2016

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO1.LS 3	Ecosystems: Interactions, Energy, and Dynamics

LEARNINGBIO1.LS2Create a model tracking carbon atoms between inorganic and organic molecules in an ecosystem. Explain humanEXPECTATION.2.impacts on climate based on this model.

	TN.CHEM II.	Chemistry II
CONCEPTUAL STRAND / GUIDING QUESTION	CHEM2. PS.	Physical Sciences (PS)

GUIDING QUESTION / LEARNING EXPECTATION	CHEM2. PS3.	Energy
LEARNING EXPECTATION	CHEM2.P S3.7.	Investigate and explain the energy changes in biological systems (such as the combustion of sugar and photosynthesis) both qualitatively and quantitatively.

LEARNINGCHEM2.PResearch pyrotechnics and use concepts in thermodynamics, stoichiometry, oxidation reduction, and kinetics to
design and create a low intensity sparkler.

ST RAND / ST ANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ESS.ES S2.	Earth's Systems
LEARNING EXPECTATION	ESS.ESS 2.1.	Given an environmental disaster, analyze its effect upon the geosphere, hydrosphere, atmosphere, and/or biosphere, including sphere-to-sphere interactions. Analysis should conclude with an identification of future research to improve our ability to predict such interactions.
LEARNING EXPECTATION	ESS.ESS 2.10.	Construct a model which shows the interactions between processes of the hydrologic cycle and the greenhouse effect.
LEARNING EXPECTATION	ESS.ESS 2.16.	Design a mathematical model of Earth's energy budget showing how the electromagnetic radiation from the sun in watts/ m2 is reflected, absorbed, stored, redistributed among the atmosphere, ocean, and land systems, and reradiated back into space. The model should provide a means to predict how changes in greenhouse gases could affect Earth's temperatures.
LEARNING EXPECTATION	ESS.ESS 2.17.	Analyze the multiple sources of energy that provide power in the state of Tennessee and compare them to each other and to an alternative energy source. The analysis should include their functional components (such as infrastructure cost, on-going costs, safety, and reliability), and their social, cultural, and environmental impacts (including emissions of greenhouse gases).
LEARNING EXPECTATION	ESS.ESS 2.18.	Identify the organisms that are major drivers in the global carbon cycle and trace how greenhouse gases are continually moved through the carbon reservoirs and fluxes represented by the ocean, land, life, and atmosphere.
STRAND / STANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION /	ESS.ES S3.	Earth and Human Activity

LEARNING ESS.ESS EXPECTATION 3.1.

LEARNING EXPECT AT ION

> ESS.ESS Identify a geographical region or small area where energy and mineral resources are scarce and evaluate 3.1. competing design solutions for developing, managing, and utilizing these energy and mineral resources based on a cost-benefit analysis.

LEARNING	ESS.ESS	Obtain, evaluate, and communicate information on how natural resource availability, natural hazard occurrences, and
EXPECTATION	3.2.	climatic changes impact individuals and society.

LEARNINGESS.ESSDesign, evaluate, or refine a technological solution that reduces impacts of human activities on natural systems.EXPECTATION3.3.

STRAND / STANDARD / COURSE	TN.ECO.	Ecology (ECO)
CONCEPTUAL STRAND / GUIDING QUESTION	ECO.ES S.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	S3.	Earth and Human Activity

LEARNINGECO.ESSEngage in argument from evidence regarding the impacts of human activity on climate change. Design solutions toEXPECTATION3.3.address these impacts.

STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.LS	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.L S4.	Biological Change: Unity and Diversity

LEARNINGEVSC.LSEvaluate the impact of habitat fragmentation and destruction, invasive species, overharvesting, pollution, and climateEXPECTATION4.3.change on biodiversity (genetic, species, and ecosystem).

STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.E SS.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.E SS3.	Earth and Human Activity
LEARNING EXPECTATION	EVSC.ES S3.10.	Using scientific data, analyze effectiveness of conservation versus preservation efforts. Obtain and communicate information on organizations involved in protecting natural resources.
LEARNING EXPECTATION	EVSC.ES S3.13.	Analyze and interpret data on the effects of land, water, and air pollution on the environment and on human health. Propose solutions for minimizing pollution from specific sources.
LEARNING EXPECTATION	EVSC.ES S3.17.	Using mathematics and computational thinking, analyze data linking human activity to climate change. Design solutions to address human impacts on climate change.

STRAND / STANDARD / COURSE	TN.GEO.	Geology (GEO)
CONCEPTUAL STRAND / GUIDING QUESTION	GEO.ES S.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	GEO.ES S3.	Earth and Human Activity

LEARNING GEO EXPECTATION 3.1.

GEO.ESS Use a topographic map and a geologic map to determine an ideal location for a Tennessee electricity-generating 3.1. facility to provide solar, wind, nuclear, hydroelectric, or other renewable/nonrenewable power.

STRAND / STANDARD / COURSE	TN.PSCI.	Physical Science (PSCI)
CONCEPTUAL STRAND / GUIDING QUESTION	PSCI.PS.	Physical Sciences (PS)
GUIDING QUESTION / LEARNING EXPECTATION	1.	Matter and Its Interactions

LEARNINGPSCI.PSApply scientific principles and evidence to provide explanations about physical and chemical changes.EXPECTATION1.4.

STRAND / STANDARD / COURSE	TN.SCRE.	Scientific Research (SCRE)
CONCEPTUAL STRAND / GUIDING QUESTION	SCRE.E TS.	Engineering, Technology, and Applications of Science (ETS)
GUIDING QUESTION / LEARNING EXPECTATION	SCRE.E T S2.	Links Among Engineering, Technology, Science, and Society
LEARNING EXPECTATION	SCRE.ET S2.1.	Explore the impact of technology on social, political, or economic systems.
LEARNING EXPECTATION	SCRE.ET S2.2.	Describe the dynamic interplay among engineering, technology, and applied science.
LEARNING EXPECTATION	SCRE.ET S2.3.	Identify the most appropriate scientific instruments and/or computer programs for different experiments and research, and learn to use, care for, and maintain them, gather data, and analyze results.
LEARNING EXPECTATION	SCRE.ET S2.4.	Engage in evidence-based arguments through the scientific method of investigation to understand the effective role that scientific discoveries played in the progression of humankind.

Tennessee Academic Standards

Science

Grade 12 - Adopted: 2016

STRAND / STANDARD / COURSE	TN.BIOI.	Biology I (BIO1)
CONCEPTUAL STRAND / GUIDING QUESTION	BIO1.LS.	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	BIO1.LS 3	Ecosystems: Interactions, Energy, and Dynamics

LEARNING

BIO1.LS2 Create a model tracking carbon atoms between inorganic and organic molecules in an ecosystem. Explain human EXPECTATION .2. impacts on climate based on this model.

	TN.CHEM I.	Chemistry II
CONCEPTUAL STRAND / GUIDING QUESTION	CHEM2. PS.	Physical Sciences (PS)
GUIDING QUESTION / LEARNING EXPECTATION	CHEM2. PS3.	Energy

LEARNING	CHEM2.P	Investigate and explain the energy changes in biological systems (such as the combustion of sugar and
EXPECTATION	S3.7.	photosynthesis) both qualitatively and quantitatively.

LEARNING	CHEM2.P	Research pyrotechnics and use concepts in thermodynamics, stoichiometry, oxidation reduction, and kinetics to
EXPECTATION	S3.8.	design and create a low intensity sparkler.

STRAND / STANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ESS.ES S2.	Earth's Systems
LEARNING EXPECTATION	ESS.ESS 2.1.	Given an environmental disaster, analyze its effect upon the geosphere, hydrosphere, atmosphere, and/or biosphere, including sphere-to-sphere interactions. Analysis should conclude with an identification of future research to improve our ability to predict such interactions.
LEARNING EXPECTATION	ESS.ESS 2.10.	Construct a model which shows the interactions between processes of the hydrologic cycle and the greenhouse effect.
LEARNING EXPECTATION	ESS.ESS 2.16.	Design a mathematical model of Earth's energy budget showing how the electromagnetic radiation from the sun in watts/ m2 is reflected, absorbed, stored, redistributed among the atmosphere, ocean, and land systems, and reradiated back into space. The model should provide a means to predict how changes in greenhouse gases could affect Earth's temperatures.

LEARNING	ESS.ESS	Analyze the multiple sources of energy that provide power in the state of Tennessee and compare them to each
EXPECTATION	2.17.	other and to an alternative energy source. The analysis should include their functional components (such as
		infrastructure cost, on-going costs, safety, and reliability), and their social, cultural, and environmental impacts
		(including emissions of greenhouse gases).

LEARNINGESS.ESSIdentify the organisms that are major drivers in the global carbon cycle and trace how greenhouse gases areEXPECTATION2.18.continually moved through the carbon reservoirs and fluxes represented by the ocean, land, life, and atmosphere.

STRAND / STANDARD / COURSE	TN.ESS.	Earth and Space Science (ESS)
CONCEPTUAL STRAND / GUIDING QUESTION	ESS.ESS	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	ESS.ES S3.	Earth and Human Activity
LEARNING EXPECTATION	ESS.ESS 3.1.	Identify a geographical region or small area where energy and mineral resources are scarce and evaluate competing design solutions for developing, managing, and utilizing these energy and mineral resources based on a cost-benefit analysis.
LEARNING EXPECTATION	ESS.ESS 3.2.	Obtain, evaluate, and communicate information on how natural resource availability, natural hazard occurrences, and climatic changes impact individuals and society.
LEARNING	ESS.ESS	Design, evaluate, or refine a technological solution that reduces impacts of human activities on natural systems.

EXPECTATION 3.3.

STRAND / TN.ECO. Ecology (ECO) STANDARD / COURSE CONCEPTUAL Earth and Space Sciences (ESS) ECO.ES STRAND / S. **GUIDING** QUESTION GUIDING ECO.ES Earth and Human Activity **QUESTION /** S3. LEARNING EXPECT ATION

LEARNINGECO.ESSEngage in argument from evidence regarding the impacts of human activity on climate change. Design solutions toEXPECTATION3.3.address these impacts.

STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.LS	Life Sciences (LS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.L S4.	Biological Change: Unity and Diversity

LEARNINGEVSC.LSEvaluate the impact of habitat fragmentation and destruction, invasive species, overharvesting, pollution, and climateEXPECTATION4.3.change on biodiversity (genetic, species, and ecosystem).

STRAND / STANDARD / COURSE	TN.EVSC.	Environmental Science (EVSC)
CONCEPTUAL STRAND / GUIDING QUESTION	EVSC.E SS.	Earth and Space Sciences (ESS)
GUIDING QUESTION / LEARNING EXPECTATION	EVSC.E SS3.	Earth and Human Activity
LEARNING EXPECTATION	EVSC.ES S3.10.	Using scientific data, analyze effectiveness of conservation versus preservation efforts. Obtain and communicate information on organizations involved in protecting natural resources.
LEARNING EXPECTATION	EVSC.ES S3.13.	Analyze and interpret data on the effects of land, water, and air pollution on the environment and on human health. Propose solutions for minimizing pollution from specific sources.
LEARNING EXPECTATION	EVSC.ES S3.17.	Using mathematics and computational thinking, analyze data linking human activity to climate change. Design solutions to address human impacts on climate change.
STRAND / STANDARD / COURSE	TN.GEO.	Geology (GEO)
CONCEPTUAL STRAND / GUIDING QUESTION	GEO.ES S.	Earth and Space Sciences (ESS)
GUIDING	GEO.ES	Earth and Human Activity

 EXPECT AT ION
 GEO.ESS
 Use a topographic map and a geologic map to determine an ideal location for a Tennessee electricity-generating

QUESTION /

LEARNING

S3.

 EXPECTATION
 3.1.
 facility to provide solar, wind, nuclear, hydroelectric, or other renewable/nonrenewable power.

STRAND / STANDARD / COURSE	TN.PSCI.	Physical Science (PSCI)
CONCEPTUAL STRAND / GUIDING QUESTION	PSCI.PS.	Physical Sciences (PS)
GUIDING QUESTION / LEARNING EXPECTATION	1.	Matter and Its Interactions

LEARNINGPSCI.PSApply scientific principles and evidence to provide explanations about physical and chemical changes.EXPECTATION1.4.

STRAND / STANDARD / COURSE	TN.SCRE.	Scientific Research (SCRE)
CONCEPTUAL STRAND / GUIDING QUESTION	SCRE.E TS.	Engineering, Technology, and Applications of Science (ETS)

GUIDING QUESTION / LEARNING EXPECTATION	SCRE.E TS2.	Links Among Engineering, Technology, Science, and Society
LEARNING EXPECTATION	SCRE.ET S2.1.	Explore the impact of technology on social, political, or economic systems.
LEARNING EXPECTATION	SCRE.ET S2.2.	Describe the dynamic interplay among engineering, technology, and applied science.
LEARNING EXPECTATION	SCRE.ET S2.3.	Identify the most appropriate scientific instruments and/or computer programs for different experiments and research, and learn to use, care for, and maintain them, gather data, and analyze results.
LEARNING EXPECTATION	SCRE.ET S2.4.	Engage in evidence-based arguments through the scientific method of investigation to understand the effective role that scientific discoveries played in the progression of humankind.

Tennessee Academic Standards

Technology Education

Grade 11 - Adopted: 2022

STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	CS.AT.	Algorithmic Thinking
LEARNING EXPECTATION	CS.AT.3.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.

LEARNING	CS.AT.4.	Use effective communication and accurate computer science terminology to explain problem solving when
EXPECTATION		completing a task.

STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	CS.PC.	Programming Concepts

LEARNING EXPECTATION CS.PC.2. Develop a plan to manage and assign data values of different types (strings, numeric, character, integer, and date) to a variable

Tennessee Academic Standards Technology Education Grade 12 - Adopted: 2022

STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	CS.AT.	Algorithmic Thinking
LEARNING EXPECTATION	CS.AT.3.	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.
LEARNING EXPECTATION	CS.AT.4.	Use effective communication and accurate computer science terminology to explain problem solving when completing a task.
STRAND / STANDARD / COURSE		Tennessee K-12 Computer Science State Standards
CONCEPTUAL STRAND / GUIDING QUESTION		High School: Computer Science Standards
GUIDING QUESTION / LEARNING EXPECTATION	CS.PC.	Programming Concepts
LEARNING	CS.PC.2.	Develop a plan to manage and assign data values of different types (strings, numeric, character, integer, and date)

LEARNINGCS.PC.2.Develop a plan to manage and assign data values of different types (strings, numeric, character, integer, and date)EXPECTATIONto a variable